Statistical tests for selective neutrality and hitchhiking of 10 segments with highest CHE scores

For each segment, we denote its two alleles as A and a. We consider inducers developed from crosses of type 1 ($I \times N$), type 2 ($(I \times N) \times (I \times N)$) or type 3 ($(I \times N) \times I$), where I represents an inducer genotype homozygous for presence of the A allele and N is a non-inducer sampled at random from the set of non-inducers which has frequency p_A^* for allele A and frequency $(1 - p_A^*)$ for allele a. According to the description in Supplementary Table 1, we have 11 crosses of type 1 and 2, and 8 crosses of type 3.

The probability of recovering genotype AA in a progeny inducer I

The probability of recovering genotype AA in a progeny inducer I descending from one of the three type of crosses described above is given by:

$$P[I = AA] = p_A^* \times 1 + (1 - p_A^*) \left(\frac{1}{2} + \Delta \right)$$

or

$$P[I = AA] = p_A^* \times 1 + (1 - p_A^*) \left(\frac{3}{4} + \Delta \right)$$

where Δ corresponds to the change in the frequency of allele A due to directional selection for HI in the development of progeny inducers for I descending from a cross of type 1 or 2 (Eqn. (1)) and a cross of type 3 (Eqn.(2)).

Null hypothesis and alternative hypothesis

The biological hypothesis that allele A is selectively neutral, corresponds to the null hypothesis H_0: $\Delta = 0$, whereas the alternative hypothesis H_1: $\Delta > 0$ corresponds to the statement that allele A was selected for and, as a result, its frequency increased.

Test for selection of allele A at a specific locus

For a specific segment detected in the inducers, the frequency p_A^*, which corresponds to the probability that a randomly chosen non-inducer carries this haplotype, and can be directly obtained from Table 1. Thus, using Eqns. (1) and (2), the probability of observing genotype AA in a newly developed inducer at the locus under investigation is given by the expression

$$f(\Delta) = \left[p_A^* \times 1 + (1 - p_A^*) \left(\frac{1}{2} + \Delta \right) \right]^{11} \left[p_A^* \times 1 + (1 - p_A^*) \left(\frac{3}{4} + \Delta \right) \right]^{8}$$

By solving the equation $f(\Delta) = \alpha$, we obtain the lower limit Δ_α of the $(1-\alpha)$% Clopper-Pearson confidence
interval (Clopper and Pearson 1934), corresponding to a statistical test of H_0 at the significance level α. If $\Delta_u > 0$, we reject the null hypothesis H_0 based on our experimental data, indicating there is a positive selection at this locus; otherwise, we accept the null hypothesis, indicating that allele A is selectively neutral.

In this study, we used the significance level $\alpha=0.01$ and 0.001 and the Bonferroni adjusted multiple testing significance level $\alpha=0.001$ and 0.0001 for the top 10 segments with the highest CHE score (Table 1).