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THE DISTRIBUTION OF LINANTHUS PARRYAE 

PLING and DOBZHANSKY (1942) have recently published a very detailed E account of the distribution of two alternative characteristics, blue and 
white flowers, of a diminutive annual plant, Linanthus Parryae, in a portion 
of its range in the Mojave desert. It seemed of interest to make an analysis of 
their data from the standpoint of the theory of isolation by distance discussed 
in the preceding paper (WRIGHT 1943). 

The region in question is about 80 miles long and averages about 10.5 
miles wide. It stretches in an east-west direction along the piedmont north of 
the San Gabriel and San Bernardino Mountains and is largely isolated from 
other populations of the species. Data were obtained a t  stations every half 
mile along the principal roads, including two or three parallel roads a t  most 
places. At  each station if the plants were present, counts were made of four 
samples of IOO plants each, spaced a t  intervals of approximately 2 5 0  feet a t  
right angles to the road. 

The vegetation in this piedmont belt is stated to be homogeneous. A number 
of species of shrubs are listed as characteristic. “The spacing of these shrubs is 
wide, and it is doubtful if they cover as much as 60 percent of the ground. 
Around the base of most of the bushes, the soil has accumulated so as to form 
a slight mound. Linanthus Parryae occupies the ground between the mounds, 
forming a widespread reticulum which is interrupted only by the stream beds 
or depositions alluded to above.” The authors find nothing to suggest any 
selective differential. 

Some of the conclusions reached by the authors are given as follows. “The 
apparent complexity of the distribution pattern of white and blue flower color 
in Linanthus Parryae can be reduced to a relatively simple scheme. The blue 
was found principally in three or four ‘variable areas.’ Outside these areas the 
blue was encountered sporadically, as would be expected if it were introduced 
there only on rare occasions through mutation or through occasional transport 
of ‘blue’ pollen or seed. Within the variable areas, the white and blue occurred 
side by side, and the population was differentiated into an extremely fine 
mosaic of microgeographic races. Pure white and pure blue colonies occurred 
a t  distances as small as 500 feet. Nevertheless, populations found one mile or 
less apart, resemble each other more than do populations taken a t  random in 
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the .variable areas.” This is followed by comparison with the U-shaped dis- 
tribution of gene frequencies which the present author has deduced as char- 
acteristic in effectively small populations. 

SXALLER 
SUBDIVISIONS 

Secondary 
Tertiary 
Stations 
Samples 

THE HIERARCHY OF SUBDIVISIONS 

For more detailed mathematical analysis, it is convenient to define a hier- 
archy of subdivisions. Six compact, approximately equal, primary subdivi- 
sions are recognized along the length of the range. Each of these includes five 
secondary subdivisions. Each of these in turn includes four tertiary subdivi- 
sions. The tertiary subdivisions were chosen so as to include three stations as 
far as possible (two stations in six cases, four stations in two cases). The sta- 
tions, as noted above, typically include four samples, but many of them con- 
tain less. 

PRIMARY SUBDIVISIONS (EAST TO WEST) 
TOTAL 

I I1 I11 IV V VI 

5 5 5 5 5 5 30 
20 2 0  20 20 2 0  20 I20 

57 59 60 60 61 59 356 
198 211 214 214 218 203 1258 

The population density in 1941 was found to vary from I to 26 per square 
foot (average 9.7) in the variable areas and from I to 48 per square foot (aver- 
age 7.4) in the predominantly white areas. The area occupied by an average 
sample of IOO of the plants may thus be taken as about 12 square feet. It is 
stated, however, that in unfavorable years the species may be found only in 
sparse concentration or abundant only locally. Since the effective size of a 
population depends much more on the number of productive individuals in 
unfavorable than in favorable years, it is probable that the typical density is 
very much less than IOO per 12 square feet. 

The average distance between samples a t  a typical station (four samples 
spaced a t  250  foot intervals in a line) is 417 feet. Thus a sfation may be con- 
sidered as representative of a circle of about this radius and hence of an area 
of about 5.4XIO6 square feet (417%) or 0.020 square mile. A station would 
contain about 45,000 sample areas if these were closely packed. However, 
since it is stated that about 60 percent of the ground is occupied by other 
vegetation, this estimate is to be reduced accordingly. Using round numbers, 
this indicates that there were about 2x10~ sample areas in the population 
represented by a station in 1941. But if unfavorable years are taken into 
account, this number would probably have to be reduced enormously. 

The average distance between stations in a group of three a t  half mile inter- 
vals is two-thirds of a mile. A tertiary subdivision may thus be considered to 
be representative of an area of about 1.4 square miles ( = ( Q ) 2 ? r )  and thus 
would contain about 7 0  station equivalents. No doubt there should be some 
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reduction to allow for interruptions. We shall use 50 as a round number for 
the station equivalents in a tertiary subdivision. 

The secondary subdivisions typically include 1 2  stations spaced a t  half mile 
intervals, often along a straight road, but more often involving roads a t  right 
angles to each other or two close parallel roads. If along a straight line, the 
average distance between included stations is z a  miles. We shall consider a 
secondary subdivision to represent an area of about 14 square miles. 

