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ABSTRACT Organisms engage in extensive cross-species molecular dialog, yet the underlying molecular actors are known for only a
few interactions. Many techniques have been designed to uncover genes involved in signaling between organisms. Typically, these
focus on only one of the partners. We developed an expression quantitative trait locus (eQTL) mapping-based approach to identify
cause-and-effect relationships between genes from two partners engaged in an interspecific interaction. We demonstrated the
approach by assaying expression of 98 isogenic plants (Medicago truncatula), each inoculated with a genetically distinct line of the
diploid parasitic nematode Meloidogyne hapla. With this design, systematic differences in gene expression across host plants could be
mapped to genetic polymorphisms of their infecting parasites. The effects of parasite genotypes on plant gene expression were often
substantial, with up to 90-fold (P = 3.2 3 10252) changes in expression levels caused by individual parasite loci. Mapped loci included a
number of pleiotropic sites, including one 87-kb parasite locus that modulated expression of .60 host genes. The 213 host genes
identified were substantially enriched for transcription factors. We distilled higher-order connections between polymorphisms and
genes from both species via network inference. To replicate our results and test whether effects were conserved across a broader host
range, we performed a confirmatory experiment using M. hapla-infected tomato. This revealed that homologous genes were similarly
affected. Finally, to validate the broader utility of cross-species eQTL mapping, we applied the strategy to data from a Salmonella
infection study, successfully identifying polymorphisms in the human genome affecting bacterial expression.
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ECOSYSTEMS are predicated on the ability of the constit-
uent organisms to communicate, and a number of mole-

cules involved in interspeci�c signaling processes have been
discovered (e.g., Weerasinghe et al. 2005; Manosalva et al.
2015; Mugford et al. 2016; Zhao et al. 2016; Zipfel and

Oldroyd 2017). Various genomics-based approaches have
been used to explore the biological basis of interspeci�c
interactions, including gene expression analysis (e.g.,
Lambert et al. 1999; Ithal et al. 2007; Curto et al. 2015;
Nédélec et al. 2016). While to date, these experiments have
largely focused on one of the partners involved, dual-
expression or coexpression analysis has proven to be an
effective means of exploring both sides of an interacting
system (e.g., Choi et al. 2014; Wilk et al. 2015; Westermann
et al. 2016). In a coexpression study, tissue at the interface
between organisms is collected and gene expression is assayed
for both (or multiple) partners simultaneously. Genes from
interacting partners that display patterns of coexpression
across conditions or time points are sought. This approach
captures expression dynamics that are coordinated between
partners. However, directionality, or cause-and-effect relation-
ships between genes, are often nontrivial to determine.

Genetic mapping also has proven to be a powerful ap-
proach to identifying genes involved in interactions between
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organisms, such as those involved in resistance (e.g.,
Crawford et al. 2006; Zhong et al. 2006; Henning et al.
2017; Zhang et al. 2017), virulence (e.g., Su et al. 2002;
Thomas and Williamson 2013; Vogan et al. 2016), and mu-
tualism (e.g., Gorton et al. 2012; Faville et al. 2015). Genetic
mapping has the advantage of providing information on di-
rectionality; if a connection between allelic variation and
phenotype is identi�ed, the assumption is that the polymor-
phisms are directly or indirectly responsible for the effects
on phenotype. However, like gene expression studies, ge-
netic mapping also is traditionally single-species centric.
Here we extend the concept of genetic mapping to be cross-
species. Our approach is based on eQTL mapping, which
was �rst introduced as a means to probe the genetic basis
of transcription regulation by identifying relationships be-
tween genetic polymorphisms and gene expression varia-
tion (Jansen and Nap 2001; Brem et al. 2002; Schadt et al.
2003). It is generally recognized that phenotypes can
be effected by DNA polymorphisms that cause structural
changes to proteins (e.g., Riordan et al. 1989; Mackenzie
et al. 1999; Kenny et al. 2012; Agler et al. 2014; Narusaka
et al. 2017). However, it is now clear that changes in gene
expression levels also can determine phenotypic outcomes
(e.g., Bakar et al. 2015; Rose et al. 2016; Schweizer et al.
2016; Lotan et al. 2017; Tao et al. 2017). Because of this,
connections between genetic polymorphisms and changes
in expression levels revealed by eQTL mapping provide
powerful insights into the mechanistic pathways underlying
the genotype–phenotype relationship (e.g., Li et al. 2015;
Luo et al. 2015; Peters et al. 2016).

