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ABSTRACT Fast genome sequencing offers invaluable opportunities for building updated and improved models of protein sequence
evolution. We here show that Single Nucleotide Polymorphisms (SNPs) can be used to build a model capable of predicting the
probability of substitution between amino acids in variants of the same protein in different species. The model is based on a
substitution matrix inferred from the frequency of codon interchanges observed in a suitably selected subset of human SNPs, and
predicts the substitution probabilities observed in alignments between Homo sapiens and related species at 85–100% of sequence
identity better than any other approach we are aware of. The model gradually loses its predictive power at lower sequence identity.
Our results suggest that SNPs can be employed, together with multiple sequence alignment data, to model protein sequence evolution.
The SNP-based substitution matrix developed in this work can be exploited to better align protein sequences of related organisms, to
re�ne the estimate of the evolutionary distance between protein variants from related species in phylogenetic trees and, in perspective,
might become a useful tool for population analysis.
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PREDICTING substitution probabilities between amino
acids is of enormous practical and conceptual importance.

For instance, phylogenetic analyses are rooted on the capa-
bility of accuratelypredicting substitution probabilities, which
are used to determine evolutionary relationships between
species, and to infer the time scales of speciation events.
Substitution probabilities are also used to spot, among a set
of sequences, those who have more likely evolved from a
common ancestor (identification of homologs). Moreover,
substitution probabilities can be used to classify of the whole
proteome space in protein families of common function (Finn
et al. 2015). Substitution probabilities are traditionally
learned from alignments of proteins in different species. They
are then used to build substitution matrices, which measure
the relative probability that two amino acids are aligned be-
cause they descend from a common ancestor rather than by

chance. The simplest procedure to infer such a matrix is based
on counting amino acid substitutions in given ranges of se-
quence identity (Henikoff and Henikoff 1992), while other
models are rooted on a Markov model of evolution (Dayhoff
et al. 1978; Gonnet et al. 1992; Jones et al. 1992; Whelan and
Goldman 2001; Schneider et al. 2005; Kosiol et al. 2007; Le
and Gascuel 2008).

A source of information for inferring substitution proba-
bilities more and moreaccurately is offered by the recent boost
in DNA sequencing (Ronaghi et al. 1996; Bentley et al. 2008;
Wheeler et al. 2008), which provides an increasing amount of
sequenced genomes (1000 Genomes Project Consortium
et al. 2010, 2015). The analysis of genomes has allowed
not only the enormous enlargement of the database of pro-
tein families, but also the identification of a large number
of Single Nucleotide Polymorphisms (SNPs) (Sherry et al.
2001)—isolated nucleotide variations in the DNA se-
quence that are commonly present among the individuals
of a species. SNPs are nowadays at the center of clinical
research (Giacomini et al. 2007), and are a key tool to
understand population dynamics, such as migration and
selection (Kingman 1982; Rosenberg and Nordborg 2002).
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A question that naturally arises is what is the relationship
between the polymorphisms observed within a species and
the substitutions observed between variants of the same
proteins in different species. The interplay between these
phenomena has drawn the attention of several recent stud-
ies (Wilson et al. 2011; De Maio et al. 2015). The picture
that emerges from these works, and more in general from
the literature on polymorphisms, is that SNPs should not be
confused with amino acid substitutions (Sawyer and Hartl
1992; Fay et al. 2001; Tamuri et al. 2012). The probability of
fixation of a polymorphism depends on its positive or nega-
tive impact on the fitness of its carrier. However, its destiny,
especially for nondetrimental polymorphisms, is strongly
connected to that of the population hosting it. In other
words, polymorphisms lie in the “no man’s land” after the
occurrence of a random mutation and before its definitive
fixation or rejection. If their nature and their statistics are
similar to those of random mutations, to those of fixed sub-
stitutions observed in proteins of different species, or to
neither, is still the object of investigation.

Here, we shed some light on this issue: we show that an
appropriately selected subset of SNPs encodes an information
compatible with the substitutions observed in alignments and
can be used to predict substitution probabilities in pairwise
alignments at high sequence identity. We select from the
dbSNP database (Sherry et al. 2001) only the human poly-
morphisms characterized by no known clinical significance,
and which are present in at least 1% of the population, having
therefore a high probability of being nearly neutral. We
demonstrate that a protein evolution model based on a sub-
stitution matrix inferred from this subset of SNPs, and tak-
ing into account substitution rate variability (Miyazawa
2011a; Rizzato et al. 2016), can be used to predict the tran-
sition probabilities between amino acids observed in align-
ments. The accuracy of this model in the range of 85–100%
of sequence identity is better than that achieved using any
other substitution matrix we are aware of, including LG (Le
and Gascuel 2008), WAG (Whelan and Goldman 2001), JTT
(Jones et al. 1992) and BLOSUM90 (Henikoff and Henikoff
1992) for amino acid models or ECM (Kosiol et al. 2007) for
codon models. This result is particularly significant because
the SNP-based model presented here, in contrast to all the
other models against which it is benchmarked, is not learned
from alignments. Therefore, one would expect it to be dis-
advantaged with respect to the others in the prediction of
substitution frequencies from alignments.

