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HE mutational load is defined as the proportion by which the population 

(CROW 1958). In  a very large population, where the mutant genes are kept in 
low frequencies by the balance between mutation and selection, it represents the 
intensity of natural selection at the genotypic level. 

The mutational load in a large population was first calculated by HALDANE 
(1937) without assuming an epistatic component in fitness. Later, a similar but 
more detailed calculation was carried out by KIMURA (1961). Also, the mutational 
load in a small population was studied by KIMURA, MARUYAMA and CROW (1963). 

The purpose of the present paper is to investigate the effect of epistasis on the 
mutational load, using a model which assumes that the fitness is a function of the 
number of mutant genes in an individual. In particular, we will elaborate the case 
of quadratic interaction in fitness, namely, the deleterious effect of mutant genes 
to an individual is given by the quadratic expression of the number of mutant 
genes. This includes a case where the deleterious effect is proportional to the 
square of the number of mutant genes. Such a model may be realistic if the 
phenotypic suppression of mutational damage by developmental homeostasis 
breaks down rapidly as the number of mutant genes increases. 

In what follows, we will assume a very large population and investigate first 
the case of free recombination among mutant genes. Then, in order to clarify the 
effect of restricted recombination, we will investigate a population of a hypo- 
thetical organism having only one pair of chromosomes within which no crossing 
over takes place. We will also study the mutational load under asexual repro- 
duction. Finally, these results will be compared with other types of epistasis such 
as threshold character and “diminishing type” epistasis. 

Throughout this paper, the senior author (M. K.) is responsible for the theo- 
retical treatments, while the junior author (T. M.) is responsible for the numeri- 
cal treatments based on a computer. 

1. Free recombination among mutant genes: Let us consider a very large 
random mating population of diploid organism and assume that the fitness of an 
individual having i mutant genes is given by 

(1.1) 

Tf itness is decreased through the elimination of recurrent harmful mutations 

w L  = l-hli - hziz , 
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where h, and h, are non-negative constants. The right side of the above expression 
becomes negative for a large i. So, we assume that 

wi=O for i s n ,  (1.2) 
where n is the smallest number of mutant genes for which the right side of (1.1 ) 
becomes negative. 

Let f i  be the frequency of individuals having i mutant genes before selection, 
then the average selection coefficient, h, against each mutant gene is 

-h = E f i (Wi+ l -Wi ) /Z  fiwi . (1.3) 
i z 

Under free recombination between mutant genes, i may be distributed with a 
Poisson distribution, 

hi 
Z! 

f .  = 

where h is the average number of mutant genes per individual before selection. 
With this distribution, 

- 2 f i ( ~ i  + 1 - ~ i )  = (h,+h,) ( I - E - ~ )  f 2 h J  ( 1  - ~ n i z )  + (En-1-En-Z) wn-1 

and ( 1 . 5 )  
i 

fiwi = l-En-(hl+h2)X(1-En-i)-h2X2(1-En-~), 
i 

where E,  represents the tail of the Poisson distribution such that 

As a function of n and A, E ,  may be evaluated by using “Tables of the Incomplete 
r-Function” by KARL PEARSON (1922), since 

where y ( n ,  h )  is the incomplete gamma function of the first kind, i.e. 
En = Y(n,  h ) D b ) ,  

x 
y ( n ,  A )  = io f?-tP-ldt 

and r ( n )  is the ordinary gamma function. In the present study it turns out that 
E’S in (1 .5)  are generally very small and therefore may be neglected. For example, 
in the case of M = 0.1, h, = 0 and h, = 0.0025 (see Table I ) ,  we have n = 21 
and h z 5.76, giving 

This means that individuals having a large enough number of mutant genes, for 
which l-h,i-h,i2 becomes negative, are so rare that they may be neglected in the 
calculation. 
Therefore, 

en =: 9 X E,-, 3 x and z 

(h,+h,) +2h2h 
1 - (h,+h,) X- h,X2 h= 

with good approximation. 
Consider a particular locus and let U be the mutation rate and p be the fre- 

quency of the mutant gene. Assuming that the gene frequency is very low, its 
rate of change per generation may be given by 

(1.7) 
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where h is the average selection coefficient against the mutant gene. Multiplying 
both sides of (1.7) by 2 and summing up over all relevant loci, we have 

-- d x  - 2M-hh , 
dt 

where M = x u  is the number of new mutations produced per gamete per genera- 
tion and h = x2p.  

