TABLE 1

Origins, chromosomal linkages, and phenotypes of new synthetic Multivulva strains

Penetrance of Muv phenotype (%)Strain growth
Genotype15°20°15°20°25°
lin-8(n111) II; lin-13(n2238) III 65 (n = 391)100 (n = 74)Very slowSlowInviable
lin-8(n111) II; lin-15(n2230) X 20 (n = 254)93 (n = 376)SlowWTSlow
lin-8(n111) II; lin-15(n2233) X 100 (n = 235)100 (n = 385)SlowWTSlow
lin-8(n111) II; lin-15(n2241) X 100 (n = 130)100 (n = 238)SlowWTInviable
lin-8(n111) II; lin-15(n2244) X 91 (n = 128)99.6 (n = 280)WTWTSlow
lin-8(n111) II; lin-15(n2245) X 6 (n = 202)98 (n = 306)WTWTWT
lin-35(n2232) I; lin-8(n111) II 100 (n = 200)99.9 (n = 942)InviableWTInviable
lin-35(n2236) I; lin-8(n111) II 99 (n = 96)100 (n = 97)InviableSlowInviable
lin-35(n2239) I; lin-8(n111) II 100 (n = 197)100 (n = 290)InviableWTSlow
lin-35(n2242) I; lin-8(n111) II ND100 (n = 278)InviableSlowVery slow
lin-8(n111) II; lin-36(n2235) III 13 (n = 279)79 (n = 313)WTWTWT
lin-8(n111) II; lin-36(n2240) III 7(n = 189)79 (n = 373)WTWTWT
lin-8(n111) II; lin-36(n2243) III 51 (n = 115)94 (n = 593)WTWTWT
lin-8(n111) II; lin-37(n2234) III 96 (n = 192)100 (n = 278)WTWTInviable
lin-8(n111) II; lin-54(n2231) IV 39 (n = 334)99 (n = 164)Very slowWTSlow
lin-13(n2981) III; lin-15(n433) X 0 (n = 237)84 (n = 241)WTWTInviable
lin-13(n2984) III; lin-15(n433) X 1 (n = 217)97 (n = 239)WTWTInviable
lin-13(n2985) III; lin-15(n433) X 2 (n = 229)94 (n = 213)WTWTSlow
lin-13(n2988) III; lin-15(n433) X 33 (n = 247)97 (n = 261)SlowSlowInviable
lin-15(n2980 n433) Xa 2 (n = 209)99 (n = 252)WTWTSlow
lin-15(n2983 n433) Xa 2 (n = 232)99 (n = 227)WTWTSlow
lin-15(n2987 n433) Xa 0 (n = 207)91 (n = 267)WTWTWT
lin-15(n2989 n433) Xa 0 (n = 238)100 (n = 235)WTWTWT
lin-15(n2991 n433) Xa 2 (n = 226)100 (n = 216)WTWTWT
lin-15(n2993 n433) Xa 0 (n = 205)79 (n = 201)WTWTWT
lin-35(n2977) I; lin-15(n433) X 8 (n = 257)100 (n = 234)SlowWTSlow
lin-35(n2996) I; lin-15(n433) X 18 (n = 216)100 (n = 202)SlowSlowSlow
lin-53(n2978) I; lin-15(n433) X 0 (n = 211)59 (n = 203)WTWTWT
lin-54(n2990) IV; lin-15(n433) X 4 (n = 199)95 (n = 216)WTWTSlow
dpl-1(n2994) II; lin-15(n433) X 4 (n = 246)78 (n = 234)WTWTSlow
lin-52(n3718) III; lin-15(n767) X 100 (n = 41)100 (n = 82) b b b
lin-8(n2376) II; lin-36(n766) III 18 (n = 382)96 (n = 189)WTWTWT
lin-8(n2378) II; lin-36(n766) III 19 (n = 456)100 (n = 125)WTWTWT
lin-8(n2403) II; lin-36(n766) III 48 (n = 402)99 (n = 549)WTWTWT
lin-36(n766) III; lin-15(n2375) X 0 (n = 544)82 (n = 675)WTWTSlow
lin-38(n2402) II; lin-36(n766) III 28 (n = 643)99.7 (n = 667)WTWTWT
lin-8(n2724) II; lin-15(n744) X 100 (n = 211)100 (n = 126)SlowSlowSlow
lin-8(n2731) II; lin-15(n744) X 100 (n = 217)100 (n = 167)SlowSlowSlow
lin-8(n2738) II; lin-15(n744) X 100 (n = 128)100 (n = 140)SlowSlowVery slow
lin-8(n2739) II; lin-15(n744) X 100 (n = 158)100 (n = 97)SlowSlowSlow
lin-8(n2741) II; lin-15(n744) X 100 (n = 157)100 (n = 155)WTSlowSlow
lin-15(n744 n2725) Xa 100 (n = 152)100 (n = 177)SlowSlowVery slow
lin-15(n744 n2726) Xa 100 (n = 141)100 (n = 145)SlowSlowVery slow
lin-15(n744 n2733) Xa 100 (n = 193)100 (n = 140)SlowSlowInviable
lin-15(n744 n2734) Xa 100 (n = 124)100 (n = 159)SlowSlowSlow
lin-15(n744 n2735) Xa 100 (n = 132)100 (n = 176)SlowSlowVery slow
lin-15(n744 n2737) Xa 99 (n = 199)100 (n = 121)SlowSlowInviable
lin-15(n744 n2742) Xa 100 (n = 121)100 (n = 173)SlowSlowVery slow
lin-38(n2727) II; lin-15(n744) X 100 (n = 201)100 (n = 165)SlowSlowSlow
lin-56(n2728) II; lin-15(n744) X 100 (n = 214)100 (n = 163)SlowSlowSlow