The area occupied by the entire population is about 840 square miles. The 
average area of one of the six primary subdivisions is thus about 140 square 
miles. If each of these were completely filled by its five recorded secondary 
subdivisions, the average area represented by each of the latter would be 28 
square miles, just twice that estimated above. There were, however, large 
territories far from the roads which were not sampled. The smaller estimate 
accordingly seems preferable. These estimates are summarized below on the 
basis of the numbers in 1941 and on an arbitrary hypothesis. 

TABLE I 

The hierarchy of subdivisions. 

ESTIbfATED NUMBER OF' UNITS 
AREA 

PLANTS IN 1941 (A) 1941 (B) ARBITRARY 

Total population 840 sq. mi. 6 X 10lo 6 X 108 6x10~ 
Primary subdivisions 140 sq. mi. 1010 I08 106 

Secondary subdivisions 14 sq. mi. 109 IO7 105 

Tertiary subdivisions I .4  sq. mi. I08 I d  104 

Stations 0.02 sq. mi. 2 x 106 2 X 104 200 

12 sq. ft. (A) IO0 I I Samples 
1200 sq. ft. (B) 

It would appear that the total number of plants of Linanthus Parryae in 
this region was between IOIO and 10ll in 1941. The average effective size of 
breeding population over a period of years is probably much less. For the sake 
of comparison, two widely different hypotheses will be used for the are: from 
which the parents of individuals are drawn: (A) the area occupied by IOO 

plants in 1941 (12 square feet on the average), (B) an area IOO times as large 
to allow for years in which the population is sparse. Estimate (A) would be 
practically the minimum possible even if 1941 were a typical year. Estimate 
(B) is quite arbitrary. 

THE SIGNIFICANCE OF DIFFERENTIATION WITH STATIONS 

The first statistical question that requires consideration is whether or not 
there are greater differences among samples from the same station than are 
expected from the accidents of sampling. Let p be the actual but unknown 
frequency of blue in a homogeneous local population. Let po be the observed 
frequency in a random sample of N individuals. Let Gp=po-p. Then udp2 
= p(  I -p)/N. This may be estimated from the observed frequency by apply- 
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ing the usual Gaussian correction after substituting po for p. Thus for L 
samples from the same homogeneous population 

I L  I L  

L 1  1 
- c Po(1 - Po) = c c (P + &))(I - p - 6p) 

= p(1 - p) - u2 6p if L 00 
(1) 

taking p0(1 -PO) as the best estimate of the theoretic mean, obtainable from 
a single sample. 

In  a group of K samples of N each, not necessarily drawn from a homo- 
geneous population, and with observed variance U,," = C Y ( ~ O - ~ O ) ~ / K  

(3) 
- 

(4) = [Po(, - pol - &]/(N - 1). 

The deviation of the frequencies, PO, of samples about the unknown actual 
frequency, p, of the whole heterogeneous ,population may be analyzed into 
two independent components, the deviation from the observed mean frequency 
po of the K samples and the deviation of this from p 
( 5 )  (Po - p) = (Po - Po) + (Po - p) 

K - I  2 I L 2  

K L l  
U(P0-6) = - c UPO' (7) 

If the observed variance up: be treated as representative of the theoretical 
average cu,:/L, we obtain the formula with ordinary Gaussian correction for 
the upcertainty of the mean. This, however, will not do in this case, because 
U,," is not independent of Po.  If, for example, the frequencies of blue in four 
samples of IOO plants are 100, 100, 0, 0, respectively, the observed variance, 
up:= t ,  is the theoretical maximum, and application of the Gaussian correction 
gives the impossible estimate u2(po-jj) = Q. Since U,," necessarily approaches o 
as Po approaches either o or I ,  assume as a first approximation that U,," 

= Cp0(1 - P o )  where C is a constant for a given group of samples. Then 

(9) 

(IO) But 
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(11) Thus 

The best estimate of p( I -p) is PO( I -pa). An approximation for the variance 
of sample frequencies, corrected for uncertainty of the mean is thus 

(13) u:po-;) = Kupo/(K + C - I) where C = upO/Po(~ - PO). 2 2 

It may be noted that if C is small there is an approach to the ordinary 
Gaussian correction, but if C =  I (as in the extreme case cited above) there is 
no Gaussian correction a t  all, and impossible estimates are avoided. 

This variance inqludes the sampling errors in the determination of the local 
frequencies as well as the variance due to real differentiation of local popula- 
tions. To obtain an estimate of the latter, the mean sampling variance, as 
given by (4) must be subtracted. 

While this seems to be as good an estimate as it is practicable to obtain from 
a single group of samples, it has serious limitations if PO is close to o or I. 

