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ABSTRACT The sample frequency spectrum (SFS), which describes the distribution of mutant alleles in a sample of DNA
sequences, is a widely-used summary statistic in population genetics. The expected SFS has a strong dependence on the
historical population demography and this property is exploited by popular statistical methods to infer complex demographic
histories from DNA sequence data. Most, if not all, of these inference methods exhibit pathological behavior, however.
Specifically, they often display runaway behavior in optimization, where the inferred population sizes and epoch durations can
degenerate to 0 or diverge to infinity, and show undesirable sensitivity to perturbations in the data. The goal of this paper is
to provide theoretical insights into why uch problems arise. To this end, we characterize the geometry of the expected SFS
for piecewise-constant demographies and use our results to show that the aforementioned pathological behavior of popular
inference methods is intrinsic to the geometry of the expected SFS. We provide explicit descriptions and visualizations for a toy
model, and generalize our intuition to arbitrary sample sizes using tools from convex and algebraic geometry. We also develop a
universal characterization result which shows that the expected SFS of a sample of size n under an arbitrary population history
can be recapitulated by a piecewise-constant demography with only κn epochs, where κn is between n/2 and 2n− 1. The set
of expected SFS for piecewise-constant demographies with fewer than κn epochs is open and non-convex, which causes the
above phenomena for inference from data.
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Introduction17

The sample frequency spectrum (SFS), also known as the site18

or allele frequency spectrum, is a fundamental statistic in19

population genomics for summarizing the genetic variation in20

a sample of DNA sequences. Given a sample of n sequences21

from a panmictic (i.e., randomly mating) population, the SFS is22

a vector of length n− 1 of which the kth entry corresponds to23

the number of segregating sites each with k mutant (or derived)24

alleles and n− k ancestral alleles. The SFS provides a concise25

way to summarize n sequences of arbitrary length into just n− 126
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numbers, and is frequently used in empirical population ge-27

netic studies to test for deviations from equilibrium models of28

evolution. For instance, the SFS has been widely used to infer29

demographic history where the effective population size has30

changed over time (Nielsen 2000; Gutenkunst et al. 2009; Gravel31

et al. 2011; Keinan and Clark 2012; Excoffier et al. 2013; Bhaskar32

et al. 2015), and to test for selective neutrality (Kaplan et al. 1989;33

Achaz 2009). In fact, many commonly used population genetic34

statistics for testing neutrality, such as Watterson’s θW (Watter-35

son 1975), Tajima’s θπ (Tajima 1983), and Fu and Li’s θFL (Fu and36

Li 1993) can be expressed as linear functions of the SFS (Durrett37

2008).38

In the coalescent framework (Kingman 1982b,c,a), the un-39

normalized expected SFS ξn for a random sample of n genomes40

drawn from a population is obtained by taking the expectation41

of the SFS over the distribution of sample genealogical histories42

under a specified population demography. In this work, we43

will be concerned with well-mixed, panmictic populations with44
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time-varying historical population sizes, evolving according to45

the neutral coalescent process with the infinite-sites model of46

mutation. The coalescent arises as the continuum limit of a large47

class of discrete models of random mating, such as the Wright-48

Fisher, Moran, and Cannings exchangeable family of models49

(Möhle and Sagitov 2001), by a suitable rescaling of time and50

taking the population size to infinity. The infinite-sites model51

postulates that every mutation in the genealogy of a sample52

occurs at a distinct site, and is commonly employed in popula-53

tion genetic studies for organisms with low population-scaled54

mutation rates, such as humans. The SFS also appears in the55

context of statistical modeling as a vector of probabilities. In56

particular, the normalized expected SFS ξ̂n, defined by normalizing57

the entries of ξn so that they sum to 1, gives the probability that a58

mutation chosen at random is present in k out of n sequences in59

the sample. Unless stated otherwise, we use the term expected60

SFS to refer to the unnormalized quantity ξn.61

The expected SFS is strongly influenced by the demographic62

history of the population, and extensive theoretical and empir-63

ical work has been done to characterize this dependence (Fu64

1995; Wakeley and Hey 1997; Polanski et al. 2003; Marth et al.65

2004; Chen 2012; Kamm et al. 2017; Jouganous et al. 2017). Fu66

(1995) showed that under the infinite-sites model for a pan-67

mictic population with constant size and no selection, the ex-68

pected SFS is given by ξn = θ ·
(
1, 1

2 , . . . , 1
n−1

)
, where θ/2 de-69

notes the population-scaled mutation rate. When the popula-70

tion size is variable, however, the formula for the expected SFS71

depends on the entire population size history. In particular,72

Polanski and Kimmel (2003, Equations 13-15) showed that the73

expected SFS under a time-varying population size is given by74

ξn = Anc, with An being an (n− 1)-by-(n− 1) invertible ma-75

trix that only depends on n (formula presented in Appendix),76

and c = (c2, . . . , cn), where cm denotes the expected time to77

the first coalescence event in a random sample of size m drawn78

from the population at present. For any time-varying popula-79

tion size function η(t), the quantity cm is given by the following80

expression:81

cm =
∫ ∞

0

(
m
2

)
1

η(t)
exp

[
−
(

m
2

) ∫ t

0

1
η(x)

dx
]