Here we apply a mapping strategy designed to identify
genetic loci in one species that in�uence gene expression in
another interacting species; this enables us to make interspe-
ci�c connections for which cause-and-effect relationships are
clear. We use a plant–parasite interaction as a model: infec-
tion of Medicago host plants with the root-knot nematode
(RKN) Meloidogyne hapla (Supplemental Material, Figure
S1 in File S2). We leverage a mapping population of lines
of M. hapla, derived from a biparental cross. This population
provides a resource for performing classic genetic mapping.
These lines were used to inoculate isogenic Medicago host
plants. By maintaining infected isogenic plants in a controlled
environment, systematic phenotypic differences observed in
the host plants can be ascribed to genetic variation within
their infecting parasites. Using plant gene expression pat-
terns as phenotypes and genetic markers spanning the para-
site genome, we performed cross-species eQTL mapping
(Figure S1 in File S2). Standard within-species eQTL
mapping was concurrently performed with the parasite gene
expression data. Once pairwise connections were made be-
tween parasite polymorphisms and expression levels of host
genes, and between parasite polymorphisms and parasite
gene expression levels, more complex networks between spe-
cies were inferred. Our goals were twofold: to demonstrate
the ability of our approach to identify candidate genes in both
partner species and to describe novel molecular signals that

were uncovered. M. hapla is an economically damaging plant
parasite for which limited control measures are available.
It, together with its plant hosts, provides a highly relevant
model for examining interspeci�c interactions.

RKNs have a broad host range. To test whether the differ-
ential expression responses we �nd in Medicago are conserved
across other host plants, we performed an experiment in
M. hapla-infected tomato plants. Isogenic plants were in-
fected with one of the two parental nematode lines that were
used to generate the M. hapla mapping population. Genes
identi�ed in the cross-species eQTL mapping experiment
in Medicago were then tested for differential expression in
tomato. We found that homologous plant genes responded
similarly in both symbioses. The identi�cation of homologous
signals in a distantly related host plant provides a level of
replication of the original host response results and suggests
that selection pressure is maintaining these responses across
evolutionary distance.

Finally, to demonstrate the broad applicability of cross-
species eQTL mapping, we took advantage of publically
available data from human macrophage cultures infected
with Salmonella typhimurium (Nédélec et al. 2016). In this
experimental design, it is the host that is genetically variable
and the pathogen that is interrogated for gene expression
responses. In spite of limitations of these data for this anal-
ysis, we identi�ed Salmonella genes whose expression pro-
�les were modulated by polymorphisms in the human
genome.

Our results demonstrate the ef�cacy of cross-species eQTL
mapping for identifying candidate genes involved in interspe-
ci�c signaling. We provide a number of such candidates in-
volved in the exchange between M. hapla and two diverse
plant hosts. We also demonstrate that as a general method,
cross-species eQTL mapping can be used with either a poly-
morphic host or a polymorphic pathogen, and to examine
eukaryotic–eukaryotic or eukaryotic–prokaryotic interac-
tions. We believe that this approach will be broadly appli-
cable to dissecting communication between organisms
engaged in symbiotic interaction.