There is only one type of distribution in a group of four samples of IOO plants 
each for which po=.0025--namely, samples with the frequencies 0, 0, 0, I. 
Formula (14) gives very nearly up2=o (exactly if C is treated as o), but ob- 
viously no information is given (or can be given) on differentiation among 
samples from stations for which p (as opposed to Po) is .0025. Again, in such 
a station as 103 with frequencies 0, 0, 0, 5 the estimate of U: is the maximum 
possible from a group of four samples with mean Po= .0125 but is much less 
than might occur among stations for which p=.o125. The estimate from P o  
and up: is satisfactory for values of PO less than .25  or greater than .75 (if four 
samples) only if the extreme type of distribution (0, 0, 0, n) is rare. In  the 
present data, distributions of this extreme type are abundant below PO= .05 
and above &=.95 (24 in 40 stations, excluding those in which all plants or 
all but one were alike). There were 61 stations in which there were from 5 to 
95 percent blues. Among these, only two showed the most extreme possible 
differentiation for their average (namely, stations 137 with 0, 0, 30, o blues 
and station 371 with 0, 100, IOO blues). The following estimates are based on 
these 61 stations. 

NO. OF SAMPLES NO. OF ESTIMATED ESTIMATED 

PER STATION STATIONS UP4 U& 

2 8 .0394 .0012 

3 16 * 0704 .oor3 
4 37 .0269 ,0017 

Total 61 .0400 .0015 
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The estimates of up2 varied enormously. In  one case (station 292) the esti- 
mated variance was less (by an insignificant amount) than that expected from 
the accidents of sampling. At the opposite extreme were stations 371 (0, 100, 
100) and 27 (0, 99, IOO), which were largely responsible for the high mean 
estimate of up2 in stations with three samples. On the average, the total esti- 
mated variance is about 28 times that expected from accidents of sampling. 
There is thus no doubt of the reality of the differentiation among samples 
from the same station. 

SIZE OF THE PARENTAL POPULATION ON FOUR HYPOTHESES 

Of greater interest for our present purpose is the variability of gene fre- 
quencies. Unfortunately this depends on the answers to a number of questions 
which could be obtained only by experiments which have not yet been made. 

It is conceivable that the difference between blue and white is not genetic 
a t  all, but this is highly improbable. Assuming that blue and white differ 
genetically, it makes a difference whether there is exclusive cross pollination, 
exclusive self fertilization, or some intermediate condition. While self pollina- 
tion appears improbable, we shall consider this possibility as well as that of 
cross pollination. Under exclusive self pollination, the mode of inheritance 
makes no difference in the distribution of the blue and white clones. If, how- 
ever, there is cross pollination, the estimates of gene frequencies from observed 
phenotypic frequencies depend on the mode of inheritance. We shall consider 
three extreme hypotheses-namely, that blue is recessive, that it is dominant, 
and that it depends on multiple factors and a threshold. 

The primary purpose of the analysis will be to find the effective size of the 
population from which parents (of adjacent individuals in the case of ex- 
clusive self fertilization) must be drawn to account for the observed distribu- 
tion as a cumulative consequence of sampling, according to the theory of 
isolation by distance recently presented (WRIGHT 1943). The possibility that 
the distribution may be affected by differential selection must also be exam- 
ined. We shall consider first the differentiation demonstrated above to occur 
within stations and after this the differentiation among larger populations. 

If there is exclusive self fertilization, we are concerned with the quantity 
E = uP2/p(1 -p), which measures the correlation between adjacent plants rela- 
tive to the population of the station (WRIGHT 1943). In  this formula, p is the 
mean, up2 the variance of the frequency of blue among the unit populations 
from which adjacent plants are drawn. However, since these populations are 
unknown, we can only calculate E from the samples of IOO plants. This has 
been done separately for each of the 61 stations in which PO was between .05 
and .95, using formula (14) to estimate up2 in each case. The values of E ranged 
from 0.00 to 1.00 in a very asymmetrical distribution. The distribution of .\/E 
was more nearly normal. 

If the hypothesis of exclusive self fertilization is correct, the variation of a should be independent of Po. This was tested by calculating the correlation 
and regression coefficients. The statistical constants are given in table 2. It 
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turns out that the regression coefficient of dE on PO, . z z  5 .IO, is slightly more 
than twice its standard error. This is not in good agreement with the hypothe- 
sis, although it cannot be considered to eliminate it. 

The effective size of the parental population may be estimated from the 
average value of E. In  these 61 cases the average value was .220. (It may be 
noted that this is considerably larger than the square of the average value of 
\% given in table z because of the great variability among stations. In  fact 
E = (dE)2+IJdi = .I55 + .os5 = . 2  IO.) 

TABLE 2 

- Statistical constants under four different genetic hypotheses. &,p and d are the stations means, and 
P O ,  q and =are the means of these means f o r  thegroup of stations considered. I n  thefirst column, b i s  the 
regression of 42 on so and r is the correlation between these variables. Similarly b and r refer to the 
corresponding variables in the other columns. 