dt. (1)82

Pathologies of SFS-based inference algorithms83

Let us consider a hypothetical scenario. Suppose we would84

like to learn about the population history of a group of finches85

on a remote island. Fossil evidence indicates that the island86

experienced many generations with ample resources leading to a87

large roughly-constant population size. Then, some catastrophe88

occurred, rendering the island’s resources scarce, leading to a89

small constant population size until the present. We are given90

four haplotypes from the population, and we hope to infer the91

following parameters for a demographic model based on the92

history described above:93

1. How big was the population during the epoch of plenty?94

2. How big was the population during the epoch of scarcity?95

3. When did the catastrophe occur, marking the breakpoint?96

First, we compute the SFS for the four haplotypes we col-97

lected. (Our choice of sample size four is for simplicity of this98

example, but the principles apply for larger samples.) We count99

singleton (appearing in only one of the haplotypes), double-100

ton, and tripleton mutations. We do not attempt to track non-101

segregating sites. Now we have the SFS, a vector of three real102

numbers.103

Next, we ask ourselves: would we expect to obtain this SFS104

for some particular set of parameters, based on our model?105

If the answer is yes, then that set of parameters is our best106

guess. In Figure 1, the green region describes the set of SFS we107

would expect for various parameters under this model. Blue108

dots indicate measured SFS. When the blue dots land in the109

green region, we simply infer the parameters corresponding to110

that point. The red crosses are the expected SFS computed for111

those parameters, so they coincide with the blue dots.112

What if the answer is no? That is, what if the SFS we mea-113

sured would not be expected for any choice of parameters in114

our population history model? We have two options to interpret115

this situation: 1) Statistical noise is making the SFS appear in-116

consistent with the model. 2) Our model is mis-specified. Let’s117

suppose that noise is the culprit. Then our strategy is to look for118

the closest SFS that would be expected in our model, and infer119

the parameters associated with that one.120

This runs into two problems: First off, the parameters inferred121

in this way are often nonsensical. In Figure 1, the blue dots122

outside of the green region are connected by dotted lines to the123

closest SFS vectors in the green region. Naturally, these mainly124

lie on the boundary of the green region. The problem is that the125

boundary points (with one exception that we will discuss later)126

do not actually correspond to achievable expected SFS vectors!127

Those points correspond to population size histories where one128

of the epochs is ∞ or 0.129

The second problem: even though there is, in general, a130

unique closest SFS to a given point outside of the green region,131

the process of finding the closest point is highly sensitive to noise.132

Specifically, if you change the quantities in the vector by a small133

amount, the resulting “closest point” may change by a large134

amount. The reason for this is that the set is non-convex, mean-135

ing that not all of the straight lines between points in the green136

region lie inside the green region. As a consequence, some of137

the blue dots point to the left-hand green region, while oth-138

ers nearby point to the right-hand green region. Sensitivity139

to noise is a big problem for inference. Any demographic in-140

ference method would manifest these pathologies; indeed, the141

commonly used ∂a∂i (Gutenkunst et al. 2009), fastsimcoal2142

(Excoffier et al. 2013), and fastNeutrino (Bhaskar et al. 2015) all143

encounter these issues.144

If we hypothesize that the model may be mis-specified, we145

need to support this assertion. The question will arise, “How far146

away is our measured SFS from the type of SFS that we would147

expect under the rejected population model?” Furthermore, we148

may be asked to offer an alternative hypothesis, i.e. is there149

another model that actually does allow for an SFS equal to or150

near the one that we measured? Both of these questions require151

an understanding of the set of all possible SFS.152

Minimal demographic complexity for SFS reconstruction153

Let us slightly change our finch example. Suppose we have no a154

priori assumptions regarding the demographic history. Instead,155

we are only interested in determining whether the SFS is con-156

sistent with a null hypothesis of a single panmictic population157

under neutrality. If the measured SFS is equal to the expected158

SFS for some demography, we may be asked to produce the159

simplest demography with the expected SFS we want. Work by160

Myers et al. (2008) implies that there are infinitely many popu-161

lation size histories with a given expected SFS, as long as we162

allow the demographies to be arbitrarily complicated. The paper163

Bhaskar and Song (2014) by two of this paper’s authors demon-164
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strated that when we constrain ourselves to a simpler family165