We also demonstrate that the SNP-based substitution ma-
trix can be exploited to build phylogenetic trees, especially for
Homo sapiens and related species. We therefore foresee it will
be useful in fine-grain resolution of phylogenies in evolution-
ary genetics and population analysis.

We will also show that the accuracy of the SNP-based
model slowly degrades at medium and low sequence identi-
ties, possibly due to the relatively poor statistics of the SNP
database, or to a missing ingredient in the model of protein
sequence evolution used in this work. This indicates that more

research is needed to develop a model capable of describing
protein sequence evolution at an arbitrary evolutionary dis-
tance. However, the results presented here provide evidence
that two traditionally separated data domains, SNPs, and
sequence alignments, can be employed together to build such
a model.

Materials and Methods

Download and selection of SNP data

From the dbSNP database (Sherry et al. 2001), we selected
the polymorphisms in the coding part of the human genome.
We did not consider those SNPs that are likely to entail a
positive or negative structural modification, having a known
clinical significance (benign, likely benign, pathogenic, and
likely pathogenic).

The SNPs were downloaded on the January 14, 2017
at www.ncbi.nlm.nih.gov/snp/advanced. Query: (“homo
sapiens”[Organism]) AND ((“snp”[SNP Class]) OR “multinucleotide
polymorphism”[SNP Class]) AND “missense”[Function
Class] NOT(((((“benign”[Clinical Significance]) OR “likely
benign”[Clinical Significance]) OR “likely pathogenic”[Clinical
Significance]) OR “pathogenic”[Clinical Significance]) OR “no
info”[Validation Status]) for the nonsynonymous polymor-
phisms, and the same query with “synonymous codon” in place
of “missense” for the synonymous polymorphisms. In this
manner we gathered 3,228,872 polymorphisms, 1,144,770 of
which preserving the original amino acid (synonymous) and
2,084,102 changing it (nonsynonymous, or missense).

From the SNP database to codon substitutions

The identity of the codons involved in a SNP was derived with
the following procedure. We downloaded the SNPs both in
flatfile format and in brief format.
From the flatfile format we extracted the following data:

The label of that SNP.

Its Global Minor Allele Frequency (GMAF), which refers
to the frequency of the second most common allele of the
considered polymorphism.

The two (or more) alleles, the corresponding amino
acids, and the indication on the frame of the codon in
which the different nucleotides were found. For example,
a frame equal to one means that the polymorphism is
located on the first letter of a codon.

For each of the entries, we selected from the brief format the
entry with the correct label, and read the nucleotide sequence
two nucleotides before and after the polymorphism. We recon-
structed the codons involved in the polymorphisms from a
knowledge of the allele, the frame, and the amino acid. Since
the sample may be taken in two possible orientations, we
selected the orientation consistent with the genetic code. We
divide the entries into three subsets according to their GMAF: a
set of common polymorphisms, characterized by GMAF. 0:2;
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a set of medium-rare polymorphisms, characterized by
0:01,GMAF# 0:02; and a set of rare polymorphisms, char-
acterized by GMAF# 0:01: By this procedure, we obtained
10,585 synonymous and 9772 missense SNPs with GMAF. 0:2;
30,319synonymousand32,601missense for,0:01,GMAF# 0:02
and 1,064,390 synonymous and 1,989,525 missense for
GMAF# 0:01:

As usually done for alignments, the substitution process
was treated as stationary, and the substitutions from codon c to
codon c9 were assumed to be as frequent as those from c9 to c.
So, the 64 3 64 matrix of occurrences nSNP2c was built by
setting both nSNP

c;c9 and nSNP
c9;c to one-half of the observed inter-

changes between the pair of codons fc; c9g From the matrix of
occurrences, we computed the frequency of codon interchanges:

fSNP2c
c;c9 ¼

nSNP2c
c;c9P

d
P

e6¼dnSNP2c
d;e

(1)

This codon matrix can be summed to a 20 3 20 matrix
of interchange frequencies between amino acids by:
f SNP
AB ¼ P

fc2Ag
P

fc92Bgf
SNP2c
c;c9 ; where fc 2 Ag is the set of co-

dons coding for amino acid A.

Substitutions involving more than one nucleotide

Nucleotide substitutions are not necessarily isolated, but can
happen simultaneously on neighboring nucleotides. Esti-
mates of the fraction of multiple simultaneous substitutions
range between the 0.3% (Smith et al. 2003) and 3% (Schrider
et al. 2011). The number of multiple simultaneous substitu-
tions satisfying the query mentioned above is 387. All these
entries have a GMAF ,0.01; therefore, for this subset of
polymorphisms, we will not quantify the effect of the allele
frequency as will do for SNPs in the Results section.