Materials and Methods

Nematode lines

Meloidogyne hapla inbred line VW9 was developed from an
isolate found on tomato in California (Liu and Williamson
2006), and LM originated from La Mole France and was
obtained from P. Roberts, University of California, Riverside
(Chen and Roberts 2003). Preliminary experiments showed
that these strains have genomic sequence polymorphisms
and display phenotypic differences including ability to repro-
duce on the common bean variety NemaSnap (Chen and
Roberts 2003). F2 lines were produced from a cross with
VW9 as the female parent and LM as the male according to
the protocol described in Liu et al. (2007). F2 lines were
con�rmed using PCR. Parental and F2 lines were maintained
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in a greenhouse on tomato plants (cv VFNT) as previously
described (Liu and Williamson 2006).

Progeny derived from parthenogenic reproduction of
hybrid M. hapla females are largely homozygous for segre-
gating loci across their genomes (Liu et al. 2007; Thomas and
Williamson 2013). Among the 98 F2 lines used in this study,
78 (�80%) displayed heterozygosity of ,5%, 79 of the lines
displayed heterozygosity ,10%, and 83 of the lines (�85%)
displayed heterozygosity ,15% [heterozygosity of an indi-
vidual was calculated as the proportion of single nucleotide
polymorphisms (SNPs) assigned a heterozygous genotype
divided by the number of SNPs with nonmissing genotypes
for that individual]. The remaining lines displayed be-
tween �16 and �56% heterozygosity. It is likely that these
are heterogeneous F3 populations produced by mating be-
tween F2 males and F2 females rather than being isogenic
F2 lines. To establish the M. hapla marker map, only the
79 F2 lines displaying .90% homozygosity were used. All
98 F2 lines were used for eQTL mapping.

RNA-Seq data processing for M. hapla-infected
root tissue

Reference-guided assembly for RNA-Seq reads derived from
M. hapla-infected Medicago or tomato root tissue was carried
out using the spliced aligner TopHat2 (Trapnell et al. 2009;
Kim et al. 2013). The plant and parasite genome sequence
�les were concatenated and the combined �le served as the
full reference genome sequence for the alignments. Only
reads that mapped unambiguously to the M. hapla or the
plant genome were used for subsequent analyses. For details
on reference genome construction, alignment, and raw read
count quanti�cation, see File S1. Once raw read counts were
generated, edgeR (Robinson et al. 2010) was used to adjust
counts for library size so that expression values can be com-
pared across samples (edgeR refers to these normalized mea-
sures as pseudocounts).

M. hapla SNP detection

The Joint Genotyper for Inbred Lines (JGIL) procedure, an
SNP detection procedure designed for inbred lines (Stone
2012), was used to identify SNPs. All candidates were then
�ltered by minor allele frequency (MAF) so that only markers
with MAF $0.20 were kept. In regions of interest, additional
potential SNP sites were selected based on visualization of
short read alignments with the reference genome.

M. hapla SNP genotyping

For a given sample, a read generated from sequence spanning
an SNP site has the potential to contain either of the parental
alleles. If an individual is homozygous for the VW9 allele at
that SNP site, it is expected that 100% of reads will contain the
VW9 allele (similarly for the LM allele). A heterozygous in-
dividual is expected to produce some proportion of both types
of reads. Factors that in�uence these expectations are se-
quencing errors and, as this is RNA-Seq data, allele-speci�c
expression. To assign genotypes to individuals, custom scripts

were used to determine the proportion of aligned M. hapla
reads that carried the VW9 allele vs. the LM allele at each of
the SNP sites identi�ed (above). If 95% or more of the reads
from an individual spanning a given SNP site carried the
same allele, an assignment of a homozygous genotype for
that allele was made. Otherwise, an assignment of heterozy-
gous was made.

Oncegenotypeswereassigned in thisway, thephysicalmap
was used for imputation. If the genotype for a given marker for
an individual was not assigned (missing) or was assigned as
heterozygous, and genotypes of the markers immediately
adjacent to it were both assigned as homozygous of the same
parental allele (implying no recombination between them),
the missing or heterozygote genotype was reassigned as
homozygous of that allele. If the adjacent SNPs also had
missing genotypes, or if a recombination event appeared to
have occurred in the region so that the adjacent SNPs both had
different genotype calls, an imputed genotype call was not
made. After imputation, linkage mapping was performed to
order the SNPs on the genetic map. Once this had occurred,
the imputation procedure was repeated using the genetic
map. The genetic map was then recalculated and a �nal round
of imputation performed to generate the �nal genotypes (see
File S1 for details).

