PT - JOURNAL ARTICLE
AU - Martin, Guillaume
AU - Lenormand, Thomas
TI - The Distribution of Beneficial and Fixed Mutation Fitness Effects Close to an Optimum
AID - 10.1534/genetics.108.087122
DP - 2008 Jun 01
TA - Genetics
PG - 907--916
VI - 179
IP - 2
4099 - http://www.genetics.org/content/179/2/907.short
4100 - http://www.genetics.org/content/179/2/907.full
SO - Genetics2008 Jun 01; 179
AB - The distribution of the selection coefficients of beneficial mutations is pivotal to the study of the adaptive process, both at the organismal level (theories of adaptation) and at the gene level (molecular evolution). A now famous result of extreme value theory states that this distribution is an exponential, at least when considering a well-adapted wild type. However, this prediction could be inaccurate under selection for an optimum (because fitness effect distributions have a finite right tail in this case). In this article, we derive the distribution of beneficial mutation effects under a general model of stabilizing selection, with arbitrary selective and mutational covariance between a finite set of traits. We assume a well-adapted wild type, thus taking advantage of the robustness of tail behaviors, as in extreme value theory. We show that, under these general conditions, both beneficial mutation effects and fixed effects (mutations escaping drift loss) are beta distributed. In both cases, the parameters have explicit biological meaning and are empirically measurable; their variation through time can also be predicted. We retrieve the classic exponential distribution as a subcase of the beta when there are a moderate to large number of weakly correlated traits under selection. In this case too, we provide an explicit biological interpretation of the parameters of the distribution. We show by simulations that these conclusions are fairly robust to a lower adaptation of the wild type and discuss the relevance of our findings in the context of adaptation theories and experimental evolution.