Computing the transition probabilities for codons and
amino acids

From the frequencies of interchanges f SNP2c; we define the
nondiagonal entries of the substitution rate matrix QSNP by:

QSNP
c;c9 ¼

fSNP2c
c;c9

fc
(2)

where fc is the frequency of codon c, which we assume to be
equal to those tabulated for the human codon usage bias
(Nakamura et al. 2000). The diagonal entries of QSNP are,
instead, defined as QSNP

c;c ¼ 2
P

c9 6¼cQ
SNP
c;c9 : By construction,P

c;c9ðfcQSNP
c;c9 Þ ¼ 1: Therefore, the evolutionary time is mea-

sured in units of expected substitutions per site.
From QSNP; or any other generic Q matrix on codons or amino
acids, we compute the transition probability from c to c9 after
a time t by following Rizzato et al. (2016):

PG
c;c9ðtÞ ¼

� Z N

0
er�t�QGaðrÞdr

�
c;c9

(3)

where r is the substitution rate, and GaðrÞ is its probability
distribution, assumed to be G-shaped (Yang 1993, 1994). We

remark that this procedure is not the standard G-correction
implemented in the standard algorithms for phylogenetic
tree reconstruction (Stamatakis 2006; Yang 2007; Price
et al. 2010): here, no information is available on the rate at
different sites, so rate variability is treated by averaging over
its among-site probability distribution. The G distribution de-
pends on the shape parameter, a, which is known to vary
from protein family to protein family, and, inside the same
protein family, also in time (Gaucher et al. 2001, 2002; Lopez
et al. 2002). In order to take into account the variation of a
with evolutionary time, we apply the procedure in Miyazawa
(2011a, p. 5). In this procedure, the parameter a is assumed
to vary linearly with time. Therefore, at time t,aðtÞ ¼ t � a0=t0;

where t0 is a reference evolutionary time and a0 is the value of
a at that time. The ratioa0=t0 is the only free parameter of this
approach, and here was set optimizing the value of a at 92.5%
of sequence identity, thus obtaining a0=t0 ¼ 1:225:

We also computed the substitution probabilities in the
more traditional framework of identical rates on all sites
(SNP-no-G model). In this case, the transition probability
from c to c9 at time t is given by:

Pno2G
c;c9 ðtÞ ¼ �

et�Q�
c;c9 (4)

From transition probabilities between codons, one estimates
the transition probabilities between amino acids as follows:

PA;BðtÞ ¼
P

fc2Ag
P

fc92Bg fcPc;c9ðtÞ
fA

(5)

where fc 2 Ag stands for the set of codons coding for amino
acid A.

The expected sequence identity between an initial se-
quence and its evolution after a time t can be deduced from
Equation 3 or Equation 4 by:

seqIDðtÞ ¼
X

A
fAPA;AðtÞ (6)

This equation implicitly specifies the time at which an evolu-
tionary model should be compared with data characterized by
a given sequence identity.

Selection of alignments and computation of
experimental substitution frequencies

To test how well the evolutionary models described above
predict the transition probabilities in the alignments, we
computed the frequencies of amino acid interchanges,
f align
AB ðseqIDÞ; from alignments at various sequence identi-

ties, grouping them in windows of 3% of sequence iden-
tity from 50 to 99%. These frequencies were learned from
UniRef (Suzek et al. 2007), an arrangement of the UniProt
database (The UniProt Consortium 2015) that clus-
ters sequences above a sequence identity threshold. We
downloaded from UniRef the clusters at 50% of sequence
identity with at least one human sequence. The align-
ments were downloaded on July 23, 2015 from UniRef
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at www.uniprot.org/help/uniref with query: [query:count:[2
TO *] length:[50 TO *] taxonomy:Homo sapiens (Human)
[9606] AND identity:0.5 ].

From each cluster, we detected the human sequence and
aligned it with the other sequences. Sequences were aligned
locally by the algorithm water (Smith and Waterman 1981) in
the emboss software package (Rice et al. 2000). Only ungap-
ped fractions of the pairwise alignments with # 80 residues
were considered. In order to avoid weighting bigger clusters
more, from each cluster we collected at most one alignment
per window of sequence identity. For each sequence identity
window the average sequence identity (seqID) was com-
puted, and the mismatches in the alignments for every amino
acid pair ðA;BÞ were counted. The substitution process was
treated as an equilibrium one: nalign

AB ðseqIDÞ and nalign
BA ðseqIDÞ

were set equal to one-half of the number of mismatches be-
tween the unordered pair of amino acids A and B. The entries
where nalign

AB ðseqIDÞ, 5 were neglected, being affected by too
large statistical errors.

From the frequency of interchanges in alignments at
seqID$ 98%; we also computed a Q matrix with an analo-
gous procedure to that used to compute QSNP from f SNP

(Equation 2).

Download and implementation of benchmark models

We compared our evolutionary model with JTT (Jones et al.
1992), LG (Le and Gascuel 2008), ECM unrestricted (Kosiol
et al. 2007), WAG (Whelan and Goldman 2001), and BLOSUM90
(Henikoff and Henikoff 1992). Here, we describe our implemen-
tation of these models.

