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RECENTLY, a number of papers on population genetics have been published 
treating the effect of linkage and epistasis on selection (LEWONTIN and 

KOJIMA 1960; BODMER and PARSONS 1962; PARSONS 1963; LEWONTIN 1964a,b; 
NEI 1964a,b; WRIGHT 1965; FELSENSTEIN 1965 and others). These papers mainly 
treat particular problems and little is yet known about the general principles 
governing linked gene systems in evolution. The problem of finding such princi- 
ples might appear to be difficult, since the recent paper by MORAN (1964) seems 
to show that WRIGHT’S conception of an LLadaptive topography” is untenable, at 
least as it stands. 

The main purpose of the present paper is to show that linked gene systems own 
a remarkable property of rapidly settling to a state which I would like to call 
quasi linkage equilibrium. This state is attained if gene frequencies are changing 
under loose linkage and relatively weak epistatic interactions. On the other hand, 
linkage disequilibrium may be built up indefinitely when linkage is tight, epistatic 
interactions are relatively strong and gene frequencies are changing toward 
fixation. 

I would like to show further that for a genetic system evolving under quasi 
linkage equilibrium, both WRIGHT’S conception of an “adaptive topography” and 
FISHER’S fundamental theorem of natural selection indeed hold. 

Throughout this paper I will consider a very large random mating population 
and assume that the fitnesses of individual genotypes are constant, though not 
necessarily the same. Furthermore, I will restrict my consideration to the case of 
two linked loci, each with a pair of alleles, A, and A,  in the first locus and B, 
and B,  in the second, leaving more complex cases to future investigations. 

Haploid population 

Let us consider a population of a haploid organism and designate by x, y, z ,  
and U the respective frequencies of four genotypes, A,B,, A,B,, A,& and AzBz, in 
the population before selection. Their respective frequencies after the selection 
will be denoted by capital letters, X ,  Y ,  2, and U.  We will assume that meiosis 
follows immediately after fertilization, to form the next generation. 
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If wo, w,, wb and W,b are respectively the fitnesses of these genotypes measured 
in selective values (= viabilities if there are no fertility differences), then 

x = xwo/w 1 

and 

(2) 

X’ = X - CD 
y’ = Y -t CD after recombination, 

= U - .DJ 

where primed letters indicate values in the next generation. In  the above for- 
mulae, .G is the mean selective value of the population, 

(3) 
D is half the difference of the frequencies of the coupling and repulsion double 
heterozygotes after fertilization, 

D = X U  - Y Z ,  (4) 
and c is the recombination fraction between the two loci. 

fi = W o X  f way + wbz + Wa#,  

From ( 1 ) and (2), we have 
X(W0 - m )  

Ax= - - CD 
W 

where A is the finite difference operator with respect to time, measured by one 
generation as unit, so that A x  = x’ - x, A y  = y’ - y etc. 
Now, let us put 

and consider the change of log r in one generation, assuming that changes in gene 
frequencies are going on. 

Since 
Alog  r = Alog  x - Alog  y - A l o g  z -k Alog  U , 

we have, neglecting higher order terms, 

A x  A y  A z  A u  
X Y Z  U 

A l o g r = - - - - - - k - .  
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Then, using ( 5 ) ,  we obtain 

877 

1 1 1 1  
z y z u  

= ( W o - W a - W b +  Wab) - ~ . Z Y Z ( R - l ) ( - + - + - + - )  

or, noting (7 j , we have 

where 

and 

EAbg R = E - c H ( R  - 1) , 

E = W O  - u ’ a  - w b  + w a b  

1 1 1 1  (12) H = . Z Y Z  (-+-+-+-). 
x y z u  

Let us consider the process of change in R using equation 10. Without losing 
generality ‘we can assume that E in the equation is non-negative, because if E is 
negative we may redefine R-I as R and - E  as E to carry out the same argument. 
Suppose that R is less than unity, then the right side of ( 1 0 )  is positive and there- 
fore log R will increase. When R reaches unity, log R will increase roughly at the 
rate of E per generation if selection is mild. Thereafter, the rate of increase in 
log R will diminish, since the second term on the right side of ( I O )  starts to pro- 
duce negative contribution to Alog R. However, if the epistatic effect E is very 
much larger than the recombination fraction C, the right side of ( I O )  may remain 
positive and R will increase indefinitely. On the other hand, if E is much smaller 
than c, term cH(R-1)  will approach E quickly, with the result that an equilibrium 
state will soon be reached, where 

This state is stable, because if R starts from a value which is larger than its 
equilibrium value (A), it will decrease until R=R. Deviation of R from R will 
be reduced roughly by fraction c in each generation. 