_ -  - 

- 

CROSS FERTILIZATION 

SINGLE GENE DIFFERENCE MULTIPLE ADDXTIVE 

(I) SELF FERTILIlATION -- FACTORS AND THRESHOLD 

(2)  BLUE (3) BLUE 

DOMINANT RECESSIVE 
-- -___ 
RANGC(P0) .os to .95 RANGE(q) .IO to .9O .IO to .9O RANGE(G) -1.8j t J + I . 8 j  

NO. 61 NO. 47 63 NO. 5 7  

- - - - 
PO .440 ;i ,380 .SI7 m -.212 
0 .254 5 -  . 2 0 2  .245 U, .932 
1% .394 d F  ,380 .373 d F  -399 
W d i  .234 W d F  . 2  56 . 2 2 9  U d F  .232 

- 

r f . 2 4 & . 1 0  r +.56+.10 - . 2 1 f . 1 2  r + . 1 6 +  .13  
b + . 2 2 + . 1 0  b + , 7 o f . 1 6  - . 2 0 + . 1 2  b f .040+ .033 

If for the moment we assume that the samples correspond in size to the 
groups from which the parents of any indiv.idua1 are drawn (hypothesis (A)) 
an estimate can be made of the effective population number of these groups 
from the theory of area continuity (WRIGHT 1943, fig. 7). Under this theory it 
requires a parental population of about 45 to give a value of E of .ZIO in a 
total (station) including z x 104 of these unit populations. This can agree with 
the actual number of plants in a sample (100) on taking account of the fact 
that these varied enormously in productivity. However, as noted, 1941 was 
a year of exceptional abundance. On the average it might require a. consider- 
ably larger area than indicated in this year to provide an effective population 
number of 45. But in this case there would be less than z X 104 such groups in 
the area represented by a “station,” which in turn would require a smaller 
estimate of the population number of the parental group. If, for example, a 
station includes only zoo parental groups (hypothesis (B)) instead of zo,ooo, 
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the effective population number of these under the theory would be about 25. 

Consider next estimates under the hypothesis of prevailing cross pollination 
with blue dependent on a single differential gene. If blue is dominant, its gene 
frequency in a sample is given by q = I - .\/so. A variation, 6p in phenotypic 
frequency, implies the variation 6q= 6p/z.\/I--p in gene frequency. Thus the 
sampling variance of gene frequencies is given by the formula 

- I K  

4(I - Po) 
(15) 

I K  Po(1 - Po) PO 
= K ?[4(N - I ) ( I  - PO)]  = F x  * 

The mean gene frequency, 9, and the variance, uq2, were estimated for each 
station by the following formulae in which N was IOO and K usually 4. 

and c = crqa2/q(1 - 9). 
The quantity F= uq2//4(1 - 9) (slightly different from the provisional quan- 

tity C) should be independent of 9 on a valid hypothesis. This was tested by 
calculating the regression of 4 on 4 for all cases in which was between . I O  

and .90 (47 in number). There turns out to be a highly significant positive 
regression +.70 k .16. This means that there is a great deal too much varia- 
bility a t  stations in which blue is common as compared with that in stations 
in which it is rare to be compatible with this hypothesis. 

The average value of F on this hypothesis is . Z I O  which would imply a 
parental population of about 2 5  if it is assumed that there are z X 104 or more 
of these in the area represented by a station (hypothesis (A)). However, if 
there are fewer per station, the estimate must be decreased. If, for example, 
there are only 2 0 0  parental populations per station area (hypothesis (B)) the 
estimate of effective size is about 14. 

If blue is assumed to be recessive, its gene frequency in a sample is given by 
q =  fro. Phenotypic variation 6p implies 6q= 8 p / z 4  and mean sampling 
variance U ~ ~ ~ = ( I - F O ) / ~ ( N - I ) .  There were 63 stations for which 9 was 
between .IO and .90 under this hypothesis. The values of F, e, and uq2 in 
each of these were estimated by formulae analogous to those used under the 
hypothesis of dominance. 

It turned out that the regression of .\/F on tj is negative, -.zo + . I z .  There 
is not enough variability within stations in which blue is common to satisfy 
this hypothesis in contrast with the situation if blue is assumed dominant. 
The regression is less than twice its standard error, however, so that the data 
cannot be considered to be incompatible with recessiveness of blue. 
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The average value of F on the hypothesis of recessiveness is ,192 and thus 

only slightly different from that on the hypothesis of dominance. The estimates 
of effective size of parental group are accordingly practically the same ( 2 7  

under hypothesis (A),  15 under hypothesis (B)). 
The third hypothesis with respect to the mode of inheritance, assuming 

cross fertilization, is that  the alternative characters blue and white depend on 
whether the cumulative effects of multiple factors (with no dominance or 
interaction) exceed a certain threshold. The common type of polydactyly in 
guinea pigs is an  example of a character in which there is a superficial simula- 
tion of simple Mendelian heredity but in which data from Fa and later genera- 
tions indicate the above mechanism (WRIGHT 1934). The methods used in the 
analysis of polydactyly may be applied except that  the correction for the 
sampling error was given incorrectly. (Fortunately the correction was so small 
that  this had no appreciable effect on the results.) 

Assume that the multiple factors determine a substantially normal distribu- 
tion on a primary scale but that  the phenotype depends on whether the value 
on this scale is above or below a threshold. It is convenient to take the thresh- 
old as the zero point and take as the unit of measurement the standard devia- 
tion (on this primary scale) characteristic of a sample in the station under 
consideration. The proportion above the threshold in a given sample with 
mean a t  m on the scale (and thus threshold a t  -m relative to the mean) is as 
follows in terms of probability integral,2 

S" pri x1 = __- e-XP12dx 
d\/Z?r --m 

(18) 

(19) m = pri-l p. 

p = I - pri ( -  m) = pri m 

A phenotypic variation 6p implies 6m = 6p/y, where y is the ordinate of the 
unit normal curve a t  the threshold. Thus the sampling variance for m is 
asm2=Po(I-po)/'y2(N-~). This was found for each sample and averaged to 
find the correction to be applied in calculating U,?. 