Linkage mapping

Linkage analysis to create the SNP marker map was performed
using the MSTmap (Wu et al. 2008). Only the 79 F2 lines
displaying .90% homozygosity were used. For details on
the linkage mapping procedure, see File S1.

Cross- and within-species eQTL analysis

All 98 F2 lines were used for both cross-species and within-
species eQTL analyses. Normalized counts were generated
with edgeR (v2.4.0; Robinson et al. 2010), incremented by
one, then log2-transformed. These transformed measures
were tested for differential expression across genotype cat-
egories using analysis of variance (ANOVA; SAS/STAT Proc
Mixed, www.sas.com). Genes were tested for eQTL only
if ,60% of samples were scored as having a count of 0 for
that gene. ANOVA was performed in two ways: by �tting
genotype as a categorical variable (using genotype calls of
homozygous VW9, homozygous LM, and heterozygous),
and by �tting the proportion of reads carrying the VW9
allele (see genotyping procedure above). Results from
these analyses did not differ substantially, and �nal results
reported are for �tting the continuous proportion variable,
as these did not rely on cut-off values for distinguishing
heterozygote genotypes from homozygote genotypes.
All tests were also performed using edgeR by estimating
the common dispersion [estimateCommonDisp()] and per-
forming an exact test [exactTest()]. The ANOVA and edgeR
approaches agreed on signi�cant genes, though edgeR
tended to produce a much larger number of extreme P-
values. The ANOVA results were maintained as being more
conservative.

Cross-Species eQTL Mapping 2177

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.202531/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.202531/-/DC1/FileS1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.202531/-/DC1/FileS1.pdf
http://www.sas.com


Network analysis

From the eQTL results, plant and nematode genes associated
with at least one genotype marker (with P-value ,0.0001)
were included in the network analysis. A mixed graphical
Markov model as implemented in the Bioconductor package
“qpgraph” (Tur et al. 2014) was used to infer the gene–gene
interactions and marker to gene causal relationships. For
details, see File S1.

Human–Salmonella data processing and analysis

Raw sequence reads were downloaded from National Center
for Biotechnology Information (NCBI)’s Gene Expression
Omnibus (GEO; accession number GSE81046). Sequences
derived from Salmonella-infected macrophages were aligned
to the human genome reference sequence (GRCh38), and
polymorphisms in the human genome identi�ed and geno-
types assigned using the Genome Analysis Toolkit (GATK)
Best-Practices for calling variants in RNA-Seq data (software.
broadinstitute.org/gatk/guide/article?id = 3891). Polymor-
phisms were kept for further analysis if there were at least
eight individuals within each genotype class.

Sequences derived from Salmonella-infected macrophages
were also aligned to the Salmonella genome (SL1344;
ensembl.org), and those with unique alignments were used
to calculate raw read counts for the Salmonella genes using
in-house scripts. Sequences from Listeria-infected samples
were also downloaded and aligned to the Listeria genome
(GCF_000196035.1_ASM19603v1_genomic; ftp.ncbi.nlm.
nih.gov/genomes) and raw read counts calculated. Based
on these results, it was determined that the depth of coverage
of the Listeria transcriptome was not suf�cient to provide
meaningful results. As an added check, sequence reads from
both Listeria-infected samples and uninfected samples were
aligned to the Salmonella genome to assess if alignments to
the Salmonella genome represented spurious results. Based
on these analyses, it was determined that the Salmonella raw
read counts represented results based on valid alignments to
the Salmonella genome.