The JTT matrix was deduced from the counts (Table 1) in
the original paper (Jones et al. 1992) by the same procedure
described there. The corresponding Q matrix was obtained by
inverting Equation 4.

The LG Q matrix was reconstructed from the website of one
of its authors (www.atgc-montpellier.fr/download/datasets/
models/lg_LG.PAML.txt).

The ECM-unrestricted Q matrix was reconstructed from
the Supplementary material of the original paper (Kosiol
et al. 2007), and was chosen instead of its restricted version
because it was proved by the authors to give better results.

The WAG Q matrix was reconstructed from the website of
one of its authors (www.ebi.ac.uk/goldman/WAG/wag.dat).

The BLOSUM90 matrix was downloaded from the site
of NCBI (www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/
source/data/BLOSUM90). To adapt BLOSUM scores to our
definition (see Equation 9), which is deprived of any prefac-
tor and computed by a natural logarithm, we multiplied them
by lnð2Þ=2:

In all cases, except BLOSUM, we derived the substitution
probabilities at the desired times from Equation 4 for the
no-G version, or by Equation 3 in the þG version.

Maximum likelihood tests

We also benchmarked the quality of our model by computing
the likelihood of phylogenetic trees with respect to other

substitution models. Maximum likelihood tests were per-
formed using the PAML software package (Yang 2007) on
reference alignments and phylogenetic trees downloaded
from the Phylome Database (PhylomeDB v4, data accessed
on February 1, 2016) (Huerta-Cepas et al. 2014). PhylomeDB
provides a collection of highly accurate gene phylogenies for
a wide variety of gene families and species. PhylomeDB phy-
logenies are derived from maximum likelihood tree infer-
ence, alignment trimming, and evolutionary model testing.

The reference Primates and Model Species Metaphylomes,
seeded on H. sapiens, were downloaded from this database
(Phylome IDs: 098 and 0500, respectively). We only ana-
lyzed multiple sequence alignments (and their corresponding
phylogenetic trees) characterized by 500–900 pairs of pro-
tein sequences, with average sequence identity in the range
45–99%. This filter produces two reduced sets of 111 and
230 alignments, respectively, for the two phylomes.

The PAML software package was used to compute max-
imum likelihoods, keeping tree topologies intact and opti-
mizing branch lengths. The standard G-correction, as
implemented in the PAML software, was included, and
the free parameter a was optimized during the maximum
likelihood estimations for all the tested models. We com-
puted maximum likelihood values for each of these refer-
ence phylogenies using the SNP; the JTT (Jones et al.
1992), the WAG (Whelan and Goldman 2001), and the
LG (Le and Gascuel 2008) evolutionary models.

The QSNP matrix used here is a reduction on amino acids if
compared to that in Equation 2:

QA;B ¼
P

fc12Ag
P

fc22Bg fc1Qc1;c2

fA
(7)

Data availability

The QSNP matrix obtained with our analysis is available as
Supplemental Material, File S2, along with the obtained like-
lihoods for the two analyzed phylomes (File S3 and File S4).
Furthermore, File S1 contains all the remaining supplemen-
tary materials. All the data analyzed in this paper were down-
loaded directly from public databases (dbSNP, UniRef, and
PhylomeDB).

Results

The effect of global minor allele frequency

In this work, we propose to use a selection of SNPs to build an
evolutionary model of protein sequences. Before estimating a
substitution rate matrix from the SNPs, we attempt to quantify
the effect of the fitness-related natural selection on the fre-
quency of polymorphisms observed in the database. With this
in mind, we divide our collection of SNPs into three subsets
corresponding to different GMAF (see Materials and Meth-
ods). SNPs with a large GMAF are common, and are therefore
more likely to get fixed by natural selection. Rare polymor-
phisms, characterized by a low GMAF, more likely resemble
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the properties of a random mutation on which fitness-related
natural selection has not yet completed its action. We com-
pare the properties of the subset at medium GMAF (label M,
0:01,GMAF# 0:2), and the subset at high GMAF (label H,
GMAF. 0:2). We compute the frequency of substitutions fc;c9
between codons c and c9 in both datasets, and the corre-
sponding error according to the Poisson statistics. For each
pair of different codons, we compute:

eM;H
c;c9 ¼ fM

c;c9 2 fH
c;c9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
�

fM
c;c9

�2 þ s2
�

fH
c;c9

�r (8)

where thedenominator is an estimateof the statistical erroron
the difference at the numerator. Figure 1 shows the cumula-
tive distribution function (cdf) of ec;c9: In the same figure, we
plot the cdf of a Gaussian distribution with average 0 and SD
1. The similarity between the two curves shows that the dif-
ference (eM;H) between the H and M datasets can be ascribed
to statistical errors. We can then conclude that, for the subset
of the SNPs chosen by our procedure, there is no evident bias
in the frequency of observing a polymorphism at to medium
and high range of GMAF. We then repeated the same test,
comparing the set of SNPs at medium + high GMAF and a set
with GMAF# 0:01 (label low, L). The cdf of eL;MþH