New synMuv mutations were mapped to linkage groups using strains carrying the markers bli-3 I, dpy-5 I, unc-54 I, unc-85 II, bli-2 II, mnC1 dpy-10 unc-52 II, unc-52 II, dpy-1 III, unc-32 III, unc-25 III, dpy-9 IV, egl-18 IV, unc-5 IV, dpy-4 IV, unc-34 V, dpy-11 V, unc-51 V, lon-2 X, and unc-3 X in a manner similar to that described previously (Trent et al. 1983; Ferguson and Horvitz 1989). The penetrance of the Muv phenotype of each synMuv strain was determined at 15° and 20° after growth at the indicated temperature for two or more generations. Several strains displayed a temperature-dependent reduction in viability. This reduction in viability was tested in an assay similar to that of Ferguson and Horvitz (1989) but differing in that exactly 10 eggs laid by hermaphrodites of the indicated genotype grown at 20° were placed on each of the four assay plates (each with a 2-cm diameter lawn of bacteria) used at each temperature. The plates were checked daily to determine when the bacterial lawn was consumed. The data are presented according to the following criteria: at 15°, wild type (WT), 8.5–14 days; slow, 14–24 days; very slow, 24–28 days; inviable, lethal or °28 days. At 20°, WT, 5.5–9 days; slow, 9–17 days; very slow, 17–28 days; inviable, lethal or °28 days. At 25°, WT, 5–7.5 days; slow, 7.5–15 days; very slow, 15–28 days; inviable, lethal or °28 days. The last value of the range described was included in that category. The data obtained from the WT strain N2 were 15°, 10 days; 20°, 6 days; 25°, 5 days. ND, not determined because the strain was inviable at the listed temperature.

  • a The mutations in these strains displayed linkage only to unc-3 X. Linkage of the new mutation to unc-3 X is assumed since the mutations in these strains segregated as single-locus Muv mutations and failed to complement lin-15(n765) X.

  • b As the lin-52(n3718) mutation causes recessive sterility, the growth rate of lin-52(n3718) mutants derived from lin-52(n3718) homozygous parents could not be measured.