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Diversity is significantly higher in the X-transposed region than the non-pseudoautosomal 
region.  
Curiously, in addition to elevated rates of diversity in the previously described PAR1 and PAR2, 
we also observe that diversity is significantly higher in the recent X-transposed region, XTR, 
than in the nonPAR (Table 1; Figure 2). This increased diversity cannot be attributed to mis-
mapping between the X and Y as we only analyzed individuals with two X chromosomes 
(Methods). High diversity in the XTR contrasts with initial suggestions that there is no X-Y 
recombination in the XTR 12, and is consistent with recent reports of X-Y recombination in some 
human populations in this region 50.  
 

 
Figure 2: Diversity along the X chromosome split by region. Genetic diversity (measured by π) is shown in 
boxplots depicting the average diversity with error bars for the nonPAR, PAR1, XTR, and PAR2. The p value from 
a permutation test with 10,000 replicates, comparing the diversity of each region to the diversity of the nonPAR are 
shown.  
 
Given the large size of the nonPAR region, and the small size of the XTR, 5Mb 11, one may 
wonder whether removing the XTR would make a difference to measured levels of diversity 
across the human X chromosome. The raw diversity of the nonPAR including the XTR, 
measured as π, is 0.000602 while the raw diversity of the nonPAR excluding the XTR is 
0.000595 (Table 1). Removal of the XTR does decrease both estimates of diversity and 
divergence in the nonPAR. Although the XTR may de facto be removed with other filters, one 
should be cautious to include XTR regions because its inclusion in studies of X-specific diversity 
will affect inferences made when comparing X-linked and autosomal variation 51–54. 
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Pseudoautosomal boundaries cannot be inferred from patterns of diversity. 
Recombination between the X and Y is expected to be suppressed at the pseudoautosomal 
boundary, where X-Y sequence homology diverges due to a Y-specific inversion 10,14,15. If 
diversity correlates highly with recombination rate, and X-Y recombination is strictly suppressed 
in the nonPAR after the pseudoautosomal boundary, then diversity is expected to drop sharply 
between the PAR1 and nonPAR. However, when we analyze patterns of human diversity in 
permuted windows across the X chromosome (Methods), we do not observe an abrupt shift in the 
level of diversity between the PAR1 and nonPAR regions (Figure 3). The lack of an observable 
pseudoautosomal boundary based on diversity is clear whether small or large (100kb or 1Mb), or 
overlapping or non-overalapping windows are used (Methods; Supplementary Figure 4). In the 
approximately 3 Mb that span the pseudoautosomal boundary, we observe a significant negative 
correlation between distance from Xp and diversity. As we shift the window for the regression 
by 100 kb further from the start of PAR1, we observe that the negative correlations remain 
independently significant and continue past the boundary (Figure 3). We observe that the original 
linear relationship between distance from Xp and diversity has a significant negative coefficient 
of correlation (R = -0.6681177; p = 0; Supplementary Figure 5). The significant linear 
relationship (p = 3.281 x 10-10) that we observe in Figure 3 extends nearly twice the length of 
PAR1 and supports the observation that there is no clear, abrupt drop in nucleotide diversity 
across the pseudoautosomal boundary. To test the significance of this correlation, we conducted 
a permutation test, shuffling windows (of 100kb) across the X chromosome, and re-computing 
the series of linear regressions 10,000 times, then computed the number of times a permuted X 
chromosomes had a correlation that was as strong or stronger than what we observe on the X 
chromosome (Supplementary Figure 5). We find that the negative correlation between distance 
from the short arm of the X and diversity is significant and spans the pseudoautosomal boundary 
(Methods; p = 0, permutation test).  