At equilibrium, where mutation and selection balance each other, we have 
dh/dt = 0, or 

2M = hh (1.9) 
The above relations (1.7), (1.8) and (1.9) are approximations, but they are 
satisfactory as long as h is much larger than U .  Note also that (1.9) follows from 

which is a more exact expression than (1.7). 
Thus, substituting (1.6) in (1.9), we get the following equation for A: 

2h2(M+1)X2+(2M+1) (hl+h2)h -2M = 0, (1.10) 

. (1.11) 

(1.12) 

from which we obtain, as the relevant root, 
- (hd-h,) (2MLl ) +v (2M4-1) (h,+h2) '$1 6h2M (M+1) 

4/22 (M+I) 
A =  

With this h, the mutational load may be calculated either from 
L = (h,+h,) h+h,hZ , 

or, equivalently, from 
2M+(h,+h2)A 

2(M+l) * 
L =  (1.13) 

In Table 1, values of h and L which were computed using (1 .I 1) and (1.13) 

TABLE 1 

Mutational load under a quadratic gene interaction in fitness with free 
recombination between mutant genes 

Case M 

0.1000 
0.1000 
0.1000 
0.1 000 
0.1414 
0.1414 
0.1414 
0.1414 

0.00000 
0.00238 
0.00025 
0.01666 
0.00000 
0.00238 
0.00025 
0.01666 

x L 

h2 

0.0025 
0.00238 
0.00249 
0.00167 
0.0025 
0.00238 
0.00249 
0.001 66 

From From 
equation numerical 
(1.11) analysis 

5.76 5.68 
5.66 5.57 
5.75 5.66 
4.97 4.85 
6.76 6.64 
6.68 6.54 
6.75 6.62 
6.08 5.91 

From 
equation 

(1.13) 