c;c9 estimated
for the sets L and M+H is also shown in the figure, and is
significantly different from the cdf of the considered Gauss-
ian. This implies that the differences in the frequency of sub-
stitutions between the L and the M + H sets cannot be fully
ascribed to statistical errors. This, according to our interpre-
tation, means that the fitness-related natural selection has
roughly completed its work for GMAF. 0:01; while this
has not yet happened for rarer polymorphisms. Another pos-
sible interpretation is that selection has not completed its
action even for polymorphisms at large GMAF, and that the
sets M and H are indistinguishable by chance. However, in the
light of the results that we are going to present, this last in-
terpretation does not seem likely.

The frequency of substitutions from SNPs and
from alignments

We then compared f SNP
AB ; the frequency of substitutions between

amino acids A and B in our SNP dataset, and, f align
AB ðseqIDÞ

the frequency from pairwise alignments at sequence identity
seqID$ 98%; namely at very high sequence identity (see
Materials and Methods). In Figure 2, we plot the entry-by-
entry comparison of these frequencies, both with error bars
estimated according to Poisson statistics. The red points
correspond to the amino acid pairs whose codons differ by
only one nucleotide. For these entries, fSNP

AB is estimated
considering only substitutions with GMAF. 0:01: For these
entries, the correlation is good, even if the statistical error is
not large enough to explain entirely the deviations from the
diagonal: statistical errors cover �30% of the difference.

The blue points correspond to amino acid pairs whose codons
differby twoor threenucleotides.Forexample,histidine iscoded

by CAT and CAC, andphenylalanine by TTTand TTC. Therefore,
at least two substitutions are necessary to transform histidine to
phenylalanine. Multiple simultaneous substitutions are pre-
sent in dbSNP, even if they are almost invariably associated
with a low GMAF, and are then excluded when selecting only
entries with GMAF. 0:01: We therefore estimated the fre-
quency of polymorphisms associated with two nucleotide
substitutions in the same codon without applying the filter
on GMAF. The fraction of multiple nucleotide polymor-
phisms obtained in this manner is 0.46% of the total, a
number of the same order of magnitude of the estimate in
Smith et al. (2003), but low with respect to other estimates
(Averof et al. 2000; Schrider et al. 2011). These entries are
affected by large statistical errors, and possibly even by sys-
tematic errors, since they include entries with a very low
GMAF. However, a mild correlation seems to show up.

This analysis indicates that the frequencies of amino acid
substitutions estimated from the dbSNP database and from
the alignments are correlated, but with deviations that cannot
be fully ascribed to statistical errors. The deviations are
particularly severe for entries associated to multiple nucleo-
tide substitutions. In the next section we will show that the
inconsistencies observed in Figure 2 can be largely accounted
for by taking mutation rate variability into account.

Prediction of substitution probabilities

We now show that, by taking mutation rate variability into
account, the frequencies of interchanges between codons
derived from our selection of SNPs can be used to predict
substitution probabilities in alignments. As described in
Materials and Methods, we derive from fSNP2c a substitution
rate matrix on codons, QSNP. From this matrix, the transition
probabilities between codons and amino acids are estimated
by assuming that the substitution rates are G-distributed
(Equation 3).

To evaluate the quality of a model of protein sequence
evolution we analyze the scores:

smodel
AB ðseqIDÞ ¼ log

"
Pmodel

A;B ½tðseqIDÞ�
fmodel
B

#
(9)

where PA;BðtÞ is the transition probability from amino acid A
to amino acid B in the evolutionary time t corresponding to
the sequence identity seqID: fB is the frequency of amino acid
B, and the log shall here be intended as the natural logarithm.
To check if the dynamics predicted by our model is a good
descriptor of the real one, we compare sSNPþG

AB with the equiv-
alent score extracted from ungapped pairwise sequence
alignments at the same sequence identity (see Materials
and Methods).

In Figure 3A, we show the entry-by-entry comparison of
salign
AB in alignments at�92.5% of sequence identity and sSNPþG

AB
derived from our SNP þ G model (Equation 3) at the same
sequence identity. For the SNP model, the parameter a of the
G distribution (see Materials and Methods) was set to a ¼ 0:25
after optimization (see Figure S5 in File S1). In such plots, a
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good model is characterized by points lying along the line
y ¼ x; with the smallest deviations. Amino acid pairs whose
interchange may be determined by a single nucleotide change
are identified by red circles, while those pairs for which this is
not possible are labeled by blues crosses. The points lie near
the line y ¼ x in both subsets, proving that the SNP þ G model
correctly predicts the substitution probabilities in the align-
ments at 92.5% of sequence identity for both single and mul-
tiple nucleotide substitutions.