 
Figure 3: Negative correlation between diversity and distance from Xp, crossing the pseudoautosomal 
boundary. Diversity in 100kb non-overlapping windows along the pseudoautosomal boundary (PAB) is plotted 
across the first 6Mb of the human X chromosome, spanning the annotated pseudoautosomal boundary at 2.7Mb. A 
series of linear regressions were run including 30 windows, sliding by one window across the PAR to the nonPAR 
region. Each 100kb window is colored red if it is included in a regression in which distance from Xp and diversity 
are significantly negatively correlated, otherwise the windows are colored black. For the entire region together, 
diversity is significantly negatively correlated with distance from Xp (p = 3.281 x 10-10; r = -0.7321563) and spans 
the pseudoautosomal boundary.  
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The history of gene conversion between the sex chromosomes may contribute to the increased 
diversity levels55 in the nonPAR side of the Y-specific inversion that marks the pseudoautosomal 
boundary. Human diversity uncorrected for divergence decreases from the proximal end of the 
PAR1 through the pseudoautosomal boundary and well into the nonPAR. A sex-specific map of 
the PAR1 found that male recombination is higher near the telomeres, and decreases near the 
pseudoautosomal boundary, while, in contrast, the female recombination rate reported in the 
same study in the PAR1 is fairly flat throughout the region and increases near the 
pseudoautosomal boundary 56. Thus, genetic diversity uncorrected for divergence in the PAR1 
appears to correlate with the male recombination rate. Curiously, however, a previous study of 
recombination rate in the PAR1 reported an increase in the female (but not the male) 
recombination rate near the proximal end of the PAR1 57. Thus, potentially both male and female 
recombination rates contribute to the linear decrease in diversity observed in the PAR1 from the 
proximal end of the X through the pseudoautosomal boundary. Although not yet mapped, when 
the data becomes available, it will be useful to compare patterns of diversity with sex-specific 
recombination maps across the entire X chromosome.  
 
Conclusions 
We show that diversity is indeed higher in the pseudoautosomal regions, and lower in the regions 
of the X that are not known to recombine in males (nonPAR). Diversity in the PAR1 is 
significantly higher than in the nonPAR regardless of normalizing the diversity with divergence 
between human and either chimpanzee, macaque, or dog to correct for mutation rate (Table 1; 
Figure 1; Figure 2). Diversity was also normalized with divergence from the mouse, but there is 
no alignment between human and mouse in the PAR1, due to a different evolutionary origin in 
the PAR1 and no common pseudoautosomal genes are shared between them 58. We observe that 
diversity is lower in the PAR2 than expected, and is not significantly different from the nonPAR 
region. We also show that diversity is elevated in the XTR above other nonPAR regions, 
verifying recent observations that the region may still undergo homologous recombination 
between the X and Y chromosomes 50. Finally, when analyzing patterns of genetic diversity in 
windows across the human X chromosome we find that there is no strict boundary, based solely 
on the levels of diversity, between the recombining and putatively non-recombining regions, 
which could be attributed to the evolutionary shift in the pseudoautosomal boundary over time, 
extending the PAR1 due to a PAR1 length polymorphism 59. This could also suggest that non-
homologous recombination at the pseudoautosomal boundaries may be common. 
 
Our observations of patterns of diversity across regions of the human X chromosome with 
variable levels of recombination are consistent with previous reports that diversity and 
divergence are correlated with recombination rate in humans across the genome 38 , and 
explicitly in the PAR1 60. Elevated levels of diversity in the XTR suggest that, consistent with a 
recent report 50, this region may frequently undergo X-Y recombination. Curiously, we did not 
find a significant elevation in diversity in the PAR2, that, in agreement with its unusual evolution 
16, indicate that it rarely recombines between X and Y during meiosis. Further, the lack of a clear 
differentiation in diversity between the PAR1 and nonPAR suggests that recombination 
suppression between X and Y is still an actively evolving process in humans, as in other species 
61. This is consistent with evidence that the position of the pseudoautosomal boundary varies 
across mammals 62–65. There is even evidence of polymorphism in the pseudoautosomal 
boundary in a pedigree analysis of a paternally inherited X chromosome in humans 59. 
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Recombination spanning the pseudoautosomal boundary may account for some cases of de la 
Chapelle syndrome 66, in which an individual with two X chromosomes develops male gonads 
and some portion of cases also have a copy of SRY (SRY sits immediately proximal to the 
pseudoautosomal boundary in humans). Further, it is possible that pseudoautosomal boundaries 
vary across populations, affecting recombination and contributing to nondisjunction of the sex 
chromosomes. Taken together with previous inferences about the variation in pseudoautosomal 
boundaries, our observations suggest that assumptions should not be made of a strict suppression 
of X-Y recombination at the proposed human pseudoautosomal boundary.  
 