I t  should be noted here that ( 1 3 )  is an approximation, since H in ( 1 0 )  is not 
strictly a constant. However, in such a state, the change in R may be so slow that 
we may treat R as practically constant even if gene frequencies are changing. I 
would like to call such state, quasi linkage equilibrium. Furthermore, if selection 
coefficients are small, the equilibrium value of R is expected to be near unity, 
with the result that H is roughly unity and we have 

Alog R=O. (13) 

E-C(R-11)  = 0  
or 

approximately. 
Though the above arguments are based on the assumption of nonnegative E ,  

equation 14 holds also for negative E as long as / E  I <c. 
In order to check the validity of the above arguments, an extensive numerical 

study using a high-speed computer has been c a r r i d  out. Table 1 shows an 
example with w, = 1 .O, w, = W b  = 0.98, Web = 1.06 and c = 0.5. Namely, the two 

&=I + E / C  (14) 



878 M. KIMURA 

TABLE 1 

A numerical example showing mme properties of the quasi linkage equilibrium. Selectiue values, 
wo = 1.00, wa=wh = 0.98, wah = 1.06; recombination fraction, c = 0.5 

Generation 
i 

Percent chromosome 
frequency before selection 

I X  102 y (  = z )  x 102 u x  102 
Linkage disequilibrium 

R DX102 

Change in Additive and 
population fitness epistatic variances 

AwXlO* VAX104 V8,Xlo4 

0 
5 

10 
20 
4Q 
80 

100 
200 

49.0000 
47.8124 
45.9617 
41.5594 
29.5776 
3.1992 
0.2827 
0.0000 

21 .oooo 
21.0096 
21.4762 
22.496 
24.2446 
14.0789 
4.7859 
0.0022 

9.0000 
10.1683 
11.0860 
13.4485 
21.9332 
68.6430 
90.1454 
99.9955 

1.10371 0.4419 
1.21565 0.9184 
1.21930 0.9752 
1.21895 1.0662 
1.21811 1.2228 
1.22280 0.3955 
1.22814 0.0453 
1.23141 0.0000 

2.63 0.42 4.41 
0.71 0.63 4.66 
0.81 0.80 4.88 
1.30 1.29 5.34 
3.57 3.54 6.18 

10.77 11.07 2.13 
5.11 5.36 0.25 
0.00 0.00 0.00 

loci are independent and either A, or B,  alone decreases fitness by 2% but the 
two together increase fitness by 6%. The initial frequencies of A ,  and B, are each 
assumed to be 30% and also the initial frequencies of the four chromosomes are 
assumed to be in “linkage equilibrium” so that z = 49%, y = z = 21 % and 
U = 9% (i.e. T- = 1 .O in the 0th generation). It may be seen from the table that 
quasi linkage equilibrium is reached after a few generations of random mating 
and then R changes extremely slowly until it reaches the limiting value of 
1.23141 . . . . The approximate value of R given by (14) is 120  because E =1.0- 
0.98-0.98 + 1.06 = 0.1 and c = 0.5. On the other hand, D changes extensively 
throughout the process of selection. 

Table 1 also shows another important property of quasi linkage equilibrium. 
Namely, the rate of change of population fitness (AZU) is equal to the additive 
genetic variance ( V A ) ,  that is to say, the additive component of the total geno- 
typic variance. This is again an approximation, but, as seen from the table, the 
agreement between these two quantities is close enough to rule out the existence 
of any appreciable contribution from epistatic variance (V,,) , except for the 0th 
generation for which AZU = V A  + 1/2 V,, holds. This last relationship, however, 
is the result of artificially imposing “linkage equilibrium” (I =1.0) where such 
an equilibrium can not be realized if the change in gene frequencies is kept going 
on due to natural selection. 

The important property, 
AZU =I V A  (15) 

at the state of quasi linkage equilibrium may be derived as follows: Since A b g  
r = Alog R = 0 in this state, we have, from equation 9, 

where 
Thus 

E - cWDZ 1 0, 
z = x-1 + y-1 + z-1 + u-l. 

(16) 

A 6  = W,AXS-WaAySWbAZ+WabAU 

(using ( 5 )  1 1 = =(WO’ Xf Wa‘ Yf Wb’ . d w a b 2  h!-W2)-CDE 
W 
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= (VT - CWD&)/W 

=(V ,  - V,P)/iZ; 

E2 
=(vT - T ) / W  (using (16)) 

and therefore 

where V T  is the total genotypic variance and V E p  is the epistatic variance. The 
additive genetic variance VA=VT-VEp is the variance due to the additive effects 
of the genes (see Appendix I ) .  Since we assume small selection coefficients, we 
may put z Z ~ 1  and (15) follows from (17). It is interesting to note in the above 
derivation that the amount of linkage disequilibrium is such that the term -CEDE 
exactly cancels out the epistatic component of variance in fitness. This means 
that however small the epistatic effect may be, the assumption of “linkage equi- 
librium” is inappropriate here. 