Once raw read counts, kij, were calculated for each sample
i, gene j, normalized measures were generated. The total
library size, Ni, was calculated as the total number of reads
aligning uniquely to the Salmonella genome for that sample.
These values were considerably smaller than the usual library
sizes for RNA-Seq data, as the number of reads aligning to the
Salmonella genome was a very small fraction of the overall
library. The values pj, the proportion of reads that align to
gene j across all samples, were also calculated. Normalized
measures were then calculated as yij = (kij 2 E[kij])/OVar(kij),
where E[kij] = Nipj, and Var(kij) = Nipj(12pj). To avoid
spurious results due to distributional assumptions, two
rounds of statistical tests were performed. First, ANOVA
was applied for each Salmonella gene/human polymorphism
pair using SAS Proc Mixed (SAS Institute, Cary, NC). The
model yij = qi + gim was �tted, where qi was the population
sample i was derived from, and gim was the genotype of

individual i at marker m. A Bonferroni threshold consider-
ing 62,084 human polymorphisms and 388 Salmonella
genes, a = 2.08 3 1029, was used as the �lter for the �rst
analysis round. If the association between Salmonella gene
expression and a human polymorphism exceeded this
threshold, that Salmonella gene was included for the sec-
ond, nonparametric permutation-based round of testing.
Genes not attaining this threshold were not considered fur-
ther. For each Salmonella gene that passed the �rst �lter,
genotypes and phenotypes were permuted randomly, and
the mixed model ANOVA was performed as above for each
marker-gene combination considered. To reduce computa-
tional time, we used an adaptive permutation approach
(Che et al. 2014), in which the permutation procedure is
ended once it is determined that improvement to the pre-
cision of the estimate is not necessary (larger P-values re-
quire fewer permutations). We repeated the permutation
approach between 10,000 and 50,000,000 times. Estimates
of P-values were calculated as the number of times the
F statistic for the permuted data equaled or exceeded
the F statistic for the nonpermuted data. Additionally, false
discovery rate (FDR) control was implemented for each
Salmonella gene passing the �rst �lter by permuting geno-
types and phenotypes, testing all markers for that gene, and
recording the maximum F statistic across all markers for
each permutation. This was repeated 5000 times for each
Salmonella gene. A result was considered signi�cant in the
second round of testing if the maximum F statistic across
permutations was greater or equal to the result for the non-
permuted data in ,0.5% of the permutations (q = 0.005).

Data availability

Sequence reads are available from the NCBI Gene Expression
Omnibus (www.ncbi.nlm.nih.gov/geo), accession numbers
PRJNA229407 and SRP078507. Extended data are available
at statgen.ncsu.edu/medicago-hapla.

Results and Discussion

We exploited a set of 98 inbred lines derived from a biparental
cross between two well-characterized strains of the RKN
M. hapla from different geographical locations and displaying
phenotypic differences. Exploiting the facultative meiotic
parthenogenesis of M. hapla, controlled sexual crosses fol-
lowed by asexual reproduction were performed (Liu et al.
2007). F1 hybrids undergo meiotic parthenogenesis to gen-
erate F2 progeny. Due to this reproductive mechanism, F2

progeny are largely homozygous across their genomes, and
thus function as recombinant inbred lines for mapping pur-
poses (Liu et al. 2007; Thomas and Williamson 2013).
Isogenic Medicago truncatula cv Jemalong A17 plants
were inoculated individually with one of these 98 F2

nematode lines. Plants were maintained under controlled
environmental conditions to minimize externally induced
phenotypic variation. Three weeks postinfection, resected
sections of plant root (galls or root knots) harboring feeding
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nematodes were collected, and RNA (containing a mixture
of Medicago and M. hapla transcripts) was extracted for
RNA-Seq. Sequencing reads generated were aligned to a
concatenated reference of the M. hapla and Medicago ge-
nomes (Opperman et al. 2008; Tang et al. 2014), enabling
us to measure transcript abundance for both the plant and
the parasite. Reads that aligned to the M. hapla genome
were also used to identify 3877 SNPs segregating in the F2

lines. From these data, we generated an M. hapla linkage
map and performed cross-species eQTL mapping to identify
connections between M. hapla genetic loci and expression
variation of Medicago genes. Within-species eQTL analysis
was concurrently performed for M. hapla. An empirically
derived family-wise error rate of a = 0.05 was implemented
to account for multiple testing (File S1).

