TABLE 1

Summary of the posterior distribution p(t|k, n), where t is the time back to the most recent common ancestor (MRCA) for two individuals that match at k of n markers

kMLEMeanSDMediant0.9t0.025t0.975
n = 5 markers
50.050.050.034.7115.11.3184.4
455.8112.580.094.2219.213.6315.0
3127.7195.8115.5173.3480.039.6480.0
2229.0320.8170.2289.7546.883.4736.6
n = 10 markers
100.025.025.017.357.50.692.2
926.352.837.444.3102.76.4147.2
855.884.048.774.8149.317.3203.0
789.2119.760.4109.7200.632.4264.2
6127.7161.473.4150.2259.551.8334.5
5173.3211.488.8198.7329.876.1419.0
4229.1273.9108.6258.9418.4106.8526.9
n = 20 markers
200.012.512.58.728.80.346.1
1912.825.718.121.549.93.171.5
1826.339.522.935.270.28.195.3
1740.654.327.249.890.714.7119.1
1655.869.931.365.2111.822.6143.5
1571.986.535.581.7134.031.6168.9
1489.2104.439.799.4157.541.8195.7
13107.7123.644.1118.4182.553.1224.2
12127.7144.548.8138.9209.565.5255.0
11149.5167.253.8161.3238.879.3288.6
10173.3192.159.4185.9271.094.7325.5
n = 50 markers
500.05.05.03.511.40.118.5
495.110.17.18.519.71.228.2
4810.215.38.813.727.23.236.9
4715.520.610.318.934.55.645.2
4620.826.011.724.341.78.553.4
4526.331.612.929.948.911.661.5
4432.037.314.135.556.115.069.6
4337.743.115.341.363.418.677.8
4243.649.116.447.370.922.486.0
4149.655.217.553.378.426.494.4
4055.861.418.659.686.130.6102.8
3962.167.819.665.993.935.0111.4
3868.674.420.772.5101.939.5120.2
3775.381.221.879.2110.044.3129.2
3682.188.122.986.1118.449.2138.3
3589.295.224.093.2127.054.3147.7
3496.4102.625.1100.6135.759.6157.3
33103.9110.226.2108.1144.865.1167.2
32111.6118.027.3115.9154.170.8177.4
31119.5126.128.5123.9163.776.7187.9
30127.7134.429.7132.2173.682.8198.7
n = 100 markers
1000.02.52.51.75.80.19.2
992.55.03.64.29.80.614.0
985.17.64.46.813.51.618.3
977.610.25.19.317.02.822.3
9610.212.85.711.920.44.126.1
9512.815.46.314.523.85.629.9
9415.518.06.817.227.27.333.7
9318.120.77.319.930.58.937.4
9220.823.57.822.633.910.741.1
9123.626.28.325.337.212.644.8
9026.329.08.728.140.614.548.5
8929.131.89.230.944.016.452.2
8832.034.69.633.747.418.455.9
8734.837.510.036.650.820.559.6
8637.740.410.439.554.322.663.3
8540.643.410.942.557.727.867.1
8443.646.311.245.461.227.070.9
8346.649.311.648.464.729.274.7
8249.652.412.051.568.331.578.5
8152.755.512.454.671.933.982.4
8055.858.612.857.775.536.386.3
7958.961.812.260.879.238.790.2
7862.165.012.664.082.941.294.2
7765.368.214.067.386.643.798.2
7668.671.514.370.590.446.2102.3
7571.974.814.773.994.248.8106.4
7475.378.215.177.298.151.5110.5
7378.781.615.580.7102.054.2114.7
7282.185.115.984.1106.056.9119.0
7185.688.616.387.6110.059.7123.3
7089.292.216.791.2114.162.5127.6
6992.8108.922.2107.0138.171.0157.6
6896.4113.723.0111.7143.974.5164.2
67100.1118.723.8116.6150.078.0171.0
66103.9123.724.6121.6156.281.7178.0
65107.7129.025.5126.8162.685.4185.2
64111.6134.426.5132169.289.3192.7
63115.5139.927.4137.5176.093.2200.4
62119.5145.628.4143.1183.097.3208.4
61123.6151.629.5148.9190.3101.5216.8
60127.7157.730.6154.9197.9105.8225.5
  • A flat (improper) prior was used (λ = 0) and a mutation rate of μ = 1/500 was assumed. Results for any other mutation rate μ* follow by multiplying the appropriate table entry by μ*/μ = 500 ∙ μ*. MLE, maximum-likelihood estimate (which is also the mode of the posterior under a flat prior); SD, standard deviation; tα satisfies P(ttα | k, n) = α. The median corresponds to t0.5, while a 95% credible region is given by (t0.025, t0.975).