In the above example, free recombination (c=0.5) was assumed, but for closer 
linkage, the approach to quasi linkage equilibrium may be slower. Table 2 gives 
an example with the recombination fraction, ~ ~ 0 . 2  and selective values, wo=l .OO, 
wa=wb=0.99, wab=l .02, i.e., A ,  or B, singly reduces fitness by 1 % but in combi- 
nation they increase fitness by 2%. It  is assumed that initial frequencies of A ,  
and B,  are respectively 0.25 and 0.20, and that the four chromosome types are 
in linkage equilibrium so that s=0.60, y=0.20, z=0.15 and u=0.05. The table 
shows that at generation 40, AE and V a  agree with the error of about 4%, while 
V E p  is more than 100 times as large as ALE. The error is reduced to about 2% in 
generation 200. 

A Z  VA/E,  (17) 

Diploid population 

The essential part of the foregoing argument can be extended to cover the 
diploid population, as I would like to show in this section. 

Let us denote by XI, X,,  X ,  and X ,  the frequencies of four chromosome types 
A$,,  A,B,, A,B, and A,B, immediately after fertilization. It may be convenient 

TABLE 2 

An example similar to that of Table 1,  but with closer linkage. Selective values, 
w, = 1.00, w,=w,, = 0.99, wab = 1.02; recombination fraction, c = 0.2 

Change in 
Percent chromosome Linkage population Additive and 

Generation frequency before selection disequilibrium fitness epistatic vanances 
t Z X 1 P  yx1P ex102 U X 1 0 2  R Awx1O7 v,x107 VE,x10‘ 

0 
5 

10 
20 
40 
80 

160 
200 

60.0000 
60.4542 
60.6582 
60.8672 
61.1902 
61.9243 
64.0225 
65.5113 

20.0000 
19.5306 
19.2918 
19.0073 
18.5743 
17.8173 
16.4390 
15.7009 

15.0000 
14.71 74 
14.6605 
14.721 1 
14.9044 
15.1281 
14.9974 
14.6467 

5.0000 
5.2970 
5.3895 
5.4044 
5.3312 
5.1303 
4.5410 
4.1411 

1.04 
1.16 
1.20 
1.22 
1.23 
1.23 
1.23 
1.23 

392.6 
138.1 
50.59 
9.388 
3.576 
3.353 
5.811 
9.015 

7.500 480.0 
5.302 493.1 
4.629 496.8 
4.042 496.9 
3.441 492.5 
3.153 480.1 
5.678 44.0.4 
8.816 411.6 
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Xl AlBl 
x2 4% 
x3 AlB2 

x4 

M. KIMURA 

w11 w12 w13 w14 

w 2 1 w22 w2 3  W24 

w3 1 w32 w33 w34 

w4 1 w42 w43 w 4 4  

TABLE 3 

Designation of chromosome frequencies and selective values of genotypes 

xi x, x3 x4 

'42% *I% 4% 

to give these chromosomes the numbers 1, 2, 3 and 4 so that the frequency of 
chromosome i is X ,  (i=1,2,3,4). We will designate by wij the selective values of 
the genotype formed by the union of chromosomes i and i as shown in Table 3 
(i, j=1, . . . ,4), As before, the recombination fraction between the two loci will 
be denoted by c. Then the amount of change in one generation of these chromo- 
some frequencies may be given by the following set of equations. 

Xl(W1. - E )  - CD, 
AX, = - 

W 

x ,  ( w,. - E )  + C D W  

X4(W4.  - E )  - CD, 

AX, = - 

AX, = - 

W 

W 

where wi. is the average selective value of chromosome i, (i=l, a, 3, 4) ,  that is 
4 

wi.= jY1 z Ur..x. % 3  3 7  (19) 

E is the average selective value of the population 
4 

23 = ,x wi. xi = ,z wijxixj (20) 
2 = 1  %,1 

The above set of equations (18) is slightly more general than the one given by 
KIMURA (1956) but equivalent to that given by BODMER and PARSONS (1962). 
Since equations 18 are a natural extension of equations 5 ,  we again let 

and consider the rate of change of log R per generation as in the case of the hap- 
loid population. This leads to 

or  
EA@ R = E - cDW (X1-' + X2-l f X3-l 4- X4-l) (23 1 

(23') x1 + x4 + x, + X , ) ,  
R E A b g  R=.F-c(w~~ R-wZ~) ( 
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TABLE 4 

A numerical example showing the attainment of quasi linkage equilibrium in a diploid population 
(completely recessive mutations). Selective values, 

w41=w23=w32=1.00, w22=w24=w42=o.99, w33=w34=w43=o.985’ w,,=I.O2; 
Recombination fraction, c=0.5 