In Figure 3B, we compare salign
AB (x-axis) and sSNP2no2G

AB ;

obtained by estimating the transition probabilities with Equa-
tion 4, namely, by assuming that protein sites evolve with the
same rate. Contrary to panel (A), here the comparison is not
very good, with deviations comparable to those observed in
Figure 2. Even if the points lie in the proximity of the line
y ¼ x; the scores for the amino acid interchanges where
double or triple mutations are necessary are systemati-
cally underestimated. It is evident that taking the variabil-
ity of substitution rates makes the SNP-based model more
accurate.

In the other panels of Figure 3, we compare salignðseqID ¼
92:5%Þ with the scores from some popular models for protein
sequence evolution: JTT (Jones et al. 1992) in panel (C), LG
(Le and Gascuel 2008) in panel (D), the codon matrix ECM-
unrestricted (Kosiol et al. 2007) in panel (E), and BLOSUM90
(Henikoff and Henikoff 1992) in panel (F). For each model,
time has been chosen in order to attain a sequence identity of
92.5% (see Materials and Methods). For JTT, LG, ECM, and
also for the WAG matrix (Whelan and Goldman 2001) that we
will consider below, we evolved the respective Q matrices
both with and without considering the variation of rates
across sites, similarly to what done for QSNP: We checked
that, in all those cases, computing transition probabilities by
averaging over the distribution of the rates (Equation 3)
worsens the performances rather than improving them
(see Figure S1 in File S1). Therefore, in the comparison in

Figure 3, and in all the following comparisons, we use the
no2G version (Equation 4). This may seem counterintuitive,
since it is well known that the G-correction tends to improve
phylogenetic estimations with all these models. However,
the G distribution is only included on average, without
associating a specific rate to each site (Miyazawa 2011a;
Rizzato et al. 2016).

It is clear from Figure 3 that, at the sequence identity of
92.5%, none of the analyzed models estimates the probability
of multiple substitutions more accurately than SNP þ G:
while the SNP-no-G underestimates them, the standard mod-
els (JTT, LG, ECM-unrestricted and BLOSUM) overestimate
them. BLOSUM90, in particular, dramatically fails to repro-
duce experimental data. This is somehow expected. In fact,
while all the other models considered here are based on an
evolutionary model of substitutions, BLOSUM90 is learned
from conserved blocks of multiple sequence alignments
(Henikoff and Henikoff 1991), whose maximum sequence
identity is 90% and without any explicit lower bound. As a
consequence, while BLOSUM90 is perfectly suited to score
alignments at medium and low sequence identity, it is not
optimal for scoring those at high sequence identity. The
same argumentation can be extended to any other BLOSUM
matrix.

Toassess thequalityof the score inamorequantitative way,
we computed the average distance from the diagonal of the
points in an entry-by-entry plot (as those in the panels of
Figure 3) divided by the variance of the data:

dmodel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD	
smodel
AB 2salign

AB

2
E

A6¼B

smodelsalign

vuut
(10)

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðsAB2hsABiA 6¼BÞ2iA 6¼B

q
:

Lower values of d imply better predictions. In Figure 4, we
plot the value of d for all the models in the sequence identity

Figure 1 Effect of GMAF on SNP frequencies. Analysis
of the statistical consistency between SNP frequencies
at high (label H: GMAF. 0:2), medium (label M:
0:01,GMAF#0:2), and low (label L: GMAF#0:01)
GMAF. Magenta line: the cumulative distribution func-
tion (cdf) of the relative difference between the M and
the H datasets de�ned in Equation 8. Green line: the
cdf of the relative difference between the L and the M + H
datasets. Black line: the cdf of a Gaussian distribution with
zero mean and unit variance.
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range 75–100%. In particular, the thick dashed line describes
the performance of the SNP þ G model obtained with fixed
value of a ¼ 0:25: In the sequence identity range of 80–
100%, this model performs comparably or even better than
the JTT model, and outperforms the other tested models.
However, in the lower sequence identity range, this model
loses much of its predictive power (see also Figure S3 in File
S1). This may be due to the approximation implicit in Equa-
tion 3 that rates remain constant in time, which is known not
to be true (Fitch and Markowitz 1970; Penny et al. 2001;
Lopez et al. 2002). Gaucher et al. (2001), (2002) observed
that this phenomenon leads to a growth of the shape param-
eter a with evolutionary time. In order to approximately take
this effect into account, we allowed a to vary linearly in time
according to the model in Miyazawa (2011a) (see Materials
and Methods), and obtained the performance described by
the thick solid line in Figure 4. We here take a0 ¼ 0:25 at
an evolutionary time corresponding to a sequence identity of
92.5%. Therefore, the model is identical to SNP þ G at fixed a

at this sequence identity, while uses larger values of a at
lower sequence identity. Even if this approach describes the
time variability of the rates only approximately, it improves
the performances of the SNP þ G model without adding any
extra parameter.