of population size histories, we may have a unique function166

achieving the desired expected SFS.167

Now suppose that the SFS does not equal the expected SFS168

for any demography. Again, we would need to quantify how169

far away it is from being achieved by some demography. This170

is an intimidating task. How can we be certain to find the SFS171

corresponding to every demography without leaving any SFS172

vectors out? After all, the space of possible population size173

histories is infinite-dimensional! Our hope is to understand the174

shape of the set of all possible SFS vectors so we know that we175

have covered everything when we reject the null hypothesis.176

For the small example of sample size 4, we have demon-177

strated a sequence of constraints placed on SFS vectors in Fig-178

ure 2. The vectors of interest have three coordinates correspond-179

ing to singleton, doubleton, and tripleton mutations. Note that180

any vector of probabilities must be non-negative, and must sum181

to 1. This means we are constrained to the triangle with vertices182

(1, 0, 0), (0, 1, 0), and (0, 0, 1). We can ignore the third coordinate,183

since it will always be one minus the others. This triangle is de-184

picted in yellow in Figure 2. One might naively hope that every185

one of these probability vectors is achievable as the expected186

SFS of some demography.187

A result proved by Sargsyan and Wakeley (2008) is that SFS188

vectors must be non-increasing–this means we are left with the189

triangle with vertices (1/3, 1/3, 1/3), (1/2, 1/2, 0), and (1, 0, 0).190

This is depicted in blue in Figure 2. They further proved that191

the SFS is convex. This implies that the second coordinate is192

less than the average of the other two. This further cuts down193

our possibilities to the triangle with vertices (1/3, 1/3, 1/3),194

(2/3, 1/3, 0), and (1, 0, 0), depicted in red in Figure 2. If we195

want SFS vectors for population size histories with two constant196

pieces, we are further constrained to the green region, which we197

will describe algebraically later.198

We will be able to completely describe the shape of all SFS199

for sample size 4 using algebraic formulae for the boundary. In200

fact, we will show that to find all possible SFS for sample size 4,201

it is sufficient to consider piecewise-constant functions with at202

most three constant pieces! Furthermore, we will use tools from203

convex and algebraic geometry to extend our intuition from this204

small case study to the SFS for all sample sizes.205

Summary of main results206

Studying the geometry of the set of expected SFS will address207

both of the areas discussed above:208

1. Explaining the pathologies in SFS-based inference, and209

2. describing the full set of SFS for fixed sample size.210

In this way, we can help researchers understand why fitting211

parameters to certain demographic models will lead to runaway212

behavior. We also enable researchers to reject a null-hypothesis213

of a single panmictic population under neutrality.214

Our main result is Theorem 8, which focuses on piecewise-215

constant demographies. It shows that for every sample size n,216

there is a crucial threshold in demographic complexity, which217

we denote κn. If we are fitting to a demographic model with218

fewer than κn constant pieces, then the set of all SFS will be non-219

convex and we must expect pathological behavior as described220

above. Once we allow for κn constant pieces, though, we get221

the full set of SFS for all demographies. Proving that this set is222

convex is left for later work.223

Piecewise-Constant Demographies224

In this section, we will define two sets: one of them will be225

the set of expected SFS for piecewise-constant population size226

histories. As described in the introduction, this is an important227

set for inference. The other set is the set of expected coalescence228

vectors; this is not as commonly-used as the SFS, but it helps229

us build a strong understanding of the SFS. This is because it is230

related to the SFS by a simple transformation, and yet it is much231

easier to formulate.232

Let Πk be the set of piecewise-constant population size func-233

tions with k pieces. Any population size function in Πk is de-234

scribed by 2k − 1 positive numbers, representing the k popu-235

lation sizes (y1, . . . , yk) and the k− 1 time points (t1, . . . , tk−1)236

when the population size changes. Let Ξn,k, which we call the237

(n, k)-SFS manifold1, denote the set of all expected SFS vectors238

for a sample of size n that can be generated by population size239

functions in Πk. Similarly, let Cn,k, called the (n, k)-coalescence240

manifold, denote the set of all vectors c = (c2, . . . , cn) giving the241

expected first coalescence times of samples of size 2, . . . , n for242

population size functions in Πk. Let Ξ̂n,k and Ĉn,k respectively be243

equal to the normalization of all points in Ξn,k and Cn,k by their244

`1-norms (i.e., the sums of their coordinates). Note that both245

manifolds live in Rn−1 and their normalized versions live in the246

(n− 2)-dimensional simplex ∆n−2; this is the set of nonnegative247

vectors in Rn−1 whose coordinates sum to 1.248

Now that we have defined our basic objects of study, we can249

describe the remainder of the paper: First, we provide a com-250

plete geometric picture of the Ξ4,k SFS manifold describing the251

expected SFS for samples of size n = 4 under piecewise-constant252

population size functions with an arbitrary number k of pieces.253

We make explicit the map between regions of the demographic254

model space and the corresponding probability vectors, and this255

will foreshadow some of the difficulties with population size256

inference in practice. Next, we develop a characterization of the257

space of expected SFS for arbitrary population size histories. In258

particular, we show that for any sample size n, there is a finite259

integer κn such that the expected SFS for a sample of n under260

any population size history can be generated by a piecewise-261

constant population size function with at most κn epochs. Stated262

another way, we show that the Ξn,κn SFS manifold contains the263

expected SFS for all possible population size histories, no matter264

how complicated their functional forms. We establish bounds on265

κn that are linear in n, and along the way prove some interesting266

results regarding the geometry of the general Ξn,k SFS manifold.267

Before proceeding further, we state a proposition regarding268

the structure of the map from Πk to Cn,k, which we will call269

χ(~x,~y); the vector of k− 1 transformed breakpoints is denoted270

by ~x = (x1, . . . , xk−1) and defined below, while the vector of271

population sizes in the k epochs is denoted by ~y = (y1, . . . , yk).272

It turns out that we can formulate the expected coalescence273

times as polynomial functions of the x and y variables. Two274

different ways of writing those functions down will give us two275

perspectives on their shape. All proofs of the results presented276

in this paper are deferred to Appendix.277

Proposition 1. Fix a piecewise-constant population size function278

in Πk with epochs [t0, t1), [t1, t2), . . ., [tk−1, tk), where 0 = t0 <279

t1 < · · · < tk−1 < tk = ∞, and which has constant population size280

value yj in the epoch [tj−1, tj) for j = 1, . . . , k. Let xj = exp[−(tj −281

tj−1)/yj] for j = 1, . . . , k, where xk = 0 (corresponding to time T =282

1 The sets Ξn,k and Cn,k are not technically manifolds; they would be more accu-
rately described as semialgebraic sets. However, for expository purposes, we use
the widely known term “manifold.”
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∞), and define x0 = 1 (corresponding to time T = 0) for convenience.283

The vectors (x1, . . . , xk−1, y1, . . . , yk), where 0 < xj < 1 and yj > 0284

for all j, (uniquely) identify the population size functions in Πk, and285

they satisfy both of the following equations:286




x0(1− x1) . . .
(

k−1
∏
i=0

xi

)
(1− xk)

1
3 x3

0(1− x3
1) . . . 1

3

(
k−1
∏
i=0

x3
i

)
(1− x3

k)

...
. . .

...
1
(n

2)
x(

n
2)

0

(
1−x(

n
2)

1

)
. . . 1

(n2)

(
k−1
∏

i=0
x
(n2)
i

)(
1−x

(n2)
k

)







y1

y2

...

yk



=




c2

c3

...

cn




, (2)




1 x1 . . .
k−1
∏
i=1

xi

1
3

1
3 x3

1 · · · 1
3

k−1
∏
i=1

x3
i

...
...

. . .
...

1
(n

2)
1
(n

2)
x(

n
2)

1 · · · 1
(n

2)

k−1
∏
i=1

x(
n
2)

i







y1

y2−y1

...

yk−yk−1



=




c2

c3

...

cn




, (3)

where cm is the expected first coalescence time for a sample of size m,287

as defined in (1).288

These two formulations provide two different ways of looking289

at the coalescence manifold Cn,k:290

1. In (2), the left-hand matrix, called M1(n, k), has each col-291

umn of the same form with two parameters; this indicates292

they all live in a 2-dimensional surface. Imagine, for ex-293

ample, the surface of the earth. There are two degrees of294

freedom: north-south and east-west. Here, too, specify-295

ing the value of each column, regardless of the value of296

n, is dependent on two numbers. Explicitly, each column297

is given by fn(a, b) =
(
a(1− b), . . . , a(

n
2)(1− b(

n
2))/(n

2)
)

for298

some inputs a and b.299

Additionally, the vector (y1, . . . , yk) has all positive entries.300

That means that, when we combine columns from our sur-301

face, they will not cancel in unexpected ways due to nega-302

tive coefficients. The set of positive combinations of a set303

of points is called a cone, and it is very nicely behaved304

geometrically. This means that the vector c = (c2, . . . , cn)305

is contained in the cone over the surface described by the306

columns of M1.307

2. In (3), the left-hand matrix, call it M2(n, k) has each column308

of the same form with one parameter; this indicates they all309

live on a curve. Like a train on a track, this has one degree of310

freedom, only forward-backward. Explicitly, each column311

is given by gn(a) =
(
a, . . . , a(

n
2)/(n

2)
)

for some input a.312

The vector (y1, y2 − y1, . . . , yk − yk−1) on the left hand side313

has entries with possibly negative coordinates. So the vector314

c = (c2, . . . , cn) is contained in the linear span of the curve315

described by the columns of M2. Unfortunately, a linear316

span is not quite as nicely behaved as a cone. Still, this317

formulation gains the simplicity of having one degree of318

freedom instead of two.319

Proposition 1 gives us the algebraic mappings that will serve320

as our objects of interest. Since the SFS manifold is simply a321

linear transformation of the coalescence manifold, we will use322

these maps as our entry into understanding the SFS manifold.323

The Ξ4,k SFS Manifold: A Toy Model324

The first in-depth study will involve the set of all possible ex-325

pected SFS for a sample of size 4. We choose n = 4 for a number326

of reasons: First, the cases of sample size 2 and 3 are not interest-327

ing. When we only have two haplotypes, there is only one entry328

in the SFS vector, i.e. singletons. The resulting set of possible329

expected SFS is just the set of all positive numbers. When we330

have three haplotypes, it’s only slightly better. Because there331

must be fewer doubletons than singletons, the possible expected332

SFS is somewhere in the wedge between 0◦ and 45◦ from the333

origin; this turns out to be the only constraint.334

Second, when n = 4, the SFS manifold lives in R3, which can335

be nicely visualized, and the normalized SFS manifold lives in336

the triangle with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1). Finally,337

as observed in Proposition 1, the most interesting phenomena in338

SFS manifolds of any dimension are fundamentally phenomena339

of curves and surfaces. These are already captured in the n = 4340

case.341

For the sake of completeness, we begin by formally describing342

the coalescence manifolds Cn,k for the trivial cases of n = 2 and343

n = 3.344

Proposition 2. We list some basic results on the coalescence manifolds345

Cn,k, with sample size n and k population epochs, for small values of346

(n, k):347

1. The manifold Cn,1 =

{
λ ·
(

1,
1
3

,.. .,
1
(n

2)

)
: λ> 0

}
, for all n.348349

2. The manifold C2,k = C2,1 = {a : a> 0}, for all k≥ 1.350

3. The manifold C3,k = C3,2 = {(a,b) : a> 0 and 0< b< a},351

for all k≥ 2.352

Note that from (2) and (3) for χ(~x,~y), it follows that353

χ(~x, a~y) = aχ(~x,~y) for a > 0. In words, rescaling the popu-354

lation sizes in each epoch by a constant a also rescales the first355

coalescence times by a. This implies that every point in the coa-356

lescence manifold Cn,k generates a full ray contained in the Cn,k357

coalescence manifold. Another consequence is that the normal-358

ized coalescence manifold Ĉn,k is precisely the intersection of the359

coalescence manifold Cn,k with the simplex ∆n−2.360

With that justification, we begin to consider the normalized361

coalescence manifold Ĉ4,k living in the simplex. As stated in362

Proposition 2, C4,1 is a ray, which implies that Ĉ4,1 is a single363

point. We now characterize the set Ĉ4,2. Again, this is the set of364

possible SFS for two-epoch piecewise-constant population size365

histories considered as a subset of all vectors summing to one.366

Proposition 3. The manifold Ĉ4,2, describing normalized expected
times to first coalescence for sample size 4 and two population epochs,
is a two-dimensional subset of the 2-simplex which can be described as
the union of the point Ĉ4,1 with the interiors of the convex hulls of two
curves γ1 and γ2. The curves are parametrized as follows:

γ1 =

{(
6

6+2t2 +t5 ,
2t2

6+2t2 +t5 ,
t5

6+2t2 +t5

)
: 0< t<1

}
,

and γ2 =

{(
6

6+2[2]t +[5]t
,

2[2]t
6+2[2]t +[5]t

,
[5]t

6+2[2]t +[5]t

)
: 0< t<1

}
,

where [n]t denotes 1 + · · ·+ tn.367

This set has some highly unpleasant geometry. First of all, the368

set is non-convex; topologically, it is also neither closed nor open,369

because most of the boundary is excluded with the exception of370

the point (2/3, 2/9, 1/9). The set is visualized in Figure 3A.371
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In order to precisely illustrate the geometry of χ(~x,~y), we372

will consider how contours in the domain map to contours in373

the image. Specifically, we plot the images of lines with fixed374

values of x1, respectively fixed values of (y1, y2), to C4,2 in the375

2-simplex. The resulting contours are pictured in Figure 4.376

Finally, we consider how the map χ acts on the boundaries377

of the domain. To aid visualization, we limit the inputs to x1378

and y1/y2, since all rescalings of y1 and y2 by the same positive379

constant while keeping x1 fixed map to the same normalized380

coalescence vector. The resulting map is illustrated in Figure 5.381

We note that the map fails to be one-to-one within the domain382

only when y1/y2 = 1; this is also in the pre-image of the point383

( 2
3 , 2

9 , 1
9 ) ∈ Ĉ4,2. The inverse function theorem implies that on the384

complement of y1/y2 = 1, the map is a homeomorphism (a map385

that preserves topological features like number of components).386

This is consistent with our observation that the two rectangles in387

Figure 5A correspond to the two envelopes in Figure 5C. Now,388

we consider demographies with more than two epochs. This389

proposition implies that any expected SFS for sample size 4390

coming from a single panmictic population under neutrality,391

regardless of the true population size history, is equal to the392

expected SFS for some piecewise-constant history with only393

three pieces. It also shows that all of these SFS vectors live inside394

of the convex hull of one curve.395

Proposition 4. For all values k ≥ 3, the manifold Ĉ4,k = Ĉ4,3, and
Ĉ4,3 is the interior of the convex hull of the following curve:

γ3 =

{(
1

1 + t2 + t5 ,
t2

1 + t2 + t5 ,
t5

1 + t2 + t5

)
: 0 < t < 1

}
.

396

As we can see from Proposition 4, Ĉ4,3 is open and con-397

vex; however, we lose one useful property of the normalized398

map χ̂ : R3 → Ĉ4,2. Specifically, let χ̂′ : R2 → Ĉ4,2 be399

given by χ̂′(x1, y1) = χ̂(x1, y1, 1), noting that χ̂(x1, λy1, λy2) =400

χ̂(x1, y1, y2) for λ > 0. Under this definition χ̂′ is generically401

one-to-one (i.e., one-to-one away from a set of measure zero).402

Meanwhile, the analogous construction χ̂′ : R4 → Ĉ4,3 map-403

ping the three-epoch demography with breakpoints (x1, x2) and404

population sizes (y1, y2, 1) to the corresponding normalized co-405

alescence vector has two-dimensional pre-images, generically.406

For this reason, contour images do not lend themselves to easy407

description.408

However, as a heuristic, we can choose a distinguished mem-409

ber of this pre-image with nice properties. In the orange region410

adjacent to β3 depicted in Figure 6, every pre-image contains a411

limit demography with first and third epochs set to zero, and412

second epoch set to one. This can be thought of as a demography413

with a population boom in the second epoch. In the blue region414

adjacent to the line segment from (1/3, 1/3, 1/3) to (1, 0, 0), ev-415

ery pre-image contains a limit demography with second epoch416

set to zero. This corresponds to a demography with a population417

bottleneck in the second epoch. Because the set of demographies418

mapping to each point is two-dimensional, this does not de-419

scribe all demographies characterized by a chosen SFS, but it420

does give us intuition for the types of demographies to expect.421

We can also describe the image of the map χ̂′ : R4 → Ĉ4,3 on422

the boundaries of our domain. The easiest way to visualize the423

map is first to understand how the time variables affect the value424

of the columns of M1(4, 3) and to view the y variables as specify-425

ing points in the convex hull of those 3 columns. The boundaries426

of the square (x1, x2) ∈ [0, 1] × [0, 1] map the columns (after427

rescaling to the simplex) as follows:428

x1 =0 7→




6/9 1 1

2/9 0 0

1/9 0 0


,

x1 =1 7→




1/3 | |
1/3 γ2 (x2 ) γ1 (x2 )

1/3 | |


,

x2 =0 7→




| | 1

γ2 (x1 ) γ1 (x1 ) 0

| | 0


,

x2 =1 7→




| | |
γ2 (x1 ) γ3 (x1 ) γ1 (x1 )

| | |


.

The case of x2 = 1 is the most interesting: when we fix429

y1 = y3 = 0 and y2 = 1, we obtain the boundary curve γ3(t).430

Note that x2 = 1 corresponds to a second epoch of length 0.431

The intuition is that very short population booms at the second432

epoch lead to coalescence vectors close to γ3. The maps encoded433

by a general column of M1(4, k) correspond to the interior of the434

orange region in Figure 7A. Adding in convex combinations of435

points gives the lined region, which is the remainder of C4,3; this436

is discussed more rigorously in Appendix. When the number437

of epochs k steps higher, all columns of M1(4, k) still map to the438

same region of the simplex, so C4,k will still be contained in this439

convex hull. The region C4,3 is depicted in Figure 7A.440

As mentioned earlier, the SFS manifold Ξn,k is merely a lin-441

ear transformation of Cn,k; however, since it is of interest in its442

own right, we include the formulae for Ξ4,k analogous to those443

derived in this section.444

Proposition 5. The following hold for the normalized (4, k)-SFS
manifold:

Ξ̂4,1 =

(
6
11

,
3

11
,

2
11

)
.

Ξ̂4,2 is the union of Ξ̂4,1 with the convex hulls of two curves:

β1 =

{(
18 + 10t2 + 2t5

54 + t5 ,
18− 3t5

54 + t5 ,
18− 10t2 + 2t5

54 + t5

)
: 0 < t < 1

}
,

β2 =

{(
18 + 10[2]t + 2[5]t

54 + [5]t
,

18− 3[5]t
54 + [5]t

,
18− 10[2]t + 2[5]t

54 + [5]t

)
: 0 < t < 1

}
.

Here, also, [n]t denotes 1 + t + · · ·+ tn. Finally, Ξ̂4,k = Ξ̂4,3 for all
k, and Ξ̂4,3 is the convex hull of β3, where

β3 =

{(
3 + 5t2 + 2t5

9 + t5 ,
3− 3t5

9 + t5 ,
3− 5t2 + 2t5

9 + t5

)
: 0 < t < 1

}
.

Visualizations of Ξ4,2 and Ξ4,3 may be found in Figure 3B and445

Figure 7B.446
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The Ξn,k SFS Manifold: General Properties447

In this section, we examine the constant κn, defined earlier as448

the smallest index for which Cn,k ⊆ Cn,κn for all k. The tools for449

the proofs in this section come from algebraic geometry (for the450

derivation of the lower bound) and convex geometry (for the451

upper bound).452

The gist of the algebraic geometry argument is that, under453

the M2(n, k) formulation, the manifold Cn,k can be seen to be454

part of another manifold built by a sequence of well-understood455

algebraic constructions. Details of this perspective are reserved456

for the Proofs section.457

Two concrete consequences follow from this observation:458

1. the ability to compute all equations satisfied by Cn,k using459

computer algebra, and460

2. a formula for the dimension of the coalescence and SFS461

manifolds.462

While the former is harder to explain without more setup, the463

latter can be simply stated: the dimension of the normalized464

coalescence manifold Ĉn,k is 0 when we have the constant de-465

mography (k = 1). If we allow k constant pieces, the manifold466

has dimension 2k − 2 unless 2k − 2 is greater than n − 2, the467

dimension of the simplex ∆n−2. In that case, it has dimension468

n− 2.469

Proposition 6. The dimension of Ĉn,k is given by:

dim Ĉn,k =

{
0, k = 1,
min(2k− 2, n− 2), else.