0.0975 
0.103 
0.0981 
0.132 
0.131 
0.138 
0.132 
0.173 

From 
numerical 
analysis 

0.100 
0.106 
0.101 
0.145 
0.136 
0.143 
0.137 
0.177 

~~~ ~~~ 

The average number of mutant genes per individual before selection ( A )  and the mutational load ( L )  are listed for 
eight different combinations of h,, h, and M ,  where M is the mutation rate per gamete. In each case, values obtained 
from the theory are compared with those obtained by purely numerical treatments by a computer. 
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are listed for various combinations of M ,  h, and h,. The table also contains, for 
comparison, the corresponding values of h and L derived from purely numerical 
treatments with the help of a computer as detailed in Appendix I. Briefly, the 
set of zygotic frequencies, { f , } ,  in one generation is transrormed into that of the 
next under a given scheme of mutation, selection and recombination and this 
operation is repeated until an equilibrium is reached. Then h and L are computed 
from the equilibrium distribution. The table shows good agreement between the 
results obtained from these two different methods. Also, it suggests an interesting 
fact that if h, is zero, 

L z M ,  (1.14) 
namely, the mutational load is approximately equal to the mutation rate per 
gametes, rather than twice this value as expected from the HALDANE-MULLER 

principle (cf. CROW 1957). The relation (1.14) appears to hold as long as I h, 1 
is smaller than h,. Actually, if h >> 1 and I h, I Sh,, the first order terms are less 
important than the second order terms in ( 1 .  I O )  and ( 1.12), thus giving L = M /  
( M + l ) ,  or roughly L = M ,  if M is small. On the other hand, if h, = 0 (no epis- 
tasis), we have L = 2 M / (  1 +2M) or roughly L = 2M if M is small. Namely the 
mutational load is roughly equal to the total mutation rate per zygote. For ex- 
ample, if M = 0.05 and no epistatic interaction in fitness, L = 0.09. For a larger 
value of M ,  the more accurate formula L=2M/(1+2M) is preferable. For 
example, if M = 0.1, we have L = 0.167. 

2. One pair of chromosomes with no crossing over: In the above treatment, 
completely free recombination was assumed between mutant genes. In actual 
situations, however, slight restriction of recombination may occur and even if its 
effect on the load is negligible, it might be worthwhile to investigate the effect 
assuming an extreme situation. So, in this section, we will consider a random 
mating population of a hypothetical organism having only one pair of chromo- 
somes within which no crossing over takes place. 

We will denote by g, the frequency before selection of chromosomes having i 
mutant genes. Under random mating the frequencies of individuals having 

various number of mutant genes may be obtained by expanding (E g l )  ’. AS 
before the selective value of indivichals is given by ( 1 . 1 ) .  Thus the relative 
selective value, U,,  of chromosomes having i mutant genes is 

m 

0 

m 

uz = ,E w,+jgj = l-hl(i+pl’)-h~(i2+2ipl’+pz’), (2.1) 
3 =0 

where p.11 and p,’ are the first and the second moments of the distribution of the 
number of mutant genes in a chromosome, namely, 

Let us consider the process by which the frequency distribution changes from one 
generation to the next: After selection the frequency of chromosomes having i 
mutant genes changes from g, to (gzvl . ) / f i ,  where fi is the mean selective value 

The selection is followed by mutation and we assume, as an approximation, that 
proportion M of the chromosomes having i mutant genes move to the class having 

pl’ = X igi , p2’ =E i2gi . 
2. 1. 

fi = 1 -2h,p1’-2h, ( p,’Z+p,’). (2.2) 
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i+l mutant genes. For a more exact treatment, we should assume that the num- 
ber of new mutations follow Poisson distribution with mean M, but this makes 
the following treatment much more difficult. However, as will be shown later, 
the approximation is satisfactory as long as M is small. Thus the frequency of 
chromosomes in the next generation having i mutant genes is 

, - gouo go --(1-M) if i = O  
U 

At equilibrium where gi' = gi, we may drop the primes in the above set of equa- 
tions. Let + ( e )  be the moment generating function of the distribution defined by 

W 

+ ( e )  = eigi . (2.4) 
i = 0  

Then, (2.3) at equilibrium gives the following second order differential equation 