Linkage Change in Additive and epistatic 
Generation Percent chromosome frequencies disequilibrium fitness chromosomal variances 

t X,XIOZ X,X102 X,XIOZ X,XI02 A AwxIOS V,,XloS VBEpcXlob 

0 20.oooo 
10 20.1063 
50 19.6403 

100 18.5716 
200 14.6145 
300 7.2680 
MO 0.5350 
500 0.0018 

1500 0.0000 

20.0000 
20.4041 
22.3886 
24.2562 
25.9359 
22.8986 
8.4571 
0.6407 
0.0000 

30.0000 30.0000 
29.1205 30.3691 
26.6847 31.2864 
24.3791 32.7932 
20.9553 38.4443 
16.2207 53.6127 
5.0317 85.9762 
0.2544 99.1031 
0.0000 100.oO00 

1 .OOOOOO 2.926 
1.02766 0.661 
1.02852 0.465 
1.02990 0.370 
1.03511 0.933 
1.04908 5.7138 
1.08091 15.29 
1.09538 1.68 
1.09642 0.00 

0.7261 78 
0.658748 
0.452730 
0.365753 
0.914888 
5.64348 

1.71846 
0.00000 

15.4166 

2.18700 
2.24996 
2.M233 
2.61448 
3.32151 
4.46057 
1.36214 
0.008709 
0.00000 

where 
E = w1. - wz. - w3, i- wq. 

is the epistatic effect involving four chromosome types. 
Let us consider a situation in which gene frequencies are changing slowly 

under loose linkage and weak selection. We may see from equation 23‘ that start- 
ing from an arbitrary positive value, R will be adjusted quickly to attain the 
quasi linkage equilibrium, where 

Alog R = 0 (25 1 
or 

R = constant. (26) 
Either of these is an approximation but seems to be good enough for practical 
purposes, though the accuracy might be less as compared with the haploid case, 
if 2 does not behave nicely. A considerable number of numerical examples have 
been studied by computers and the results have shown that the assumption of 
quasi linkage equilibrium is satisfactory. Table 4 shows an example in which 
the two loci are independent (c=0.5) and both mutant alleles A, and B, are 
recessive. It is assumed that A,, when homozygous, decreases fitness by 1 %, and 
similarly, B, when homozygous, decreases fitness by 1.5%, while A,  and B, in 
combination as double mutants increase fitness by 2%. In the 0th generation, 
frequencies of A,  and B, are respectively 50% and 60%. 
Also “linkage equilibrium” (R=l) is assumed between the two loci in the 0th 
generation so that X,=0.2, X,=0.2, X,=0.3, X,=0.3 at the start. The computa- 
tion was carried out until generation 1,500. The quasi linkage equilibrium is 
attained in a few generations and then R changes extremely slowly, as s h m  in 
the table. The table also reveals an important property of the quasi linkage 
equilibrium, i.e. 

A Z  == VAC, (27) 
where V,C is the additive chromosomal variance as defined in Appendix 11. The 

(24) 
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above relationship can be derived as follows: From equation 20, we have, neg- 
lecting higher order terms, 

4 

A E  = 2, 2 = 1  I: w;, AXi. (28) 

Substituting ( 18) for AXi, we get 
2 4  

(29) A G E -  - [ , E  (w~. -W)~X~-CDWE].  
2 = 1  

Now, from the assumption of quasi linkage equilibrium, 
EAbg R = 5 - CDw(X1-l f X2-l f XS-l + X4-l) = 0, 

(cf. equation 23) 
and therefore 

wherc J = X,-l f X2-l f X,-l -t X4-l. From Appendix 11, 
cDW = E/J, (30) 

VTC = 2 ,E (Wi. - W)Z xi ,  (31 1 
VEpC = 2i2/J, (3.2) 

(33) 

4 

2 = 1  

and 

Thus, substituting (30) in (29), and noting (31), (32) and (33), we get 
V A C  = VTC - VEPC. 

n 4  

= ( V T C  - V m )  /E 
v A C / f i ,  (34) 

or assuming that selection coefficients are small so that W is approximately unity, 
we obtain A E  = VAC, as was to be shown. I would like to point out here that the 
good agreement found in Table 4 at the 0th generation between A E  and the total 
chromosomal variance (VAC + VEpc) comes from the artificial assumption of 
“linkage equilibrium” ( R  = 1) , When gene frequencies are changing under 
natural selection, no “linkage equilibrium” could be attained if epistatic effects 
in fitness are involved. KOJIMA and KELLEHER (1961) studied the rate of change 
of mean fitness of a population in a similar situation to that studied in the present 
paper. They argued that the correction term (corresponding to our - 2 c D , ~  in 
equation 29) may make positive or negative contribution to the rate, with the 
result that when the number of loci involved gets large, correction factors would 
tend to cancel each other and the rate of change in fitness would become twice 
the marginal variance (corresponding to our V T C ) .  However, under quasi linkage 
equilibrium -2cD,? is just enough for cancelling out the epistatic component 
of VTo, More generally, when gene frequencies are changing under natural selec- 
tion D,  and E would tend to have the same sign and -cD,% to make a negative 
contribution to the rate of increase in fitness as suggested by the recent work of 
FELSENSTEIN (1965). 

