Sex determination | |||||
---|---|---|---|---|---|
Nuclear gynodioecy (w > 2) | Cytoplasmic gynodioecy (w = 1) | Dioecy (w → ∞) | |||
Parameters | General case | Dominant male sterility | Recessive male sterility | ||
ψ_{f} | → 1 | 0 ≤ ψ_{f} ≤ 1 | |||
ψ_{h} | 1 | →1 | Not defined | ||
1 − h | ψ_{f} | ||||
ψ_{cf} (Equation Al) | 2ψ_{f} | 1 | 1 | ||
ψ_{ch} (Equation Al) | ψ_{h} if ψ_{f} ≠ 1; 1 if ψ_{r} = 1 | 0 | |||
ψ_{nf} (Equation A2) | ψ_{f} | ψ_{f} | |||
ψ_{nh} (Equation A2) | |||||
(Equation B4) | 0 | ||||
→ ∞ | 1 | ||||
N_{ec} (Equation 5) | N(1 − h) | N | N(1 − h) | ||
(Equation B4) | 0 | 0 | 0 | ||
– | 4h^{2} | – | 1 | ||
N_{en} (Equation 5) | N | N | N | Nh | 4h(1 − h)N |
Assuming equilibrium for the frequency of females, the sex-inheritance parameter (ψ_{f}, ψ_{h}) and the frequency of females (1 − h) are given for five sex determination systems. From these, the parameters ψ_{f}, ψ_{h}, the variances of fitness, σ^{2}., the cumulative effects of selection, (1 /[2 − ψ_{cf} − ψ_{ch}]^{2}) and the effective population sizes, N_{e}*, were deduced, assuming complete outcrossing of hermaphrodites.
–, no simplification.