Cross-species eQTL mapping

We identi�ed 213 plant genes whose expression levels were
in�uenced by genetic differences at one or more parasite loci
(Table S1 in File S2). Two examples of a parasite eQTL af-
fecting expression of a host gene are shown in Figure 1. For
the majority of genes identi�ed, eQTL analysis revealed that
variation in plant gene expression was explained by a single
parasite locus of major effect (Table S1 in File S2). In �ve
cases, our results implicated two parasite loci jointly in�uenc-
ing expression. One readily apparent feature of plant genes
identi�ed was the noticeable abundance of transcription fac-
tor (TF) genes; a Fisher’s exact test con�rmed overrepresen-
tation of TFs among this list (P = 6.2 3 10220). Also striking,
while the 213 plant genes identi�ed by the approach are
distributed across the genome, the parasite loci that mod-
ulate plant gene expression tend to be localized to a subset
of parasite linkage groups (LGs) and, in many cases, to spe-
ci�c genomic intervals (Figure 2 and Table S1 in File S2).

Individual eQTL that are associated with expression modu-
lation of a large number of genes, denoted as eQTL hotspots,
are often reported in eQTL mapping experiments. In our
case, these hotspots are parasite loci that in�uence expres-
sion of a large number of plant genes (observed as vertical
“stripes” in Figure 2). The most predominant hotspots map
to LGs 4, 8, and 21. A higher resolution examination reveals
that LG 8 contains two loosely linked hotspot loci (Figure
2B). We propose the name Host Expression Modulator
(HEM) for these loci.

The nematode locus HEM1, located at position�52–53 cM
on LG 8, modulated expression of the largest number of plant
genes overall. Five of these plant genes, all encoding MADS-
box TFs with highly correlated gene expression patterns,
displayed the largest and most statistically signi�cant expres-
sion responses identi�ed in the study (Figure S2 in File S2).
One of these TF genes is annotated as AGAMOUS [LegumeIP
(Li et al. 2011); Figure 1B], a gene implicated in develop-
mental pathways including �oral development (reviewed in
Becker and Theissen 2003). Examining expression pro�les
across a wide range of tissues within the M. truncatula Gene
Expression Atlas (Benedito et al. 2008) indicated that in un-
infected plants these genes are primarily expressed in �owers
and seeds, but not in roots. Expression of all �ve of these
MADS-box TF genes is substantially higher in root tissue in-
fected with nematodes carrying the “LM” allele at the HEM1
locus than in tissue infected with nematode lines with the
VW9 allele (Figure 1C and Figure S2B in File S2).

Network inference

Networks were inferred using results from both cross-species
and within-species eQTL analyses (Figure 3 and Figure S3 in
File S2). DNA polymorphisms and expression pro�les were
connected by implementing a mixed graphical Markov model

Figure 1 Examples of nematode QTL that modulate expression of a host gene. (A) The results of two cross-species eQTL analyses. The x-axis represents
the nematode linkage map and each point shows the location of a parasite marker. The significance of the eQTL result for that marker is given on the
y-axis. Blue points are for expression of the Medicago gene AGAMOUS (Medtr8g087860) and red points are for Medicago gene serine acetyl-
transferase (Medtr8g028040). Gene expression values (log2-transformed normalized counts) are shown for these two plant genes: (B) serine
acetyltransferase and (C) AGAMOUS. Each circle is a measurement for one plant, and points are separated along the x-axis according to their
infecting parasite’s genotype at the most significant marker. Genotypes are denoted as VV for parasites homozygous for the VW9 allele, LL for
parasites homozygous for the LM allele, and VL for the heterozygous parasite lines.
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approach designed for eQTL data (Tur et al. 2014). This tech-
nique disentangles direct vs. indirect connections between
genes and polymorphic sites. A polymorphic site, for exam-
ple, has an indirect effect on gene expression if its in�uence
on that gene is via expression modulation of an intermediary
gene. Note that direct connections inferred by this approach
do not necessarily indicate direct molecular interactions.
Rather, these inferences reveal the most direct relationships
that can be determined with the available data. One of the
larger cross-species networks identi�ed using this approach,
shown in Figure 3, includes the parasite hotspot locus
HEM1. Of the six plant genes inferred to have a direct con-
nection with HEM1, �ve are MADS-box TF genes, including
AGAMOUS. An additional �ve plant MADS-box TF genes
with indirect connections to the HEM1 eQTL are also in-
cluded in this network. With 10 of 23 plant genes annotated
as TFs, this network contains a signi�cant overrepresenta-
tion of TFs relative to the full set of annotated Medicago
genes [Fisher’s exact test (FET); P = 7.6 3 10212]. Fifteen
of these 23 genes have annotations consistent with a role
in gene regulation (Figure 3). Other networks (Figure S3 in
File S2) also include host genes predicted to have roles in
gene regulation.