The attainment of quasi linkage equilibrium is not restricted to the case in 
which the gene frequencies are changing toward fixation. It can also be attained 
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TABLE 5 

A numerical example showing the attainment of quasi linkage equilibrium when overdominance 
is inuolued. Selective ualues, wl,=w22=w33=w~4=w23=w32=l.oo, w ~ ~ = w ~ ~ = w ~ ~ =  

w ~ , = w 2 . 1 = w 4 2 = w ~ ~ = w ~ ~ = l . 0 1 ,  w,,=w4,=1.05; Recombination fraction, c=0.5. 
Chromosome frequencies at the 0 generation, X,=0.6, X,=X,=O.O, X,=0.4 

Generation 
I 

Percent chromosome frequencies 
x z x 1 0 2 =  

X,X102 x , x 1 o *  X,X102 

Linkage 
disequilibrium 

R 

Change in 
fitness 

AWX 105 

Additive and epistatic 
chromosomal variances 

vAcx105  V ~ , ~ X I O ~  

1 
5 

10 
20 
30 
40 
50 
60 
70 
80 
90 
99 

47.4609 12.3047 
35.9730 23.41 66 
34.9579 24.1481 
34.3155 24.2625 
33.7330 24.3468 
33.1869 24.4200 
32.6752 24.4860 
32.1956 24.5446 
31.7464 24.5967 
31.3255 24.6429 
30.9312 24.6840 
30.5978 24.7169 

27.9297 
17.1937 
16.7460 
17.1595 
17.5753 
17.9731 
18.3529 
18.7151 
19.0602 
19.3886 
19.7009 
19.9685 

8.75510 
1.12797 
1.00390 
1.00029 
1.00025 
1.00022 
1.00020 
1.00018 
1.00016 
1.00014 
1.00012 
1.0001 1 

-31 9.76 
-1 7.30 
-0.04 

0.43 
0.39 
0.34 
0.30 
0.27 
0.24 
0.22 
0.19 
0.18 

2.24232 6.91295 
0.599233 7.48018 
0.502889 7.4.0367 
0.445136 7.44652 
0.395017 7.48770 
0.352348 7.52441 
0.313724 7.55707 
0.272736 7.58614 
0.252879 7.61 195 
0.221015 7.63488 
0.197671 7.65524 
0.175360 7.67159 

when gene frequencies are changing toward intermediate equilibrium values, as 
shown in Table 5. In  this example, overdominance is assumed. 
A single heterozygote has 1'% selective advantage; the double heterozygote has 
5% advantage in the coupling phase, but none in the repulsion phase. The 
initial population (0th generation) is assumed to contain only two types of chro- 
mosomes, A,B, and A,B, with respective frequencies of 60% and 40% so that 
R = 00 and E = 1.024. Also free recombination ( c  = 0.5) is assumed. The table 
shows the process of change in the genetic constitution of the population for the 
succeeding 99 generations. Since the population starts from excess of the coupling 
phase and since only this phase is assumed to have selective advantage in double 
heterozygotes, the population fitness W decreases rather rapidly for the first few 
generations as shown in the table. However, the decrease stops at the 10th gen- 
eration and then E starts to increase. By the 20th generation, quasi linkage 
equilibrium seems to have been established, as suggested by the good agreement 
between AW and VAC. Actually, change of R is very slow from the 20th genera- 
tion onward as the table shows. 

It is important to note that the concept of quasi linkage equilibrium does not 
apply unless gene frequencies are changing. Change of chromosome frequencies 
alone is not enough. To  show this, an example is given in Table 6, in which 
selective values and recombination fraction are exactly the same as in the above 
example (Table 5 ) ,  but initial chromosome frequencies are X ,  = X ,  = 0.5, X ,  = 
X ,  = 0.0. In  this example, there is no change in gene frequencies because they 
are equal to the equilibrium value of 0.5 from the start. Chromosome frequencies 
alone are changing and as the frequency of repulsion phase increases, the mean 
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TABLE 6 

An example in which the mean fitness of population (w) is always decreasing 

Generation Percent chromosome frequencies Linkage disequilibrium Changein fitness 
L x , x 1 0 ~ = x , x 1 0 ~  X z X 1 O ~ = X , X I P  R AwX 1P 

0 
1 
2 
4 
6 
8 

10 
12 
14 
16 
18 

-20 

50.oooO 
37.1 95 1 
30.9918 
26.4582 
25.3561 
25.0870 
25.0213 
25.0052 
25.0013 
25.0003 
25.0001 
25.0000 

0.0000 
12.8049 
19.0082 
23.5418 
24.6439 
24.9130 
24.9787 
24.9948 
24.9987 
24.9997 
24.9999 
25.0000 

cc 
8.43764 
2.65836 
1.26312 
1.05864 
1.01402 
1.00341 
1.00083 
1.00020 
1.00005 
1.00001 
1.ooooo 