Methods 
We analyzed X chromosomes from twenty-six unrelated (46, XX) individuals sequenced by 
CompleteGenomics 43 (Supplementary Table 3). Sites were filtered requiring data be present 
(monomorphic or variable) in all twenty-six samples. Human-chimpanzee (hg19-panTro4), 
human-macaque (hg19-rheMac3), human-dog (hg19-canFam3), and human-mouse (hg19-
mm10) alignments were extracted from the UCSC genome browser 67. We curated the human-
chimpanzee and human-macaque alignments to filter out segments that included autosomal 
sequence aligning to the X chromosome (Supplementary Table 4; Supplementary Figure 6; 
Supplementary Figure 7); These alignments were visualized using the gmaj software 68. 
Additionally, we observed several regions across the X chromosome exhibiting heightened 
divergence between the human and the chimpanzee or the human and the macaque 
(Supplementary Figure 2; Supplementary Figure 3). Upon further inspection, these regions often 
contain multi-copy gene families that could lead to mis-mapping (Supplementary Table 4). 
Divergence estimates were similar with and without these regions, and here we present results 
with these regions of high divergence near multi-copy gene families excluded. Low diversity46 
and ampliconic regions44,45 were filtered out of the data to avoid analyzing regions potentially 
affected by strong selective sweeps, or difficult to align regions. Significant differences between 
PAR1 and nonPAR regions of the X chromosome, as well as significant differences between the 
XTR and nonXTR regions of the X chromosome persist regardless of inclusion or exclusion of 
ampliconic and low diversity regions (Figure 1; Table 1; Supplementary Tables 2 and 5).  
 
We used the Galaxy tools 69 to filter out regions that could cause potential sequence 
misalignments and regions defined by the UCSC genome browser 67 that may be subject to 
selection: RefSeq genes, simple repeats, and repetitive elements. We attempted to filter out 
noncoding regions near genes, but doing so would leave very little analyzable sequence in the 
PAR1 and PAR2 regions.  
 
We measured the diversity between the sequences as π, the average pairwise nucleotide 
differences per site between all sequences in the sample. 

π   =   
2  
L   

k
(k− 1)    p!

!

!!!

p!d!"

!

!!!

 

L represents the number of called sites, k represents the number of DNA sequences, pi and pj are 
the frequencies of the corresponding alleles i and j, and dij is the number of sites containing 
nucleotide differences. Diversity was calculated within each specific region (PAR1, PAR2, XTR, 
nonPAR with XTR, and nonPAR without XTR), as well as across sliding and non-overlapping 
windows. We generated window interval files across the human X chromosome with Galaxy 
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tools 69, and conducted analysis in four sets of windows: 1) in a 1 Mb non-overlapping window, 
2) a 1 Mb window with 100 kb sliding start positions, 3) a 100 kb non-overlapping window, and 
4) a 100 kb window with 10 kb sliding start positions (Supplementary Figure 4). We similarly 
calculated human-chimpanzee, human-macaque, human-dog, and human-mouse species 
divergence along the X chromosome, in each of the four regions and in the same windows 
previously described. To normalize the data, π values were divided by the observed divergence 
within the same interval.  
 
Chromosome X was divided into windows that were permuted without replacement 10,000 times 
to assess significant differences between diversity in each region (PAR1, XTR, PAR2) relative to 
nonPAR sequence. This analysis was repeated for uncorrected diversity and diversity corrected 
for human-chimpanzee, human-macaque, human-dog, and human-mouse divergence values. 
Empirical p-values were calculated by computing the number of times the difference between 
each pair of permuted sample regions was equal to or greater than the difference in observed 
diversity between each pair of regions. The negative correlation along the pseudoautosomal 
boundary was tested using linear regressions across 100kb windows covering a total of 3Mb for 
each regression (30 windows), shifting the window by 100 kb systematically (Figure 3). Each 
regression was analyzed for significance of the correlation (p < 0.05) with all data points 
occurring before the first non-significant window being included in the significant dataset. The 
100 kb non-overlapping windows were permuted 10,000 times and the correlation coefficient 
and the p-values of the linear regression were calculated for the first 3 Mb of each permutation. 
The significance of the observed negative correlation was computed by comparing the 10,000 
permuted linear regressions against the observed value. All of the graphs were produced using R 
version 3.1.2 70. All codes used for this project can be found at: 
https://github.com/WilsonSayresLab/PARdiversity. 
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