for + ( e ) :  

(2.5) 

where 
'4 (hJh,) + 1 f2p1' = S+ 1 f2pL,' 

and (2.6) 
3 Muo/h, = Ru, , 

in which S = h,/h,, R = M/h,and 

U O  = 1 - hlpl' - h2p2'. (2.7) 
If the solution, + ( e ) ,  of the above differential equation is obtained, we may use 
it to calculate 

from which pl' may be obtained. For this purpose, we introduce an approximation 
and substitute (2.5) by 

(2.9) 

namely, we omit the tern1 (l-M+Me) in (2.5). This should not cause any 
serious error as long as M is small and 0 is very near to unity. We note here that 
the above approximation equation (2.9) has the same form as the exact equation 
in the continuous treatment given in Appendix (11.4). Thus, the pertinent solu- 
tion is 

A B 
+" (e )  t T + ' ( e )  - 8 + ( e )  = 0, 

CO Bioi 
( B e ) - ( A - 1 ) / 2  IA--l ( 2 V Z  1 7 (2.10) 

+ ( e )  cc 2" i!r(A+i) 
where I ( . )  stands for the modified Bessel function. 
Thus, 
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or, writing CY = A-I = S+2pl'and dividing both side by B s ,  we obtain 

CY-s - z@+l (2B'/e) -- 
2Bx Z,(2B'/.) 

The average number of mutant genes per individual is 

(2.11) 

A. = 2p1' (2.12) 

and this can be obtained by solving the above equation (2.11) for a through 
iteration by using tables of the modified Bessel functions (cf. SHIBAGAKI 1955). 
The iteration may be carried out as follows. First, take U ,  = 1 so that B = R = 
M/h,  and solve (2.11) for a, from which we get the first approximation of 
h (=a-S) and pl'( =X/2). Use this pl' to calculate pz' from 

R--S( l+M)p1'-2~~1'~ 
I f M  flz' = (2.13) 

which is derived from the first equation in (2.3), namely from fi = U ,  (1-M) . 
With these values of pl' and pz', the values of U,, and therefore B = Rv, may be 
obtained, enabling us to start the second cycle of calculation, from which we get 
the better approximations of and pl' by using equation (2.11). The process 
may be repeated until the desired accuracy is reached. Usually two cycles of 
iteration were sufficient for our purpose. 

The mutational load is calculated from 

L =z 1 - E = 2h1p1' + 2h2 (p1' + pLz'). (2.14) 

In Table 2, values of h and L thus obtained are listed for five different cases, 
together with corresponding values of h and L obtained by the purely numerical 
treatment by a computer (see Appendix I). The table shows fairly good agree- 
ments between the values obtained by the two different methods. For all these 
five cases, the mutation rate per gamete ( M )  is 0.1. The load is roughly 0.13 for 

TABLE 2 

The mutational load under no crossing over in an organism having one pair of chromosomes 

- x L 

theory, From theory, From 
eq. (2.11) computer eq. (2.14) computer 

From From 

Case M h, h2 

1 0.1 0.00000 0.0100 3.31 3.25 0.137 0.130 
2 0.1 0.00000 0.0025 6.92 6.76 0.133 0.127 
3 0.1 0.00238 0.00238 6.78 6.60 0.137 0.131 
4 0.1 0.00025 0.00249 6.90 6.74 0.133 0.127 
5 0.1 0.01666 0.00167 5.75 5.57 0.159 0.152 

~ ~~~ ~~ ~ 

The average number of mutant genes per individual before selection ( A )  and the load (L) are listed for five different 
combinations of values in h, and h,, assuming mutation rate M=0.1. In each case, values obtained from the theory are 
compared with those obtained by the purely numerical treatment by a computer. 
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the first four cases in which h, S h,. In  the fifth case, h,>> h, and the load is 
larger, being roughly 0.1 5 .  

3. Asexual reproduction: In  the previous section we have considered a random 
mating population of an  organism having only one pair of chromosomes within 
which no crossing over takes place. In this case, recombination still occurs in the 
sense that different chromosomes recombine through fertilization. We now 
proceed to investigate a population of asexually reproducing oragnism, where 
no recombination takes place. 

Let f i  be the frequency before selection of individuals having i mutant genes, 
whose fitness is wi and let 2M be the average number of mutant genes produced 
per individuals per generation. 

If the number of new mutations follows Poisson distribution with mean 2M, 
then the frequency of individuals having i mutant genes in the next generation is 

where 
m 

E=,)= f i W i .  
z =0  

The above relation (3.1) is quite general and no restriction is given to the form 
of WifS. 

In  particular, the frequency of individuals having no mutant genes is 