To estimate the inbreeding coefficient F from am2 it may be noted first that  
with multiple factors and no dominance or factor interaction, F measures the 
proportional decrease in the variance of characters within random breeding 

In  a number of papers (WRIGHT 1926, 1934, etc.) prf x1 has been used for the area of the 
probability curve between the mean and the deviation xl, as a multiple of the standard deviation. 
This has the disadvantage that the inverse function is two-valued unless areas below the mean 
are treated as negative. The form used above avoids this difficulty. The recognized form erf X I  

= (z/&)fle-%x is inconvenient for several reasons. 
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subgroups (WRIGHT 1921). The contribution of a pair of alleles A ,  a to the 
variance of a subgroup under the above conditions is 2q(1- q) (A)2 where 
(A) is the effect of replacing a by A .  The average contribution in an array of 
such subgroups is 2[Cj(1-Cj)-a,~](A)~. But aq2=Cj(~-Cj)F, where F is the 
inbreeding coefficient of individuals relative to the total. Thus the average con- 
tribution of A ,  a to intragroup variance may be written 2(1-F)q(1 -q)(A)2. 
The total intragroup variance is merely the sum of such contributions under 
the conditions. 

(21) ug2 = 2(1 - F)C [C~(I - q ) ( ~ ) z J .  
Next it may be noted that F measures the proportional increase in the 

variance of the total population resulting from subdivision into inbred lines. 
This total variance (a?) is compounded of the intragroup variance (ug2) given 
above and the intergroup variance (am2). The contribution of A ,  a to the mean 
of each subgroup is of the form 2q(A). The variance of these is ~ U ~ ~ ( A ) ~  
= 4Fq( I - q) (A)2. 

(22) 

(23) 

am2 = 4 F C  [S(I - Cj)(A)’] 
at2 = ug2 + am2 = 2(1 + F ) C  [4(1 - q)(A)’]. 

(24) Thus F = am2/(2ag2 + am2). 

In  the present case, ag2= I by hypothesis. 

(25) F = um2/(2 + am2). 

Estimates of F have been made separately by this formula for each of 5 7  
stations in which fii was between -1.85 and +1.85. Again g F  should be 
independent of fii if the hypothesis is valid. The regression of fi on fii turned 
out to be positive but not significant (+.o40+ .033). From this standpoint 
this hypothesis is satisfactory, more satisfactory in fact than any of the others 
considered. 

The mean value of F was .213, substantially the same as under the hypothe- 
sis that blue depends on a single dominant (F=.210) or a single recessive 
(F= .192). The estimate of the effective size of the parental group is accord- 
ingly approximately the same under all of these hypotheses: 25 to 2 7  if there 
are 2 X 104 or more such groups in the area represented by a station but less 
if the number of random breeding units in a station is less than 2 X 104 (about 
14 or 15 if the number of groups is as small as 200). 

The egects of partial determination of the character by environmental fac- 
tors are obvious under the last hypothesis. If there are environmental effects 
on individuals, not related to  their location (for example, change in color with 
aging), the genetic component of intragroup variance would be less than I ,  

but ama would not be affected. I n  this case, F is larger than estimated above, 
requiring N (size of random breeding unit) to be smaller to account for the 
observed differentiation within stations. In  the case of Linanthus Parryae, the 
observations of EPLING and DOBZHANSKY tend to rule this out. 

If, on the other hand, there are environmental influences (such as character 
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of soil) that make a difference between samples but rarely between individuals 
of the same sample, it is am2 that must be reduced if it is to represent genetic 
differentiation and the estimate of F becomes smaller than calculated above. 
In this case, a larger value of N is implied. If intersample variance is almost 
entirely environmental, even though genetic segregation occurs within samples, 
F is almost zero, and it is implied that N is so large (for example, over 1000) 
that there is virtual panmixia throughout the station. There is little likelihood, 
however, that flower color is due to such environmental effects in Linanthus 
Parryae. 

ANALYSIS OF VARIABILITY WITHIN THE RANGE 

It is next of interest to analyze the variability in the region as a whole. The 
mean gene frequencies in the primary and secondary subdivisions were as 
follows, assuming blue to be recessive. 

TABLE 3 
Gene frequencies in the primary and secondary subdivisions assuming blue to be recessive. 

PRIMARY SECONDARY SUBDIVISION 
TOTAL 

SUBDIVISION A B C D E 

I .573 .so4 .?I7 .657 .302 .55' 
I1 .339 .032 .007 . 005 .008 .078 
I11 .009 . 000 . 000 . 000 . 000 .002 

I V  .or0 .005 . 000 .ooo .068 .or7 
V . I 26 .004 .002 . 000 . 000 .027 

VI .ooo .106 .411 . 2 2 4  .or4 . I 5 1  

Total . I37 

The distribution on the map is shown in figure I .  This brings out the three 
separate centers of high frequency, one in I overlapping 11, a second in VI  
and a third in the southern parts of I V  and V, to which EPLINC and DOB- 
ZHANSKY called attention. 