The set of networks we identi�ed (Figure S3 in File S2)
also reveal plant genes encoding enzymes controlling plant
defense responses (e.g., Medtr5g030950, serine hydroxyme-
thyltransferase) as well as enzymes required for the bio-
synthesis of essential amino acids (e.g., Medtr7g083920,
monofunctional aspartokinase; Medtr8g028040, serine
acetyltransferase). Modulation of production of essential
amino acids is likely to be targeted by the nematode for
establishing successful parasitism. Another intriguing gene
highlighted encodes a serine hydroxymethyltransferase.
Map-based cloning previously identi�ed the Rhg4 locus, a
major soybean QTL contributing to resistance to soybean cyst

nematode (Heterodera glycines), as encoding a serine hydroxy-
methyltransferase (Liu et al. 2012). Our data thus discover
new pathways that may be keys to successful nematode
parasitism and host resistance and provides insight into
the nematode loci responsible for modulating their expres-
sion. These networks form a resource for gaining novel in-
sights into this complex and highly evolved interaction.

Candidate gene identification

To re�ne the boundaries of the HEM1 locus, and thus pinpoint
candidate genes, we localized recombination break points
bounding the candidate region in the parasite genome.
Exploiting our observations that expression pro�les for the
�ve MADS-box TFs with direct connections to HEM1 in the
network are highly correlated with one another (Figure S2A in
File S2) we use the mean expression across these �ve genes
as a lower-variance overall expression phenotype. By cou-
pling mean expression phenotypes with the parasite marker
genotypes, we localized the functional variant to within
a �87-kb genomic region (Figure S4 in File S2) that spans
19 predicted parasite genes (Table S2 in File S2). Of
these predicted genes, eight exhibited substantial sequence
variation between the parental VW9 reference genome
(Opperman et al. 2008) and a de novo assembly of the LM
genome sequence (File S1). Three of these 19 genes showed
moderate to high gene expression levels among F2 lines,
while the remainder displayed expression at or below the
measurable threshold (Figure S5 and Table S2 in File S2).
While any of the genes in this region may prove to be the
causal factor driving the observed plant expression changes
for this network, the list can be prioritized based on sequence
variation and gene expression pro�les. Here, priority candi-
dates for future functional studies are the three genes dis-
playing moderate to high expression levels and sequence
variation between the parental lines.

Figure 2 Plant genes with expression levels
modulated by nematode eQTLs. (A) Each
circle represents an individual Medicago
gene paired with its corresponding parasite
eQTL. Circles are plotted so that the chro-
mosomal location of the plant gene lies
along the y-axis (*U includes genes on un-
assigned contigs) and the genetic location
of its parasite eQTL lies along the x-axis. The
size and color of each circle indicates the
significance level for that cross-species
eQTL result. (B) An expanded view of LG
8, where the x-axis is position in centimor-
gans. The y-axis is the same as in A. Two
hotspot loci are apparent, located at �25
and 52 cM (HEM1).
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Tests for conserved host response in tomato