Likelihood tests on phylogenetic trees

In order to further benchmark the robustness of our SNP þ G

model of protein sequence evolution, we perform likelihood
ratio tests, using the PAML software package (Yang 2007), of
our and other popular models, using reference datasets of
phylogenetic trees and multiple sequence alignments on amino
acids retrieved from the Phylome Database (Huerta-Cepas et al.
2014). Here, we use a reduced rate matrix on amino acids in-
stead of that on codons, as described in Materials and Methods.
Two phylomes are considered: one containing homologous

sequences of closely related species (only primates), and
another covering a wide diversity of species (mammals,
birds, insects, plants, fungi, bacteria. . .). On a collection of
111 multiple sequence alignments of primates and their
corresponding phylogenetic trees, our model provides the
best likelihood values over the four tested models (SNP,
JTT, WAG, and LG) for 48% of the phylogenetic trees
being assessed (see File S3). Surprisingly, these results are
obtained at practically any level of average sequence iden-
tity (40–99%) in this first dataset (see Table 1). This indi-
cates that our model can also be considered for phylogenetic
inference from multiple alignments of sequences in evolu-
tionary close species, such as the primate phylome tested
here. These tests are performed for each model by including
the standard G-correction implemented in the PAML soft-
ware and, during the optimization, branch lengths are opti-
mized keeping tree topologies fixed. We are confident that
the quality of these results could be further improved if
using our substitution rate matrix on codons instead of its
reduction on amino acids, since they lead to different dy-
namics (Kosiol and Goldman 2011; Miyazawa 2013). When
the same test is performed on a phylome that covers a wide
variety of species (labeled as Multiple species in Table 1), the
likelihood improves only for alignments at very high aver-
age sequence identity (see File S4). Indeed, our model is
derived only from data at extremely high sequence identity
and from the same species (Homo sapiens SNPs). However,
also in the multiple species phylome, half of the phylogeny
reconstructions in the range of high sequence identity can
be improved with our SNP model.

Discussion

Our results indicate that a selection of relatively common and
nearly neutral SNPs provide information on the probability of

Figure 2 Substitution frequencies in SNPs and
alignments. Comparison of the substitution fre-
quencies between amino acids in our selection of
SNPs (f SNP

AB ) and in ungapped pairwise alignments
at seqID$98% with one of the sequences labeled
as human (f align

AB ). Each point corresponds to a pair
ðA;BÞ of amino acids and its x-value is given by
f SNP
AB ; while its y-value is f align

AB : The error bars show
the statistical errors estimated according to Poisson
statistics. The frequencies of the few entries that
are not present in SNPdb are conventionally set to
the minimum sizable value of (6 � 1026) in order to
make them visible in log scale. Red points: the
entries corresponding to amino acid pairs that
can mutate into each another by a single nucleo-
tide substitution. Here f SNP are estimated by con-
sidering only substitutions with GMAF.0:01:
Blue points: the entries of amino acid pairs
encoded by codons differing by two or three nu-
cleotides. Here, f SNP are estimated by considering
substitutions with any value of GMAF, since no
entry with GMAF.0:01 is present in dbSNP.
Black line: y ¼ x:
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amino acid substitution quantitatively consistent with align-
ments at high sequence identity. In particular, we verified that
our selection of SNPs, when combined with an adequate
treatment of the substitution rate variability, can be used
successfully to learn scoring matrices and score alignments
at high sequence identity (80–100%), with better perfor-
mances with respect to the scoring matrices used nowa-
days. The capability of the SNP þ G model of reproducing
substitution probabilities is remarkable if we consider that,
at variance with all the other considered substitution ma-
trices, it does not require learning the transition probabil-
ities from alignments.

An important result of our analysis is that substitution
frequencies learned from SNPs can be used to predict amino
acid substitution probabilities only if rate variability is taken
into account (Rizzato et al. 2016). Indeed, the performance
obtained by a SNP-based model in which this effect is not
included is very bad (see Figure 4). On the contrary, taking
into account rate variability worsens the performance for
more standard models such as JTT, LG, WAG, and ECM
(Figure S1 in File S1). A possible interpretation of these
results is that standard models are learned from alignments
at medium sequence identity. Then, the instantaneous rate

matrices of these models are consistent with an effective
Markovian dynamics, in which the effects of the degenera-
tion of the genetic code (Kosiol and Goldman 2011) and of
the rate variability (Rizzato et al. 2016) are averaged out.
Instead, the Q matrix obtained from the SNPs describes evo-
lution at extremely short evolutionary times. As a conse-
quence, to give accurate results, it should be evolved with
a dynamics that accounts for the among-site variability of
the rates. In order to verify this scenario, we computed a
substitution rate matrix from pairwise alignments with se-
quence identity .98%, and analyze its performances when
using Equation 3 and Equation 4, respectively (Figure S6
in File S1). As for the Q matrix learned from SNPs, we find a
clear improvement when accounting for the rate variability.
This suggests that instantaneous substitution matrices learned
at very short evolutionary times improve their performances
when the rate variability is accounted for.