-735.51 
-332.72 
-157.35 
-37.21 
-9.03 
-2.20 
-0.54 
-0.13 
-0.03 
-0.01 
4 . 0 0  
-0.00 

There is no change in gene frequencies, and therefore the concept of quasi linkage equilibrium is irrelevant in this case. 
Selective values and the recombination fractions are exactly the same as in Table 5, but the initial chromosome fre- 
quencies are X,=X,=O.5 and Xz=X3=0.0.  

fitness decreases until all the chromosome frequencies are in equilibrium. On the 
other hand, if we start from excess of the repulsion phase such as XI = X ,  = 0.0 
and X ,  = X ,  = 0.5, the frequency of the coupling phase, and therefore the mean 
fitness of the population, would increase from generation to generation. Again, 
the concept of quasi linkage equilibrium is irrelevant because of no change in 
gene frequencies throughout the process. 

Finally, I would like to show an example in which the recombination fraction 
is much smaller than the epistatic interaction and linkage disequilibrium*is built 

TABLE 7 

An example in which linkage disequilibrium is built up indefinitely. Selectiue values, 

W ~ ~ = W ~ ~ = W , , = O . ~ ~ ,  w44=f .IO; Recombination fraction, c=O.OI 
wll=w12=w,1=w13=w~1=wl*=w23=w32=I" w22=w33=w24= 

Percent chromosome frequencies Linkage Change in Additive epistatic and 
Generation x,x lo,= disequilibrium fitness total chrodosomal variances 

2 x , x 1 0 2  X , X l O ~  X,X102 R A Z X W  v A , x i o 6  v,,,xios vTGx105 

0 25.000 25.000 25.000 1.00 31.84 0.002 31.25 31.25 
10 27.776 21.805 28.614 1.67 38.762 1.456 40.26 41.72 
20 29.365 18.526 33.583 2.87 53.561 8.790 52.52 61.31 
40 26.299 11.441 50.819 1 . 0 2 ~ 1 0 ~  144.62 79.88 88.86 168.73 
80 2.474 0.702 96.122 433x10, 82.82 76.65 22.64 99.29 

100 0.325 0.086 N.503 4.38X103 11.59 11.01 3.00 14.01 
120 0.040 0.010 99.940 3.81x10* 1.41 1.35 0.36 1.71 
140 0.005 0.001 99.993 3.22X1O5 0.1 7 0.17 0.04 0.21 
200 0.000 0.000 100.000 1.82X1O8 0.00 0.00 0.00 0.00 
400 0.000 0.000 100.000 2.59x1017 0.00 0.00 0.00 0.00 
450 0.000 0.000 ioo.ooo 5.03~1019 0.00 0.00 0.00 0.00 
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u p  indefinitely as time goes on so that quasi linkage equilibrium is not attained. 
This is shown in Table 7. In this case, both mutant genes A,  and B, are recessive 
and each in single homozygote reduces fitness by 5% but in combination they 
increase fitness by 10% in double mutant homozygotes. A tight linkage with 
recombination fraction c = 0.01 is assumed. The value of R which is unity at 
generation 0 reaches 5.03 X loT9 at generation 450, and it will continue to increase 
indefinitely. Note here that D tends to zero as R tends to infinity. Throughout 
the process, A G  is roughly equal to the total chromosomal variance (VTp)  and 
neither V,, nor VEpC alone fails to give good approximation to AG.  This is under- 
standable, since the two loci may behave as if they were a single locus under 
tight linkage and relatively strong epistatic interaction. 

DISCUSSION 

I hope that the above demonstrations are enough to show that when gene fre- 
quencies are changing slowly under loose linkage and relatively weak epistatic 
interaction, the state is quickly realized in which chromosome frequencies are 
changing in such a way that R = constant, where R is the ratio between the fre- 
quencies of coupling and repulsion phases, i.e., The 
state is termed quasi linkage equilibrium and though its formulation is an approx- 
imation, it seems to be good enough for practical purposes. It may be most useful 
in the treatment of cases in which two loci are segregating independently and 
selection coefficients are at most of the order of a few percents. The term “quasi 
linkage equilibrium” should not be confused with “quasi gene frequency equi- 
librium” used by BODMER and PARSONS (1962) to denote an equilibrium for 
which D is small. Furthermore, it may be noted that a small D is not necessarily 
equivalent to a small ( R  - 1 ) , as shown by the example in Table 7. Generally, 
R is more sensitive to linkage disequilibrium than D and less dependent on gene 
frequencies. 