In particular, Cn,k is a proper subset of Cn,k+1 for k < d 1
2 ne.470

While Proposition 6 is useful for analyzing individual coales-471

cence manifolds, it also leads to the observation that κn ≥ d 1
2 ne,472

since the inclusions are proper until that index. It is worth473

remarking that a slightly weaker lower bound of κn ≥ b 1
2 nc474

follows immediately from the identifiability result of Bhaskar475

and Song (2014, Corollary 7), which states that for a piecewise-476

constant population size function with k pieces, the expected477

SFS of a sample of size n ≥ 2k suffices to uniquely identify the478

function.479

We will illustrate how these algebraic ideas can be applied in480

the next case we have not seen, namely sample size n = 5.481

Example 7. Note that Ĉ5,1 =

(
30
48

,
10
48

,
5

48
,

3
48

)
, by Proposi-482

tion 2. We will use the new ideas above to describe Ĉ5,k for483

higher values of k.484

Since the normalized coalescence manifold has dimension485

min(2k − 2, n − 2), we know that Ĉ5,2 has dimension 2 inside486

of the 3-simplex; therefore, we anticipate that it will satisfy one487

equation, matching its codimension. The degree of the algebraic488

variety implies that this polynomial should have degree 8. In-489

deed, when we compute this equation using computer algebra490

software Macaulay2 (Grayson and Stillman 2002), we obtain a491

huge degree-8 polynomial with 105 terms, whose largest integer492

coefficient is 5, 598, 720. Finally, Ĉ5,3 is full-dimensional in the493

3-simplex, so it will satisfy no algebraic equations relative to494

the simplex. It would be defined instead by the inequalities495

determining its boundary.496

The convex geometry argument is more elementary. As we497

noted, the M1 formulation is contained in the convex hull over498

the surface described by a general column of M1. Because the499

columns are related, our selection of points in the surface is500

not unrestricted. For this reason, it is not obviously equal to501

the convex hull. However, once we fix some collection of val-502

ues x1, . . . , xk to be input in the formula for Cn,k, we can use503

convex geometry for the resulting polytope. In particular, we504

use Caratheodory’s Theorem (Carathéodory (1907) or Barvinok505

(2002, Theorem 2.3)), which states that for X a subset of Rn, ev-506

ery x ∈ cone(X) can be represented as a positive combination507

of vectors x1, . . . , xm ∈ X for some m ≤ n.508

The argument, roughly, allows us to construct any point in509

that convex hull, with as few as n + 1 points. This allows us510

to place the point in Cn,j for j ≤ 2n− 1. Since no new SFS are511

generated by using more than 2n− 1 epochs, we learn that κn is512

bounded above by 2n− 1.513

Combining the two bounds obtained in this section, we have514

the main theorem described in the Introduction.515

Theorem 8. For any integer n ≥ 2, there exists a positive integer κn
such that Ξn,k ⊆ Ξn,κn for all k ≥ 1. Furthermore, κn satisfies

dn/2e ≤ κn ≤ 2n− 1.

Additionally, Ξn,k is nonconvex for all values of 2 ≤ k < κn.516

This allows us to express the SFS from any piecewise-constant517

demography as coming from a demography with relatively few518

epochs. Because the SFS is an integral over the demography, the519

SFS from a general measurable demography can be uniformly520

approximated by a piecewise-constant demography with suffi-521

ciently many epochs. Our results imply that it can be precisely522

obtained by a demography with at most 2n− 1 epochs.523

Discussion524

In this work, we characterized the manifold of expected SFS525

Ξn,k generated by piecewise-constant population histories with526

k epochs, while giving a complete geometric description of this527

manifold for the sample size n = 4 and k = 2 epochs. This528

special case is already rich enough to shed light on the issues529

that practitioners can face when inferring population demogra-530

phies from SFS data using popular software programs. While we531

demonstrated these issues in Figure 1 using the fastNeutrino532

program (Bhaskar et al. 2015), the issues we point out are in-533

herent to the geometry of the SFS manifold and not specific to534

any particular demographic inference software. Our simulations535

showed that the demographic inference problem from SFS data536

can be fraught with interpretability issues, due to the sensitivity537

of the inferred demographies to small changes in the observed538

SFS data. These results can also be viewed as complementary539

to recent pessimistic minimax bounds on the number of segre-540

gating sites required to reliably infer ancient population size541

histories (Terhorst and Song 2015; Baharian and Gravel 2018).542

Our investigation of piecewise-constant population histories543

also let us show a general result that the expected SFS for a544

sample of size n under any population history can also be gener-545

ated by a piecewise-constant population history with at most546

2n− 1 epochs. This result could have potential applications for547

developing non-parametric statistical tests of neutrality. Most548

existing tests of neutrality using classical population genetic549

statistics such as Tajima’s D (Tajima 1989) implicitly test the550

null hypothesis of selective neutrality and a constant effective551

population size (Stajich and Hahn 2004). We have characterized552
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the expected SFS of samples of size n under arbitrary popu-553

lation histories in terms of the expected SFS under piecewise-554

constant population histories with at most κn epochs. As a result,555

the KL divergence of an observed SFS ξobs
n to the expected SFS556

ξn(η∗) under the best-fitting piecewise constant population his-557

tory η∗ ∈ Πκn with at most κn ≤ 2n− 1 epochs is also equal (up558

to a constant shift) to the negative log-likelihood of the observed559

SFS ξobs
n under the best fitting population size history without560

any constraints on its form. (This assumes the commonly-used561

Poisson Random Field model where sites being analyzed are un-562

linked.) One can then use the KL divergence inferred by existing563

parametric demographic inference programs to create rejection564

regions for the null hypothesis of selective neutrality without565

having to make any parametric assumption on the underlying566

demography. Such an approach would also obviate the need567

for interpreting the inferred demography itself, since the space568

of piecewise-constant population histories is only being used569

to compute the best possible log-likelihood under any single570

population demographic model. This approach could serve as571

an alternative to recent works which first estimate a paramet-572

ric demography using genome-wide sites, and then perform573

a hypothesis test in each genomic region using simulated dis-574

tributions of SFS statistics like Tajima’s D under the inferred575

demography (Rafajlović et al. 2014). We leave the exploration of576

such tests for future work.577
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Appendix704

Formula for An705

Recall that the SFS can be related to times-to-first-coalescence by
the formula ξn = Anc. The formula for An is given recursively
in (Polanski and Kimmel 2003, Equations 13-15) by the following
formulae (with variable names changed for clarity):

(An)b,2 =
6

n + 1

(An)b,3 =
30(n− 2b)

(n + 1)(n + 2)

(An)b,j+2 = − (1 + j)(3 + 2j)(n− j)
j(2j− 1)(n + j + 1)

(An)b,j

+
(3 + 2j)(n− 2b)

j(n + j + 1)
(An)b,j+1

Proof of Proposition 1706

First, we reduce the integral expression for cm to a finite sum;707

then we make appropriate manipulations until we arrive at the708

desired expressions.709

Coalescence in the Wright-Fisher model is an inhomogeneous710

Poisson process with parameter (m
2 )/η(t). Therefore, the proba-711

bility density of first coalescence at time T is:712

P(No Coalescence in [0, T))P(Coalescence at time T)713

= exp
[
−
∫ T

0

(m
2 )