N 

FIGURE I.-The geographical distribution of the frequency of the gene for blue flowers (if 
recessive) in the portion of the range of Linanthus Parryae investigated by EPLING and DOB- 
ZHANSKY. The six primary subdivisions are indicated by Roman numerals. 

It will be convenient to symbolize the various levels in the hierarchy by sub- 
scripts: I for a primary subdivision, z for a secondary, 3 for a tertiary, 4 for a 
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station, and 5 for a sample. Thus q4 represents the mean gene frequency in a 
station, K4, the number of recorded stations in a tertiary population, etc., 
a4.3(~$ is used for the gross variance of q4 (stations) within the next higher 
category (with the modified Gaussian correction for uncertainty of the mean, 
but without correction for the sampling variance of the next lower level); ~ 4 . 3 ~  

is the final estimate including this last correction. Finally, u4.?( = (r4.32+a3.22 

+u2.12+ul.t2) is the variance of q4 within the total population. 
The variance of samples within stations was obtained for all of the 356 

stations. 
BKR 

1 
2 2 

46 .4  = * 957a6.4(~) = *0073* 

The summations in the bracket refer to the K6 (usually four) samples of a 
station. c 4 = . 1 6 1  is the average value of C,(=a,f/ij(~-ij)) for the 63 sta- 
tions in which q4 was between .IO and .90. The mean sampling variance of q6 
in these 63 stations was such that 46.42/46.4(G)2 was .957. This ratio is carried 
over to all stations. 

The variance of stations within the 1 2 0  tertiary subdivisions was as follows. 

4.7112 E [C q42 - q 3 c  q41 
2 

“4.3(G) = 120 - - .0176 
267 * 9 

[K4 - I + E ]  
1 

2 2 2 
44.3 = u4.3(~)- 356u6.4(~)/1258 = .0176 - .OOZI = .0154. 

The number of stations within tertiary subdivisions (K4) was usually 3. 
There were 30 tertiary subdivisions in which q3 was between .IO and .go. 

Similarly the variance of tertiary subdivisions within the 30 secondary sub- 
divisions was as follows. 

1 
2 

a:.2 = 4:.2(G) - 120u4.3(~)/356 = . 0 2 2 0  - .0059 = .0161. 

Here Ka was regularly 4. The average value of c2, calculated from ten 
secondary subdivisions for which 9 2  was between .IO and .90, was .237. 
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The variance of secondary subdivisions within the six primary subdivisions 
was as follows. 

f i  

2 2 2 
U2.1 = U2.1(G) - a3.2(G)/4 = .or29 - .0055 = . 0074 .  

Here K2 was regularly 5 .  There were three primary subdivisions with q1 
considered large enough to warrant estimation of C1-namely, I, 11, and VI 
with values of C1 of .084, .z37 and .18z and c1=.168. 

Finally the variance of the six primary subdivisions within the total was as 
follows. 

6 6 

= .309. Here c - stc  g1 Ct = 
6qt(1 - qt> 

There is little doubt of the reality of differentiation a t  all of these levels 
except for the case of secondary within primary subdivisions in which U Z . ~ ( G ) ~  

is only 2.3 times the variance expected from accidents of sampling a t  the next 
lower level. The extreme departures from normality in the distribution of q, 
however, must be kept in mind. They make the applicability of FISHER'S 
(1938) z test somewhat dubious. 

The variance of the groups a t  each level within the total may be obtained 
by adding the variances down to the level in question. Thus u1.2 = .0388, 
~ ~ . ~ ~ = . 0 4 6 2 ,  u3.2=.0623, ur.t2=.0777 and ~6.2=.0850. By dividing these ex- 
pressions by qt(I-qt) where qt= .137 we obtain values of al.2/qt(I-qt) etc. 
This expression has been shown to be equal to (Ft- FJ/( I - Fi) under area 
continuity, in the absence of disturbing factors (WRIGHT 1943). It is .717 for 
samples, .656 for stations, .5z5  for tertiary groups, .390 for secondary groups, 
and .3z7 for primary groups. In  figure z the square roots of these figures are 
plotted against number of random breeding units and compared with the 
theoretical curves for N =  IO and N =  20 deduced in the paper referred to 
above. The number of random breeding units is as given in table I using the 
arbitrary assumption (B) that there are zoo of these to a station. 

From inspection of this figure it appears that there is considerably more 
variability of the higher categories than expected from that within stations. 
It would require a random breeding unit of considerably less than ten to 
account for this variability in contrast with about 15 indicated by the varia- 
bility within stations on the assumption made above. If the samples are con- 
sidered to be the random breeding units ( 2  X 104 per station equivalent) the 
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discrepancy is greater, since the variability within stations indicates a random 
breeding unit of about 27 on this hypothesis, while the figures for the higher 
categories are only slightly modified. 