The assumption of quasi linkage equilibrium leads to some important con- 
clusions. I have already shown one of them that is related to the rate of change 
in the mean fitness of the population. Namely, 

AG = vAC/G,  (35) 
as shown in (34). In this formula Vac is the additive chromosomal variance. For 
weak selection, iij is near unity and we have A 6  = VAC as a good approximation. 
It might be thought here that the additive chromosomal variance contains, be- 
sides the genic (or additive genetic) variance V,, some epistatic components of 
variance in fitness. However, as shown in Appendix 111, VAC is exactly equal to 
Vg under random matings, so that we have 

A E  = V,/W, ( 3 6 )  
even if linkage disequilibrium is present. 

eters and the corresponding formulation should be 

where ci is the mean fitness of the population and v, is the genic variance in fit- 

R = ( X , X , )  / ( X , X , )  . 

For overlapping generations, fitness may be measured in Malthusian param- 

dci/dt = ug, ( 3 7 )  
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ness. This means that FISHER’S fundamental theorem of natural selection (cf. 
FISHER 1958) holds under quasi linkage equilibrium. 

In one of my previous papers treating the change of population fitness by 
natural selection (KIMURA 1958), I attempted to resolve dG/dt into three com- 
ponents, one of which was U,. I also suggested that the case of random mating 
with linkage may be approached by considering “additive chromosomal vari- 
ance.” At that time the remarkable property of quasi linkage equilibrium was 
not noticed and I could only carry out a formal analysis of the problem assuming 
general conditions. 

Another important conclusion that follows from the assumption of quasi 
linkage equilibrium is that the direction of change in gene frequencies by natural 
selection is such that the mean fitness of the population is increased. This is de- 
rived from (35) noting that VAo is nonnegative and therefore 

A Z  2 0. (38) 
This result is significant, since it suggests that the stable equilibrium corresponds 
to the local maximum of U, with respect to the change in gene frequencies. To be 
sure, one can find easily an example in which this inequality does not hold, when 
some unnatural value is artificially imposed upon R, as shown by the example 
in Table 5. In such an example, R will change rapidly in a few generations, but 
as long as gene frequencies are changing, the quasi linkage equilibrium will 
soon be attained (where (38) holds. Nature is simpler than some artificial ex- 
amples suggest. MORAN (1964) gave an example in which U, increases steadily 
from generation to generation until an equilibrium is reached if one starts from 
one set of chromosome frequencies, but decreases steadily toward the same equi- 
librium, if one starts from another set of chromosome frequencies. It turns out 
that in his example, only R is changing and there is no change in gene frequen- 
cies. So the situation is exactly the same as explained by using the example of 
Table 6. 

From his example, MORAN argues that WRIGHT’S conception of an “adaptive 
topography” is not correct since populations do not in general tend to maximize 
their mean fitness if the latter is dependent on more than one locus. He also 
tries to show that stationary populations do not in general correspond to station- 
ary values of z i j  and that it is unlikely that equations giving equilibrium fre- 
quencies can be derived from any principle which maximizes a function of ga- 
metic frequencies. 

I would like to assert that once the concept of quasi linkage equilibrium is 
introduced, the classical picture of adaptive topography remains to be useful 
for studying the change of gene frequencies in a population. For example, equi- 
librium chromosome frequencies can be derived by considering the stationary 
points of Z and the stability of an equilibrium can be tested by seeing if W has 
a local maximum at the equilibrium point, provided that the side condition Of 

R = constant is imposed, in addition to the ordinary condition that chromosome 
frequencies add up to unity. 

However, a more exact specification of conditions under which quasi-linkage 
equilibrium holds in such a situation has to be worked out in future. 
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SUMMARY 

In a large random mating population, if gene frequencies are changing by 
natural selection, under loose linkage and relatively weak epistatic interactions, 
a state is quickly realized in which chromosome frequencies change in such a 
way that R is kept constant, where R is the ratio between the frequencies of 
coupling and repulsion phases. Such a state was termed quasi linkage equilibrium, 
and it was shown that several important conclusions follow from its formulation, 
namely: (1) The rate of change in the mean fitness of a population is equal to 
the additive genetic variance in fitness. So. FISHER'S fundamental theorem holds. 
(2) The direction of change in gene frequencies by natural selection is such that 
the mean fitness is increased. ( 3 )  The stable equilibrium of gene frequencies 
corresponds to the local maximum of the mean fitness and WRIGHT'S classical 
picture of "adaptive topography" continues to be useful if the concept of quasi 
linkage equilibrium is taken into account. 

In order to corroborate the above points, an extensive numerical study was 
carried out with the help of high speed computers and some of the results are 
presented. 