The observed worsening of the performances at lower
sequence identities (see Figure 4 and Figure S3 in File S1)
is likely to be related to the combination of several effects.
First of all, in our model, the transition probabilities are esti-
mated by extrapolating at large evolutionary time the infor-
mation collected from the SNPs, namely at very short

Figure 3 Comparison of models with data from alignments at 92.5% of sequence identity. Comparison of the scores salign
AB from alignments in UniRef

(x-axis) and the score smodel
AB of different models of evolution (y-axis). The scores are all computed at a sequence identity of 92.5%. Each point

corresponds to a pair of amino acids (A;B). A different point style is adopted to distinguish amino acid pairs whose interchange can be determined by
a single nucleotide change (red circles) from the pairs where at least two nucleotides must mutate (blues crosses). The scores in which the �rst and
the second amino acids coincide are not shown for the sake of visibility. Each panel corresponds to a different model: (A) SNP þ G; (B) SNP-no-G (note
that the y axis is not the same as in the other panels); (C): JTT model (Jones et al. 1992); (D): LG model (Le and Gascuel 2008); (E): ECM-unrestricted
model (Kosiol et al. 2007); (F): BLOSUM90 (Henikoff and Henikoff 1992). Dashed line: y ¼ x

650 F. Rizzato et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300078/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300078/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300078/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300078/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300078/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300078/-/DC1/FileS1.pdf


evolutionary times. This procedure unavoidably boosts the
effect of errors in the training set of SNPs. A second weak-
ness of our model is the treatment of multiple instantaneous
substitutions, whose importance has already been estab-
lished by other works (Miyazawa 2011b). These multiple
substitutions are here approximately taken into account by
measuring their frequency in the dbSNP database. However,
the multiple substitutions in the database are almost invari-
ably associated with a very low GMAF. Therefore, for these
substitutions, it was not possible to check the effect of the
GMAF on their frequency by the procedure followed for
isolated substitutions, and this might introduce systematic
errors. To investigate if a nonoptimal treatment of multiple
instantaneous substitutions induces the worsening of per-
formances at low sequence identities, we compared the per-
formances of our SNP-derived model with a modified
version of the JTT matrix where multiple substitutions are
not allowed (Figure S4 and Figure S2 in File S1). The trend
of the performance of the SNP model, and of the modified-
JTT model, as a function of sequence identity are very sim-
ilar. This indicates that the degradation of the performances
at low sequence identity may indeed be ascribed to a non-
optimal treatment of multiple instantaneous substitutions.
A last possible source of error in the model is our treatment
of the among-site rate variability, which is taken into ac-
count only on average by Equation 3, and by the approach
described in Miyazawa (2011a). Indeed, a separate optimi-
zation at different sequence identity of the parameter in the
G distribution improves the predictions, even if only margin-
ally. This indicates that the model in Miyazawa (2011a) only
approximates the true evolutionary dynamics, in which, for
example, substitution rates at different sites are known to be
correlated (Fitch and Markowitz 1970).

We also demonstrated that the SNP-based substitution
matrix provides marginally better estimations of phylogenetic
relationships in species closely related to H. sapiens, even

when codon information is not available. The different per-
formances between the two considered phylomes can be as-
cribed to the fact that both the primate phylome and the SNPs
are specific for H. sapiens and share features, such as the
equilibrium probability of amino acids, which improve the
predictive power.

Even if, at high sequence identity, homology can be de-
tected also by generic models, the use of more specific models
for highly similar sequences can correct small local mis-
alignments and errors in the alignment scores, and in the
calculation of pairwise distances. Scoring the alignments
with the approach introduced in this work may therefore
become relevant in the framework of massive human ge-
nome sequencing projects aimed at deciphering human
genetic variations among populations (1000 Genomes
Project Consortium et al. 2015).
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Figure 4 Performance of the different models for se-
quence identity in 75–100%. The average difference
from the prediction of a model and the observations in
the alignment dmodel (Equation 10) as a function of
the sequence identity. The thick dashed line is
obtained by the SNP + G model, with a �xed value
of the a parameter of the G distribution. The thick
solid line is obtained by varying a linearly in time
according to the model in Miyazawa (2011a). The
thin lines correspond to the other models we consid-
ered: JTT, LG, ECL, WAG, and SNP without G correc-
tion (key on the �gure).

Table 1 Number and fraction of phylogenies with improved
likelihood values for the SNP model compared to other three
models (JTT, WAG, and LG) for two different phylomes: primate
phylome and multiple species phylomea

Avrg.Seq. Id. (%) Primates (%) Multiple Species (%)

40–99 53 (48) 15 (15)
90–99 12 (43) 6 (50)
80–89 12 (46) 7 (29)
70–79 15 (60) 2 (11)
50–69 12 (43) 0 (0)
40–49 2 (50.0) 0 (0.0)
a See Materials and Methods, File S3, and File S4 for further details.
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