Thus, at equilibrium in which fo' = f o ,  we have 

w = Woe-'". (3.3) 
So, if we assume that mutations are deleterious and the individuals with no 
mutant genes have the highest fitness, then the mutational load is 

For example, if M = 0.1 we have L = 0.181. 
For a smaller M ,  we have 

L = 2 M  
approximately. Thus the load is roughly equal to the total mutation rate per 
individual. The above treatment shows that under asexual reproduction, epistasis 
has no effect in reducing the mutational load. 

DISCUSSION 

The model employed in the present paper assumes that the fitness is a function 
of the number of mutant genes contained in an individual. Such a model may 
be useful to investigate the following two situations. (1 ) Mutant genes in each 
locus are sufficiently rare so that only heterozygotes need to be considered. The 
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selective elimination is mainly through their deleterious effect in heterozygous 
condition. (2) Mutant genes are mildly deleterious in homozygous as well as 
heterozygous states and they are semidominant in fitness, namely, for each 
mutant gene, the heterozygous condition is only half as deleterious as the homo- 
zygous one. This seems to be nearly the case in “viability polygenes” studied by 
MUKAI (1 965a). 

The foregoing treatments have shown that under random mating the muta- 
tional load is nearly half the total mutation rate per individual if the deleterious 
effect of the mutant genes to an individual is roughly proportional to the square 
of its number, unless the mean number of mutant genes per individual is very 
small. This result may be particularly pertinent for assessing the load due to the 
viability polygenes, whose total mutation rate is estimated to be at least 70% 
per individual (cf. MUKAI 1964). If the ordinary HALDANE-MULLER principle 
(cf. CROW 1957) is applied to such genes, the load becomes at least about 0.5, 
which may be too high even for Drosophila. 

The term mutational load has still been used by some to mean undesirable 
genes or gene complexes produced by mutation, but we use this strictly in the 
sense defined by CROW (1 958). Namely, the proportional decrease of population 
fitness through the elimination of recurrent harmful mutations. The elimination 
may either be carried out by premature death or by sterility of the carriers and 
it is convenient to call such elimination the genetic death (MULLER 1950). Then, 
if one mutant gene is eliminated through one genetic death, the proportion of 
genetic deaths within an equilibrium population should be equal to the mutation 
rate per individual. In  this case, the intensity of natural selection as expressed 
by the fraction of genetic deaths is equal to the mutation rate per individual but 
independent of the selection coefficient against individual mutant genes. Such a 
principle does not hold under epistatic interaction in fitness, but it does suggest 
that if two mutant genes are eliminated on the average through one genetic 
death, the mutational load becomes only half as large as the above. The present 
quadratic model appears to correspond to this latter situation. More generally, 
if m mutant genes are eliminated through one genetic death, the mutational load 
may become only l /m as large. This might be expected if the deleterious effect 

TABLE 3 

The average number ( A )  of mutant genes per individual before selection and the mutational 
load (L) when the Viability is a threshold character. Mutant gems act as lethal 

when m or more me present in one individual. The mutation rate 
per gamete is assumed to be 0.1 

m x L 

1 0.200 0.181 
2 0.558 0.108 
3 1 .oo 0.0803 
4 1.49 0.0654 
5 2.03 0.0556 
10 5.07 0.0342 
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is proportional to the mth power of the mutant genes and if the average number 
of mutant genes per individual is fairly large. 

This also might be the case, if viability is a threshold character such that the 
mutant genes have no deleterious effect when its number is less than m, but 
produce lethal effect when m or more are present in one individual. In  this case, 
(1.3) gives 

where 
A- 

f = ,-A n%-1 (m-l)!  
and 

The mean number of mutant genes (A)  may be obtained by solving (1.9), 
with h given by (4.1), that is, by solving 

Afm-1 

1 -em 
2M=---. 

With this value of A, the mutation load is 

L = E m .  (4.3) 

Table 3 lists X and L for several values of m when M = 0.1. The table shows that 