η(t)
dt
]
(m

2 )

η(T)
dt.714

715

Let Rη(t) =
∫ T

0

1
η(t)

dt. To compute the expected time to first716

coalescence, we have the integral:717

cm =
∫ ∞

0
t · (

m
2 )

η(t)
exp

[
−
(

m
2

)
Rη(t)

]
dt

=
∫ ∞

0
exp

[
−
(

m
2

)
Rη(t)

]
dt (Integration by Parts)

718

Substituting variables, τ = Rη(t), note that dt = η(R−1(τ))dτ.719

Therefore, the integral becomes:720

cm =
∫ ∞

0
η̃(τ) exp

[
−
(

m
2

)
τ

]
dτ,721

where η̃(τ) = η(R−1(τ)).722

The population size η(t) is a piecewise constant function,723

whose value η(t) = ηj if tj−1 ≤ t < tj. As specified in the724

Proposition, t0 = 0, tk = ∞, and (y1, . . . , yk) is the vector of725

population sizes. Observe that η̃(τ) is also piecewise constant.726

In particular,727

η̃(τ) =





y1, 0 ≤ τ <
t1
y1

,

y2,
t1
y1
≤ τ <

t1
y1

+
t2 − t1

y2
,

...
...

728

Let sj = tj − tj−1 for brevity. The resulting formula is:729

η̃(τ) = yj, for
j−1

∑
k=1

sk
yk
≤ τ <

j

∑
k=1

sk
yk

.730

We turn the integral into a sum of integrals on the constant731

epochs:732

cm =
∫ ∞

0
ỹ(τ) exp

[
−
(

m
2

)
τ

]
dτ

=
k
∑

j=1

∫ ∑j sl /yl

∑j−1 sl /yl

yj exp
[
−
(

m
2

)
τ

]
dτ

=
k
∑

j=1
yj

[−1
(m

2 )
exp

[
−(m

2 )τ
]]τ=∑j sl /yl

τ=∑j−1 sl /yl

=
1
(m

2 )





k

∑
j=1

yj

(
j−1

∏
l=1

exp
[
−
(

m
2

)
sl/yl

])

(
1− exp

[
−(m

2 )sj/yj

])}
.

733

We now make the substitution xj = exp
[
−sj/yj

]
. Note that734

the old restriction tj+1 > tj > 0 becomes the new constraint735

0 < xj < 1. Our formula for the cm is now:736

cm =
1
(m

2 )




k

∑
j=1

yj

(
j−1

∏
l=1

x(
m
2)

l

)(
1− x(

m
2)

j

)

 .737
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Noting the linear form of this expression, we factor as a matrix738

multiplication:739




1
1
3

. . .

1
(n

2)



×




1 x1 . . .
k−1
∏
i=1

xi

1 x3
1 · · ·

k−1
∏
i=1

x3
i

...
...

. . .
...

1 x(
n
2)

1 · · ·
k−1
∏
i=1

x(
n
2)

i




740

741

×




1 0 0 · · · 0

−1 1 0
. . . 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −1 1




×




y1
...

yk


 =




c2
...

cn


 .742

Combining the first three matrices yields (2); combining the first743

two and last two separately yields (3).744

Proof of Proposition 2745

We justify each equation in turn:746

1. As mentioned in the introduction, this is a classical result in747

population genetics, and can be derived directly from (3).748

2. The inclusion C2,1 ⊂ C2,k is immediate, so we need only749

show that any a ∈ C2,k satisfies a > 0. Using (2), a is750

written as a sum of products of strictly positive numbers;751

so C2,k ⊂ C2,1.752

3. First, we show that C3,2 is the interior of the open cone753

spanned by (1, 0) and (1, 1). Fix y1 = a/(1 − x1) (for a754

positive) and consider χ(x1, a/(1− x1), y2):755

χ

(
x1,

a
1− x1

, y2

)
=


 a + x1y2

1
3 a(1 + x1 + x2

1) +
1
3 x3

1y2


756

757

= a


 1

1
3 (1 + x1 + x2

1)


+ x1y2


 1

1
3 x2

1


 .758

When x1 → 0, the second vector approaches (1, 0); when759

x1 → 1, the first vector approaches (1, 1). The vectors are in760

the interior of that cone for all other permissible values of x1761

and y2. To show that C3,k = C3,2, note that for larger values762

of k, the same cone of vectors are produced. In particular,763

χ(x1, . . . , xk−1, y1, . . . , yk) yields764

k−1

∑
j=1





yj

(
j−1

∏
i=1

xi

)
(1− xj)




1

1
3 (

j−1
∏
i=1

x2
i )(1 + xj + x2

j )








765

+ yk

(
k−1

∏
i=1

xi

)


1

1
3 (

k−1
∏
i=1

x2
i )


 .766

Clearly, the second coordinate of all vectors is bounded767

between 0 and 1.768

Proof of Proposition 3769

First we observe that γ1 and γ2 are normalizations of the curves770

defined by parameterizations (t, 1
3 t3, 1

6 t6) and (1 − t, 1
3 (1 −771

t3), 1
6 (1− t6)) where t is constrained to the open interval (0, 1).772

Now we claim that the definition in terms of the map χ(x, y)773

is equivalent to the definition in terms of these two curves. We774

can use the first formulation of χ to prove this:775

χ(x1, y1, y2) = y1




1− x1

(1− x3
1)/3

(1− x6
1)/6


+ y2




x1

x3
1/3

x6
1/6




= y1




1
1
3
1
6


+ (y2 − y1)




x1

1
3 x3

1
1
6 x6

1




= (y1 − y2)




1− x1

1
3 (1− x3

1)

1
6 (1− x6

1)


+ y2




1
1
3
1
6


 .

When y2 = y1, the image is the point (2/3, 2/9, 1/9) = X776

as stated. When y2 > y1, we can use the left-hand expression777

to view the image as a point on the line segment between C4,1778

and the curve (t, t3/3, t6/6). When y2 < y1, the right-hand779

expression can be used to write the image as a point on the780

line segment between X and (1− t, (1− t3)/3, (1− t6)/6). This781

means that the image of χ is contained in the regions and point782

specified.783

To show that the reverse inclusion holds, we fix a point P784

in the interior of the convex hull of γ1. By convexity, the line785

segment from X to P is contained in the region; continue in786

the direction P − X until the line intersects the curve. This787

must occur because all points in the region are further from the788

bounding line than X. The point of intersection q is specified as789

q = γ1(τ) for some τ ∈ (0, 1). By convexity, there exists some790

ρ such that ρ C4,1 + (1− ρ)q = P. Fixing x1 = τ, y1 = ρ and791

y2 = 1, shows that P is in the image of χ. The same argument792

holds with slight variation for γ2.793

Proof of Proposition 4794

The strategy to prove the equality of C4,3 and the cone over795

{t, t3, t6} comes in two steps:796

1. Show that the columns of M1(4, k) are always contained in797

the region R whose boundary is γ1 ∪ γ2 ∪ γ3.798

2. Divide the convex hull of R into two regions and show that799

each of these regions are included in Ĉ4,3.800

First we demonstrate that the regions maps precisely into
R. We have already shown in the main text of the document
that the boundaries of (0, 1)× (0, 1) map to the boundaries of
R under the mapping defined by (x1, x2) 7→ (x1(1− x2), x3

1(1−
x3

2)/3, x3
1(1 − x3

2)/6) × 1/S, where S is the sum of the coor-
dinates. We compute the Jacobian of this map explicitly in
Macaulay2 (Grayson and Stillman 2002). The result is:

− 1
6S3 x9

1(x2 − 1)4(x2
2 + x2 + 1)(x2

2 + 3x2 + 1).