1.00 

.40 

.20 

K; - I I O  IO' 10' io4 16 io6 

FIGURE 2.-The small circles connected by broken lines indicate the calculated variability of 
the frequency of the gene for blue (if recessive) among subgroups (samples, stations, tertiary, 
secondary and primary subdivisions of the range studied). Comparisons are made with the theo- 
retical variability on the hypotheses that the effective number of individuals in a random breeding 
unit is IO or 20, and that long range dispersal or mutation is negligible. 
FIGURE 3.-The triangles indicate the calculated variability of the gene frequency of blue (a 

recessive) among subgroups of the primary subdivision 11. The squares and circles do the same 
for primary subdivisions VI and I, respectively. These are compared with the theoretical amounts 
of variability on the hypothesis that N= IO and that there is long range dispersal or mutation 
a t  rates up to m=  IO^. 

The most serious discrepancy is in the great variability of the primary sub- 
divisions. In  this case, however, the comparison with theory is hardly a fair 
one. The elongated range along the piedmont would favor a greater amount 
of differentiation than indicated by the theory of area continuity. There is 
some approach to the conditions of linear continuity. 
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TABLE 4 

Analysis of variability in six primary subdivisions (Z to VZ). The numbers in column I designate 
the level in the hierarchy. Column 2 gives the number of groups at each level included in the primary 
subdivision. Column 3 gives the sum of squared deviations oj  q f rom the mean of the next higher cate- 
gory. This  i s  divided by the entries in column 4, ( K  - I+C) to givs the entries in column 5, which 
are gross intragroup variances not corrected for  the accidents of sampling. The sampling variances 
are given in column 6. Subtraction of these f rom the entries in column 5 give the net intragroiip variances 
of column 7. The running sum o j  these (column 8) gives the variance of the groups at each level within 
the primary subdivisions. In  column g these are divided by ql(I-01) where q1 is the mean gene jre- 
quency for  the primary subdivision (table 3) to give the estimaie o j  the quantity ( F ~ - F ; ) / ( I - F ~ ) .  
The square roots of these quantities are the ordinates in figure 3, Column I O  gives the ratio of the gross 
variance (column 5) to that expected f rom sampling (column 6). 
- __ 
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.oco2 

.OOOI 
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.0085 
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,0122 

.0195 
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.0772 

(9) 

.031 

.244 

.400 

.498 

. I99 

.446 

.704 

.786 

.006 
0 

0 

.213 

,014 
. c 04 
.428 
,576 

,096 
,081 

,331 
.473 

.I52 

.348 

.535 

.603 

ANALYSIS OP VARIABILITY WITHIN THE PRIMARY SUBDIVISIONS 

Because of the above consideration it is desirable to analyze the variability 
within the primary subdivisions. This has been done, with the results presented 
in table 4. Judging from the ratio of the gross variance to that expected from 
sampling (column IO), there appears to be significant differentiation a t  all 
levels within the primary subdivisions in which blue was not rare-namely, 
I(q= .551),  II(q=.o78), and VI (9=.151) with one exception. The exception 
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is the absence of significant differentiation of secondary subdivisions in I. In 
addition, there was significant differentiation among secondary subdivisions 
in V and of stations in both IV and V in spite of the rarity of blues in these 
areas ( C j =  .027 in V, 4= .017 in IV). The data from 111, which was almost uni- 
formly white flowered ( C j =  .ooz), are wholly inadequate for any estimates. 
The significance of differentiation among samples within stations has not been 
determined separately for the primary subdivisions. As noted, the variance in 
stations in which q was between .IO and .90 was about 24 times that expected 
from the accidents of sampling and undoubtedly significant. 

In  figure 3 the values of C T ~ , ~ / ~ -  as estimates of d(Ft-Fi)/(l-Fi) 
under the theory of area continuity are plotted against the estimates of the 
number of random breeding units included in the category in question, within 
primary subdivisions I, I1 and VI. Again it is assumed arbitrarily that there 
are zoo random breeding units in a station. 

The curves for the three primary subdivisions agree with each other as well 
as can be expected. They are somewhat more nearly parallel to the theoretical 
curve for N = I O  than when differentiation was considered relative to the entire 
range. There is still, however, more variability of the higher categories a t  least 
within I1 and VI than expected from the theory of area continuity. Again the 
discrepancy would be much more serious if the random breeding units'are 
identified with the 1941 samples, z X 104 to a station. 

There are other factors, however, that must be considered. Even if there are 
only zoo random breeding units per station, the'number in one of the primary 
subdivisions is of the order 106 (and in the whole range considered here, 6X 10~). 
This would be the typical number of generations to common ancestors of 
individuals that are far apart if the theory of area Continuity applies strictly. 
In  this case it would require something like a million years for a local colony 
to spread over this area, which is certainly highly improbable. However, means 
of dispersal to great distances so rare that only a minute fraction of the popu- 
lation of any occupied region has such an origin would enable the species to 
spread over a large suitable range in a few years, On the other hand, the effects 
of even a minute amount of replacement by a random sample oh the species 
are not negligible. 