L becomes progressively small as m increases, even though the relation L= 
2M/m does not hold as might be expected. The above model is rather artificial 
in assuming that the character is solely determined genetically. Rather, it is 
likely that most threshold traits are strongly influenced by the environment. The 
following is a model suggested to us by DR. J. F. CROW: Suppose that, among 
individuals having no mutant genes, a character (z) is distributed normally with 
mean 0 and variance U*, while for those having i mutant genes, x is distributed 
normally with mean - i ~ ,  (a>O), and variance c2. The threshold is cu such that 
only those having x value larger than cu survive. Then the fraction of survivors 
among those having i mutant genes is 

l W  wi=- J e-x2/2 dx 
y2ir c + i a  

Let wi be thc relative fitness so that wi = Wi/Wo. If n loci are involved and if 
p is the frequency of a mutant gene in each locus, then the frequency of individ- 
uals having i mutant genes is 

( i = 0 , 1 , 2  , . . .  ). 

Thus, 
7.77 = (1-p)" + nw,(l-p)"-lp + . . . , 
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-h= { ( ~ 1 - I )  ( I - p ) ”  + ( u ; l z - ~ , ) n ( I - p ) ” p + .  . . }/Z. 

If p is small, the higher order terms in p are negligible and we can compute the 
equilibrium frequency p using the relation U = hp. 

For example, assuming haploid organism with n = 4, c = -1.5, a! = 0.05, 
U = we get 

p = 1.388 X 

L = 3.98 x 10-5, 

showing that the load is very near to 4u, as expected from the HALDANE-MULLER 
principle. Table 4 lists results of more exact calculations for several cases. 

The good agreement of these examples with the HALDANE-MULLER principle 
is mainly due to the fact that the individuals having two or more mutant genes 
are so rare that there is almost no room for epistatic interaction. On the other 
hand, KING (1966)  presented examples of threshold character in which there is 
a substantial departure from the HALDANE-MULLER principle. He assumed a very 
high threshold, large effect of a single gene, rather many loci, and an environ- 
mental component of variance of the same order of magnitude as the genetic 
component. 

So far, we have considered a type of epistasis in which deleterious effect be- 
comes disproportionately large as the number of mutant genes increases. Such 
an epistasis may be called the “reinforcing type.” On the other hand, under 
some circumstances, deleterious effect per mutant gene might become progres- 
sively small as the number of mutant genes increases. Such an epistasis may be 
called the “diminishing type.” The balance between mutation and selection in 
this type of epistasis will be somewhat delicate, because the selection against 
individual mutant genes becomes less intense as their frequencies increase. In 

TABLE 4 

Mutational load in a haploid organism for a threshold trait determined by four 
segregating loci. The mutation rate per locus is 10-5  

Threshold Gene effect Gene frequency 
C a P Load 

Fraction 
of survivors 

WO 

-2.0 

-3.0 

-1.5 0.05 1.39 x 1 0 - 3  3.999 x 1 0 - 5  0.9332 
0.1 6.66 x 10-4  3.999 x 10-5  

0.2 3.11 x 10-4 3.999 x 10-5  

0.3 1.93 x 10-4  4.000 x 10-5  

0.05 3.1~86 x 10-3 4.00 x 10-5 0.9772 
0.10 1.65 x 10-3 4.00 x 10-5  

0.20 7.45 x 10-4 4.00 ~ 1 0 - 5  

0.30 4.45 x 10-4  4.00 x 10-5  

0.05 4.08 x 1 0 - 2  3.96 x 10-5 0.9982 
0.10 1.89 X 10-2 3.96 X lW5 
0.20 8.17 x lP3 3.96 x10-5 
0.30 4.63 x 10-3 3.97 x 10-5 
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order to treat this case more quantitatively, let us suppose that the fitness of an 
individual having i mutant genes is given by 

wi = I-s( i), (4.4) i+ 1 
where 0 5 s 5 1 .  Note that w1 = 1-s/2 and w, = 1-s. Under random mating 
and free recombination among mutant genes, we obtain, by using (1.3) and 
(1.4), the following expression for the mean sclection coefficient. 

s l-(I+X)f+ 
h A-s ( / i - - l + f ? - X )  

h=-.  

With this h, the value of h at equilibrium may be obtained from 

-- dh - 2M-hh = 0. 
d t  

The equilibrium is stable, if 
1 

dx - ($) < O  

and unstable, if 
1 

dh - ($) > o .  

(4.5) 

(4.7) 

(4.8) 

Table 5 gives some numerical results obtained by assuming M = 0.1. For 
s = 1.0, the mean number of mutant genes per individual at equilibrium is 0.431 
with load L = 0.188. The equilibrium is stable. For s = 0.5, there are two equi- 