Geometry of SFS Inference 9



Plainly, this is nowhere zero in our domain. The inverse function801

theorem then implies that the interior is contained in the image802

of the boundaries. This accomplishes Step 1 of our proof.803

For Step 2, we divide the image into two regions:804

1. The triangle defined by vertices (1, 0, 0),805

(2/3, 2/9, 1/9) and (1/3, 1/3, 1/3), including the806

two edges [(1/3, 1/3, 1/3), (2/3, 2/9, 1/9)] and807

[(2/3, 2/9, 1/9), (1, 0, 0)].808

2. The remainder of the convex hull of R – explicitly, the in-809

terior of the region bounded by γ3 and the line segment810

[(1/3, 1/3, 1/3), (1, 0, 0)].811

To show that the triangle is included, let x2 = ε ≈ 0, and let812

x1 vary. Then the third column sits arbitrarily close to (1, 0, 0)813

and the first column traces out γ2. Set y2 ≈ 0 and toggle y1814

and y3, to obtain the full span, including the interior of the815

triangle, and the line segment [(1/3, 1/3, 1/3), (2/3, 2/9, 1/9)].816

Set x1 = 1− ε, and the first column sits at (1/3, 1/3, 1/3) while817

the third column traces out γ1. This catches the missing line818

segment.819

For the remainder of the convex hull, fix a point P in820

this region. This point lies on a line segment between821

(2/3, 2/9, 1/9) and some point Q in γ3. Suppose it is equal822

to ρ · (2/3, 2/9, 1/9) + (1− ρ) · Q. Set x2 = 1− ε ≈ 1. We can823

choose ε and x1 so that the second column is arbitrarily close824

to P. Furthermore, observe that the first column is approxi-825

mately equal to the point on γ2 corresponding to x1 and the826

third column is approximately the point on γ1 corresponding to827

x1. Choosing y1 = y3 = ρ and y2 = 1− ρ points us to828

ρ ·







|
γ1(x1)

|


+




|
γ2(x1)

|





+ (1− ρ) ·




|
γ3(x1)

|


829

830

= ρ ·




2/3

2/9

1/9


+ (1− ρ) ·Q = P.831

Proof of Proposition 5832

This is a direct application of the linear map W4, computed as in
Polanski and Kimmel (2003):

W4 =




6/5 2 4/5

6/5 0 −6/5

6/5 −2 4/5


 .

Proof of Proposition 6833

In order to prove the result about dimension, we show that Cn,k834

is a relatively open subset of a certain algebraic variety. Because835

the relevant operations are native to projective geometry, we836

transport our objects of interest in the obvious way to projective837

space. The same scaling properties that allow us to focus on the838

simplex also lead to good behavior in projective space.839

Lemma 9. For k ≥ 2 , the Zariski closure of Cn,k is the affine cone840

over J (σk−2(Cn, pn)), where:841

1. the symbol Cn denotes the projective curve defined by mapping
[s : t] to

Cn =

[(
2
2

)−1
s
(n

2)− (2
2)

t
(2
2)

:
(

3
2

)−1
s
(n

2)− (3
2)

t
(3
2)

: · · · :
(

n
2

)−1
t
(n

2)
]

,

2. the symbol pn is the projective point
[
1 : 1

3 : 1
6 : · · · : 1

(n
2)

]
,842

3. the operation J denotes the join of algebraic varieties, and843

4. the operation σi(·) denotes the i-th secant variety. Following844

Harris (2013), the i-th secant variety is the union of i-dimensional845

planes generated by i + 1 points in the variety.846

Proof of Lemma 9. The variety J (σk−2(Cn), pn)) is the image of
the following map:

ψ(~s,~t,~λ) =




1 s(
n
2)−1

1 t1 · · · s(
n
2)−1

k−1 tk−1

1
3

1
3 s(

n
2)−3

1 t3
1 · · · 1

3 s(
n
2)−3

k−1 t3
k−1

...
...

. . .
...

1
(n

2)
1
(n

2)
t(

n
2)

1 · · · 1
(n

2)
t(

n
2)

k−1







λ0

λ1
...

λk−1




,

where si and ti are not simultaneously zero, and λ is unrestricted.847

Define the map φ : R2k−1 → (P1)k−1 × Rk sending
(x1, . . . , xk−1, y1, . . . , yk) to

(
[1 : x1], [1 : x1x2], . . . ,

[
1 :

k−1

∏
i=1

xi

]
, y1, y1 + y2, . . . ,

k

∑
i=1

yi

)
.

We can recast the expression in (3) as the composition ψ ◦ φ.848

Based on this formulation, the set Cn,k is clearly contained in849

J (σk−2(Cn), p). To demonstrate the equality of the Zariski clo-850

sures, we only need to show that the dimensions match and851

that the variety is irreducible. Both joins and secants have the852

property that irreducible inputs yield irreducible outputs, so853

the variety of interest is irreducible. The image of φ is open in854

(P1)k−1 × Pk−2, and the map ψ has deficient rank on a set of855

positive codimension. Therefore, the composition of ψ ◦ φ has856

full dimension. This proves the Lemma.857

The i-th secant variety of an irreducible nondegenerate curve858

in Pn has projective dimension given by min(2i + 1, n) (Harris859

2013, Exercise 16.16). The curve Cn is a toric transformation of a860

coordinate projection of the rational normal curve. The rational861

normal curve is nondegenerate, and both of these operations pre-862

serve that property. This means our secant variety has projective863

dimension min(2(k− 2) + 1, n− 2) = min(2k− 3, n− 2). The864

join with a point adds 1 to the dimension of the variety, while the865

operation of passing to the affine cone adds 1 to the dimension of866

the variety and the ambient space. However, normalizing to the867

(n− 2)-simplex subtracts 1 from both variety and ambient space868

again. This means that dim Ĉn,k = min(2k− 2, n− 2), assuming869

that k ≥ 2.870
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Proof of upper bound in Theorem 8871

Suppose a point c is in Cn, q. By definition, this implies that there872

is a point (x1, . . . , xq−1, y1, . . . , yq) such that (2) yields873




1−x1 x1(1−x2) ···
q−1
∏
i=1

xi

1
3(1−x3

1)
1
3x3

1(1−x3
2) ··· 1

3

q−1
∏
i=1

x3
i

...
...

. . .
...

1
(n

2)
(1−x(

n
2)

1 ) 1
(n

2)
x(

n
2)

1 (1−x(
n
2)

2 ) ··· 1
(n

2)

q−1
∏
i=1

x(
n
2)

i







y1

...

yq


=




c2

...

cn


.

Since the point c is in the cone over the q columns of the matrix,874

Carathéodory’s Theorem implies that it is also in the cone over875

some n− 1 of the columns. Therefore we can replace the vector876

y1, . . . , yq with y′1, . . . , y′q so that all but n− 1 (or fewer) are zero.877

Passing to the expression in (3), this gives us:



1 x1 · · ·
q−1
∏
i=1

xi

1
3

1
3 x3

1 · · · 1
3

q−1
∏
i=1

x3
i

...
...

. . .
...