I t  was shown in the preceding paper that such replacement in the proportion 
m (whether due to long range dispersal or mutation or, as accurately as pos- 
sible, of uniform selection) removes nearly all random differentiation of p o p -  
lations more than I/m times the random breeding unit and considerably re- 
duces such variability in populations one tenth of this size. Thus reversible 
mutation between blue and white a t  rates of the order of  IO-^ per generation 
should practically eliminate random differentiation of primary subdivisions 
and somewhat reduce that of secondary subdivisions, even under hypothesis B 
(in which these are 106 and 106 times the random breeding unit respectively). 
Admixture of a random sample of the species into all populations a t  the rate 
 IO-^ per generation would practically eliminate all random variability of 
tertiary and larger subdivisions under the same hypothesis. Under hypothesis 
A this would eliminate random variability even among stations. The varia- 
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bility of samples within stations, however, would not be affected under hy- 
pothesis B and not very much under hypothesis A. The expected variability 
a t  each level in the hierarchy is shown in figure 3 for N =  IO and m =  IO-^, 
 IO-^,  IO-^ and m < IO-'. 

The large amount of differentiation actually found a t  all levels up to the 
highest indicates that some other factor than mere accumulation of sampling 
differences has been a t  work. 

One possibility is that there are irregularities in the distribution, including 
differences in density. This would cause a greater amount of random differ- 
entiation of the larger categories than expected under a uniform distribution. 

The most obvious possible factor that could counterbalance the effects of 
long range dispersal and mutation, however, is differential selection. Mr. W. 
HOVANITZ, in a personal communication, suggests that the climatic conditions 
may differ sufficiently near the ends of the region studied (I and VI, in which 
blue was relatively common) from those in the middle (where blue was rare) 
to make such an interpretation plausible. I t  is less plausible for the differences 
among secondary and tertiary subdivisions of the same primary subdivision. 

There is a possibility, however, of selective differentiation even in the ab- 
sence of any environmental differentiation. As noted in previous papers, the 
random differences in gene frequency, occurring in all series of alleles up to a 
certain level in the hierarchy, create a unique genetic system in each locality. 
Slightly different adaptive systems may be arrived a t  in different localities. 
If the gene or genes which distinguish blue and white play a role in any such 
systems, this would give a basis for locally different selection pressures. 

The distribution of blue and white can be accounted for most easily by sup- 
posing that most of the differentiation of the smaller categories is random in 
character and due to the accumulation of sampling accidents in random breed- 
ing groups of one or two dozen productive individuals per year but that a t  the 
higher levels, processes which tend to pull down random differentiation such 
as mutation and especially occasional long range dispersal are counterbalanced 
by selective differentials between local genetic systems. 

SUMMARY 

The detailed account of the distribution of blue and white flowers of the 
annual plant Linanthus Parryae in a region of the Mojave desert by EPLING 
and DOBZHANSKY provides interesting material for comparison with the theo- 
retical amount of random differentiation in a population that is continuous 
but in which dispersal is severely restricted. 

For this purpose the 840 square miles studied is broken up into a hierarchy 
of subdivisions. There proves to be highly significant differentiation of samples 
(of IOO plants) within stations (representative of about 0.02 square miles). 
There is significant differentiation of stations within tertiary subdivisions 
(about 1.4 square miles), of these within secondary subdivisions (about 14 
square miles), of these within primary subdivisions (about 140 square miles), 
and very marked differentiation of the primary subdivisions along the some- 
what narrow piedmont zone. 
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Assuming that the difference is a genetic one, four hypotheses are considered 
in connection with the variability of samples within stations. It is improbable 
that reproduction is by self fertilization, but if it is, it would require that the 
population from which adjacent individuals are derived be about 45 to ac- 
count for the observed variability, accepting the density of population found 
in 1941 as typical. This, however, was an unusually favorable year. Arbitrarily 
assuming 200 units per station instead of 20,000 as indicated in 1941, an effec- 
tive population number of about 2 5  per unit is indicated. 

If there is predominant cross fertilization, it makes no appreciable difference 
whether blue depends on a single dominant or a single recessive gene or on 
multiple factors and a threshold. Under any of these hypotheses, the effective 
population number of the random breeding unit comes out 2 5  to 27 if the 
1941 estimate of numbers is accepted and 14 or 15 if the area occupied by a 
parental unit is assumed to be roo times as large. 

The amount of differentiation of the higher categories is somewhat greater 
than expected as a random consequence of that of the lower categories, under 
continuity of area and with negligible rates of long range dispersal and muta- 
tion (rates less than 10-7 per generation) and no differential or other selection. 
This is especially true of the primary subdivisions, but here the theory is un- 
satisfactory because of the elongated character of the range, which favors 
excessive differentiation. 

However, there is somewhat. too much variability of the higher categories 
even within the compact primary subdivisions to be accounted for as wholly 
random under the assumption above. As it is highly probable that the theoreti- 
cal values should be substantially reduced because of long range dispersal a t  
rates greater than 10-6 per generation, there is probably a counterbalancing 
influence of differential selection. This would not necessarily depend on differ- 
ential environmental conditions. It could be a by product of the development 
of different genetic systems by the process of random differentiation. 
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