librium values of A, one I(X = 1.66) is stable and the other ( h  = 3.16) is unstable. 
The mutational load corresponding to the stable equilibrium is L = 0.256 and 
this is definitely larger than the total mutation rate per individual, that is, 
2M = 0.2. For a slightly smaller value of s, that is for s = 0.4871, we have again 
two equilibrium values of h; h = 2.00 (stable) and h = 2.60 (unstable). The 
load corresponding to the stable equilibrium is L = 0.276, which is still larger 
than in the case of s = 0.5. For values of s less than about 0.4845, no equilibrium 
exists in A, because dh/dt = 2M-hh>O for all values of h and h tends to increase 
indefinitely. This means that fors < 0.4845 the selection can not check the spread 
of mutant genes. 

These results suggest that the diminishing type epistasis among mutant genes 

TABLE 5 

Some numerical results for h (mean number of mutant genes per individual) and 
L (mutational load) in the case of “diminishing type” epistasis, in which 

the fitness is given by wi = I - si/(i + I ) .  The mutation 
rate per gamete is assumed to be 0.1 

x 
S Stable Unstable L 

1 .oo 0.431 . . .  
0.50 1.66 3.16 
0.4871 2.00 2.60 

< 0.4845 . . .  . . .  

0.188 
0.256 
0.276 
. . . .  
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tend to create much larger genetic loads (both expressed and hidden) than in the 
case of no epistasis and probably this type of epistasis is unfavourable for the 
evolution of the species. On the other hand, the reinforcing type epistasis tend to 
reduce the load and appear to be favourable for evolution. Also, this type of 
epistasis must be more common because of the physiological reason, namely the 
developmental homeostasis breaks down rapidly as mutant genes accumulate. 
Therefore, as far as the effect of deleterious mutant genes on fitness is concerned 
the reinforcing type epistasis will be found more often than the diminishing type 
in nature. 

Recent studies of MATSUDAIRA (1963), SPASSKY et al. (1965), MUKAI (1965b) 
and KITAGAWA (1966) seem to support such a view. In the last study, up to seven 
lethal genes were accumulated experimentally in one individual to see their 
effect on fitness in heterozygous condition. It was found that their deleterious 
effects tend to reinforce each other as their number increases. 

We would like to express our thanks to DR. J. F. CROW for reading the manuscript and for  
giving valuable suggestions, especially those pertaining to the load for the threshold character. 

SUMMARY 

The effect of epistasis on the mutational load was studied using a model which 
assumes that fitness is a function of the number of mutant genes in an individual. 
I t  was shown that if the deleterious effect of the mutant genes is proportional to 
the square of their number, the load under random mating becomes roughly half 
as large as in the case of no epistasis, provided that the average number of such 
genes per individual is fairly large. Under asexual reproduction, however, the 
epistasis has no effect in reducing the load. The situation is intermediate for a 
random mating population of a hypothetical organism having only one pair of 
chromosomes within which no crossing over takes place.-The mutational load 
is also reduced under random mating if the fitness is a threshold character such 
that the mutant genes produce no deleterious effect when their number is less 
than m but act as lethals when m or more of them are present in one individua1.- 
Epistatic interaction in fitness among deleterious mutant genes is classified into 
two types, namely, the reinforcing type and the diminishing type. In  the former, 
the deleterious effect becomes disproportionately large as their number in an 
individual increases. On the other hand, in the latter, the deleterious effect per 
mutant gene becomes smaller as their number increases.-Reasons are presented 
to believe that the reinforcing type of epistasis among deleterious mutant genes 
must be more common than the diminishing type in nature. 

APPENDIX I. NUMERICAL TREATMENT O F  THE QUADRATIC G E N E  INTERACTION 

MODEL WITH A COMPUTER 

The process of calculation consists of the following steps: ( 1 )  As a starting point, a population 
of individuals having no mutant genes is assumed so that fo = 1.0, fl=fz= . . . = 0. When 
gametes are formed, segregation takes place before mutation, so that from this initial population, 