1
(n

2)
1
(n

2)
x1

(n
2) · · · 1

(n
2)

q−1
∏
i=1

xi
(n

2)







y′1
y′2 − y′1

...

y′q − y′q−1



=




c2

...

cn


 .

878

Since at most n− 1 of the y′i are nonzero, at most 2n− 2 of the879

entries of the vector at right are nonzero. We delete the columns880

of the X matrix corresponding to zero entries except the first881

column. A new sequence (x′1, . . . , x′2n−2) may then be obtained882

from the ratio between the first entries in adjacent columns. The883

new sequence y′′1 , . . . , y′′2n−1 is obtained by taking the sequence884

of partial sums of the vector.885

Proof of non-convexity in Theorem 8886

To prove this final result, we combine two properties already887

proven:888

1. The manifold Cn,k is a proper subset of Cn,k+1 for all k < κn889

(from Proposition 6).890

2. The manifold Cn,κn is contained in the convex hull of Cn,2.891

(This follows from Equation 2.)892

Since Cn,k contains Cn,2 and is properly contained in the convex893

hull of Cn,2, it cannot be convex.894
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Projection of observed SFS onto Ξ̂4,2

Figure 1 The green region, denoted Ξ̂4,2, represents the set of expected SFS for two-epoch piecewise-constant demographies for
sample size n = 4. Each blue circle is the observed SFS simulated using msprime (Kelleher et al. 2016) under a constant population
size coalescent with recombination using realistic mutation and recombination rates of 10−8 mutations and 2.2× 10−8 crossovers
per basepair per generation per haploid. Each sequence has 1000 unlinked loci of length 10 kb each, resulting in an average of 7,300
segregating sites. The red crosses are the expected SFS inferred for these simulated SFS using fastNeutrino (Bhaskar et al. 2015);
the dotted blue lines show the correspondence between the observed SFS and their projections onto Ξ̂4,2. For observed SFS lying
in the interior of Ξ̂4,2, the observed SFS and their projections coincide, while the observed SFS lying outside Ξ̂4,2 project onto the
boundaries of one of the two convex regions that form Ξ̂4,2.

1
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⇠4,1 (singletons)

⇠ 4
,2

(d
ou

b
le

to
n
s)

( 1
3
, 1

3
)

( 1
2
, 1

2
)

( 1
3
, 1

3
) ( 1

3
, 2

3
)

(1, 0)

Figure 2 Eliminating candidate normalized SFS vectors for Ξ̂4,2. This image considers candidate vectors and eliminates them
for different reasons. A priori, any vector adding up to 1 is a possible SFS. This is represented by the yellow triangle whose third
coordinate (not shown) is simply one minus the sum of the other two. Sargsyan and Wakeley (2008) showed that the SFS is non-
decreasing, ruling out any vectors outside the blue triangle. Furthermore, they showed that the SFS is convex, therefore ξ4,2 ≤
1
2 (ξ4,1 + ξ4,3), ruling out anything outside the red triangle. Finally, our algebraic analysis of the expected SFS for a piecewise-constant
demography with two epochs rules out vectors outside the green region at right.
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β1
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ξ4,1
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Figure 3 Coalescence and SFS manifolds for sample size 4 and 2 population epochs. A. The coalescence manifold C4,2 is the union
of red and green cones. The 2-simplex, shaded in blue, intersects C4,2 in the normalized coalescence manifold Ĉ4,2. The green region
corresponds to recent-small, ancient-large demographies; the red region to recent-large, ancient-small demographies. B. The SFS
manifold Ξ4,2 is the union of red and green cones. The 2-simplex intersects Ξ4,2 in the normalized SFS manifold Ξ̂4,2. Here, too, the
green region corresponds to small-then-large demographies; the red region to large-then-small demographies. As mentioned earlier,
Ξ4,2 is obtained from C4,2 by a linear transformation.

A

γ2

γ1

B

γ2

γ1

Figure 4 Fixed-time and fixed-size contours in Ĉ4,2. A. The blue line segments correspond to the image of χ4,2(x∗,~y) where x∗ is
a constant fixing the break-point between the two demographies. The other input ~y = (y1, y2) varies over all positive vectors,
though scaled ~y vectors point to the same normalized value. As y1/y2 → 0, the image approaches γ1 and as y2/y1 → 0, the image
approaches γ2. B. The blue curves correspond to the image of χ4,2(x,~y∗) where ~y∗ is a fixed vector indicating the population values
and x takes all values in (0, 1). The endpoints 0 and 1 correspond to breakpoints at ∞ and 0 respectively. For y∗1 < y∗2 , x traces a loop
in the green region; for y∗1 > y∗2 , x traces a loop in the red region.
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Figure 5 Pairing the boundaries of demography space and Ĉ4,2. A. The domain of χ4,2. Note that for fixed y1/y2, the normalized
coalescence vector is the same. B. The normalized SFS manifold Ξ̂4,2 projected onto its first two coordinates. C. The normalized
coalescence manifold Ĉ4,2 projected onto its first two coordinates. The red square at left corresponding to y1 > y2 maps to the red
regions at right; the green square at left corresponding to y2 < y1 maps to the green regions at right. The black line segments on
left (corresponding to y1/y2 = 1; y2 < y1 and x1 = 0 (equivalently t1 = ∞); y2 > y1 and x1 = 1 (equivalently t1 = 0)) all map to
the central black points on right, since they each mimic a constant demography. The green line corresponding to y1 = 0 maps to
the curve β1 in Ξ̂4,2 and the curve γ1 in Ĉ4,2; the red line corresponding to y2 = 0 maps to the curve β2 in Ξ̂4,2 and the curve γ2 in
Ĉ4,2. The orange point (x1 = 1, y2 = 0) maps to ( 1

3 , 1
3 , 1

3 ) in Ĉ4,2 and maps to (1, 0, 0) in Ξ̂4,2. The blue point (x1 = 0, y1 = 0) maps to
(1, 0, 0) in Ĉ4,2 and ( 1

3 , 1
3 , 1

3 ) in Ξ̂4,2. The remaining aqua and violet segments map to the segments of the same color.
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Figure 6 Regions of Ξ̂4,3 and sample demographies. The image depicts Ξ4,3 partitioned into different colored regions. The purple
point in the center is the SFS corresponding to the constant demography. The green region contains SFS corresponding to recent-
small, ancient-large demographies. The red region corresponds to recent-large, ancient-small demographies. The orange region
contains SFS corresponding to three-epoch demographies with a boom in the second epoch. The blue region contains SFS corre-
sponding to three-epoch demographies with a bottleneck in the second epoch. These are not the unique demographies mapping to
each region of Ξ4,3, but they depict, in some sense, the simplest demographies yielding those SFS.
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Figure 7 Coalescence and SFS manifolds for sample size 4 and 3 population epochs. A. The coalescence manifold C4,3 is the entire
yellow and orange region. The 2-simplex, shaded in blue, intersects C4,3 in the normalized coalescence manifold Ĉ4,3. The orange
region of Ĉ4,3, bounded by γ1, γ2, and γ3, is the image of the surface described by the columns of M1(4, 3), while the yellow re-
gion adds in vectors gained by using convex combinations. B. The SFS manifold Ξ4,3 is the entire yellow and orange region. The
2-simplex intersects Ξ4,3 in the normalized SFS manifold Ξ̂4,3. The SFS manifold Ξ4,3 is obtained from C4,3 by a linear transforma-
tion. The orange region of Ξ̂4,3, bounded by β1, β2, and β3, is the image of the surface described by the columns of M1(4, 3), while
the yellow region adds in vectors gained by using linear combinations.
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