APPENDIX I. Analysis of variances in fitness with t m  segregating loci 
each with a puir of alleles in a haploid polpulrxtion 

Let N be the average effect of substituting A, for A, and let p be that of substi- 
tuting B, for B,. If we designate fitnesses and frequencies of four genotypes as in 
Table A.l ,  additive values w, (Y and p may be obtained by minimizing 

Thus, from aQ/aw= 2Q/au= aQ/ap=O, we obtain 
( ~ 0 - m )  Z= - ( LL"~-W-CY) y= - ( w~-w-P) Z= ( w,~-w-(Y-~) U E K ,  

where 
K= &/I 

in which &=Wu-wu-Wb+wub and Z = z l  +yl +z-l +u-l. The epistatic variance 
( V E ~ )  is the sum of squares of deviations from additive approximation, i.e. the 
minimum value of Q: 

The additive genetic variance (V,) is the variance due to the additive values and 
can be shown to be equal to VT-VEP, where 

is the total genotypic variance. 

Q = ( WO-W) ' 5  f ( W U - W - C W )  'y f (Wb-w-p) '2 ( W U b -  W-CX-P) ' U .  

VEp K'z' SK'y-l SK2z-l  +K'u-~ =K21=e2/1. 

VT= Wo'X+Wa2YfWb2Zfw,~'~-W2 

TABLE A.l 

Additive value Frequency Genotype Fitness 

4 %  W O  W X 

A A  w a  W f f f  Y 
AlB2 w b  W+P z 
A A  Wab W+ff+P U 
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TABLE A.2 

Chromosome (i) Average value Additive value Frequency 

APPENDIX 11. Additive and epistatic chromosomal variances in a 
population of a diploid organism. 

Let wi. be the average selective value of chromosome i as defined in ( 19) ,  that is  

wi.= x wijxj ( i= l ,  . . . ,4) 
The total chromosomal variance, VTC, may be defined as twice the variance due 
to wi.'s, because each individual has two homologous chromosomes (considering 
only autosomes) ; 

i = 1  

4 v,, = 2, z (Wi.-W) *xi. 
2 = 1  

In order to extract the additive component from this, let W ,  A ,  and B be additive 
values as shown in Table A.2, and choose these parameters so that 

Q=X,(w1,--W)2+X2 (w~.-W-A)~+X,(W~.-W-B)~+X~(UII~.-W-A-B)~ 
is minimized. From aQ/aW= aQ/i3A= aQ/aB=O, we obtain 

( ~ 1 ,  - W )  XI= - (w, . -W-A)  Xz= - ( w,, - W-B) X3= ( w,,-W--A-B) X4 ' K ,  
where K=E/J 
in which ~ = Z L ~ , - W , . - W ~ , + W , .  and J=X,-' +X,-' +X,-l +X4-'. Then it can be 
shown that the minimum value of Q is 

Qm = P / J .  
It can also be shown that, if we define the additive chromosomal variance, VAC, 
as twice the variance due to the additive values, and the epistatic chromosomal 
variance as twice the minimum value of Q, then 

V A C  = V T C  - V E P C ,  

where V E p C  = 2E2/J. 
Parameters A and B may be obtained by solving the following set of equations: 

( A  11.1) 

where pl and p ,  are frequencies of A ,  and A,  in the first locus, q1 and q2 are those 
of B, and B,  in the second locus and 

plp2A + DB = C, 

DA + qiqzB = cq, 

c, = X, (w , . -W)  + X,(w4.-W) 
c, = x ,  ( w3.-W) + x,  (w,.-z2;) 

In terms of A and B, the additive chromosomal variance is 
V A C  = 2A2p1p, + 4ABD + 2B2qiqz, 

APPENDIX III. Proof that under random mating the additive component of the 
total chromosomal variance is equal to the genic or additive genetic variance. 

( A  11.2) 
where D = x1x4 - X2X3. 



QUASI LINKAGE EQUILIBRIUM 889 

TABLE A.3 

Genotvrre Fitness Additive value Frequency 

w11 

U 1 2  Or WPl 

w13 Or w31 

w14 Or I U 4 l  

w22 

w 2 3  Or w 3 2  

w24 Or w 4 2  

w33 

w34 or w43 
w44 

Xl 

2x,x, 
x*2 

Let 01 be the additive effect of substituting A ,  for A ,  and let p be that of substi- 
tuting B, for B ,  as shown in Table A.3. Parameters, 0, (Y and /3 are determined 
in such a way that the sum of squares of deviation from additive expectation is 
minimized. This leads to the following equations for a and p: 

p1p2ff + Dp = c, 
Da: + qiqzp = Cq, 

c, = x ,  (wz.-E> + x ,  (w4.-W) 
cq = x ,  (w,.-E) + x ,  (w4.-W) . 

(A 111.1) 

where pl=Xl+X, ,  p2=X2+X4,  q,=X,+X,,  q,=X,+X4, D=XlX4-X2X3 ,  and 

The genic or additive genetic variance, denoted by V,, is the sum of squares due 
to additive values, (Y and p. It can be shown that 

Vg = 2Ly2pip2 + 4apD + 2p2q1q2 (A 111.2) 
Comparison of A (  111.1) with (A 11.1) shows that A=a and B=P. Therefore, it 
is clear from the comparison of (A  111.2) with (A 11.2) that VAC=Vg. 
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