go=l, gl=g2=. . . = 0. (2) When mutation occurs, mutant genes are produced with their 
frequencies given by the Poisson distribution with mean M ,  say with M=0.1, such that from 
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the above population the frequencies of gametes carrying 0,1,2, . . . mutant genes are c0.l, 

( O . l ) d . 1 ,  ( 0 . 1 ) 2 ~ 0 . 1 / 2 ! ,  . , . respectively. More generally, if go, g,, g,, . . . are repsectively the 
frequencies of gametes carrying 0,1,2, . . . mutant genes before the production of new mutations, 
the gametic frequencies after mutation (go’, g;, gz’, . . .) are given by 

go; 
g1 

8 2 ‘  

1 0 0 ... 
M 1 0 ... 

M 1 .. MZ 
2! 
- 

(3) Zygotes are formed assuming random mating, such that fo=go‘2, fl=2g0‘gl’, etc. ( 4 )  Selec- 
tion is practiced with fitness uii=l-hl i-h,iZ for a given set of values of h, and h,, for example, 
hl=O.O, and hz=0.0025. This transforms {fi} into {fiwi/8}. (5) Segregation takes place when 
the gametes are formed, but, the mode of segregation depends on whether crossing over occurs 
or not. In the case of free recombination between mutant genes, segregation follows binomial 
distribution in such a way that an individual having i mutant genes produces gametes with 
various number of mutant genes following the expansion of (‘/z + 1/) i. In the case of no crossing 
over, however, homologous chromosomes which formed an individual a t  fertilization again 
segregate intact. ( 6 )  Mutation follows segregation as described in ( 2 ) .  

The cycle of “zygote formation-selection-segregation-mutation in gametes-zygote formation” 
is repeated many times until equilibrium is reached with respect to the frequency distribution 
{f%), and this was carried out using the computer, CDC 1604.. Usually 120 cycles (generations) 
of iteration seemed to be sufficient for our purpose, but sometimes the computations were carried 
out as many as 500 cycles. When equilibrium is reached, the difference in  the average number 
of mutant genes before and after selection must be equal to twice the number of new mutation 
per gametes, that is 2M, and this was checked in all cases. 

APPENDIX 11. ONE PAIR O F  CHROMOSOMES WITH N O  CROSSING OVER. TIME CONTINUOUS TREATMENT. 

Consider a random mating population of an organism having only one pair of chromosomes 
within which no crossing over takes place. We will denote by gi the frequency of chromosomes 
having i mutant genes. Let M a t  be the probability that one mutation occurs in  a chromosome 
during the short time interval of length At, i.e. (t ,  t+At),  and let w i + j = l - [ h l ( i + j ) f h ,  
( i+j)z]At  be the fitness of an individual having (i+j) mutant genes, the fitness being measured 
during the same time interval, (1, +At ) .  

Assuming that the combination of homologous chromosomes occur a t  random, the relative 
fitness of chromosomes having i mutant genes is 

ui:=l- [h, ( i + p l ’ )  +h, (i2+2ijtl‘+pz’)]At, 
where p,’ and p,’ are respectively the first and second moment around 0 of the number of 
mutant genes in a chromosome. The amount of change in gi during the time interval ( t ,  t+At) is 

for  i=O, gouo(l-MAt) 
4 0  = - go 

and (11.1) 
U 

where 
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At the limit of At-0, the above set of equations reduces to 

M. KIMURA A N D  T. MARUYAMA 

and (11.2) 

w 
Let ,E  e i g i = c ( e ) ,  M/h,=R and h,/h,=S, then the above set of equations yield 

2 = 0  

(11.3) 

When the equi l ibr ik  is reached with respect to the frequency distribution { g i ) ,  a$/at=O and 
we have the following ordinary differential equation, 

e$"(e) +A$'( e)-+$( e) =0, (11.4) 
where A=S+1+2p1'. 
The pertinent solution of the above equation is 

m Riei  
= C(Re)  (I--A1/2 IAWl (2v/RB), (11.5) 

where C is a constant such that +(1)=1, and I ( . )  stands for the modified Bessel function. Thus 
the equation for  fil' is 

' ( e ) = c ~ ~ ~  i! r (A+i) 

ZA(2R%) =R% (11.6) 
zA-1(2RL/2) 

or 

where 
tables 

A-S-1 ZA(2RR'/.) 
2R% IA-1(2R1/), 
-- - (11.7) 

R=M/h, and S=h,/h,. Equation (11.7) may be solved numerically for A by using 
of the modified Bessel functions and the average number of mutant genes per individual 

is then obtained from 

The mutational load per short time interval At is 
X=2pl'=A-S-1. 

I--rij 
At 

L= - =2Ch,$L,'+h, (Plf2+P2')3 5 

which, at equilibrium, reduces to 
hZ L=2M-(-)@. 
2 
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