To address whether the cross-species eQTL that we identi-
�ed are unique to M. hapla interactions with Medicago, or
whether they are conserved across interactions with other
plant hosts, we infected 16 isogenic tomato plants with one
of the two parental nematode lines (eight plants with LM,
eight with VW9). As with the Medicago infection protocol,
infected root tissue samples (galls) were harvested 3 weeks
postinfection, and RNA was extracted for RNA-Seq. Tomato
genes were then tested for differential expression between
plants infected with LM nematodes and plants infected
with VW9 nematodes. The two most signi�cantly differen-
tially expressed genes in this experiment were both MADS-
box TF genes (Figure 4). Moreover, the direction of the
effect was conserved; tomato and Medicago plants infected
with LM nematodes both show higher expression of these
MADS-box TF genes than plants infected with VW9 nema-
todes (Figure 4 and Figure S2 in File S2). We extended
these results by taking the full set of 213 Medicago genes
that were identi�ed as being associated with cross-species
eQTLs and identifying their best-BLAST hit to tomato
genes. We then tested whether the set of tomato genes
identi�ed in this way was enriched for genes with signi�-
cant P-values from the test of differential expression be-
tween LM- and VW9-infected plants. Indeed, tomato
genes identi�ed through best-BLAST match to our 213 iden-
ti�ed Medicago genes were much more highly enriched for
being differentially expressed than expected by chance
(FET; P = 1.68 3 10210). Collectively, these data point to a
conserved response across diverse plant hosts. RKN have
a wide host range, and effective control measures for this
economically damaging plant parasite are limited. Identi-
fying interactions common to evolutionarily distant host
plants offers the basis for research into broad biological
control.

Human-Salmonella cross-species eQTL

To test whether our ability to detect cross-species eQTL by
the strategy presented above was limited to plant–nematode

interactions or to eukaryote–eukaryote interactions, we uti-
lized a publically available data set recently published by
Nédélec et al. (2016). Their experiment was in part aimed
at identifying genetic polymorphisms associated with the
transcriptional response of infected and uninfected human
macrophages. Monocyte-derived macrophages from 175 indi-
viduals of African or European descent were infected
with one of two bacterial strains, S. typhimurium or Listeria
monocytogenes, or were maintained as uninfected cultures.
Of the 175 samples assayed, RNA-Seq data for 171 were
uploaded into the NCBI’s Sequence Read Archive (accession
number GSE81046). While the experimental design of this
study is appropriate for cross-species eQTL mapping, the data
from the experiment were derived from sequencing libraries
generated using protocols designed for eukaryotic mRNA
(using poly-A tail capture). Because of this, aligning the se-
quencing reads to the bacterial genomes produced very
low coverage. However, using the 171 samples infected with
Salmonella, we were able to assay 388 bacterial genes at
suf�cient coverage to test for association between their gene
expression levels and polymorphisms in the human genome.
To identify connections with human sequence variation, we
identi�ed polymorphisms using the sequencing reads that
aligned to the human reference genome. Polymorphisms
were maintained for testing for association if there were at
least eight samples within each genotype class. A Bonferroni-
adjusted signi�cance threshold was used, considering
62,084 identi�ed polymorphisms and 388 Salmonella genes
(a = 2.08 3 1029). Once each human polymorphism
was tested for association with expression levels of each
Salmonella gene, accounting for human population struc-
ture, test results surpassing the Bonferroni signi�cance level
were reevaluated for signi�cance using a nonparametric
permutation-based approach (see Materials and Methods
for details on the full testing procedure). To achieve a
high level of stringency, only results surpassing a FDR
control of q # 0.005 based on the permutation analyses
(described in Materials and Methods) were kept for further
consideration. From the results that satis�ed this stringent

Figure 3 Parasite-responsive plant genes and
the parasite HEM1 locus define a cross-species
gene network. The red square node represents
the parasite locus HEM1, round green nodes
are plant genes whose expression levels are
modulated within the network, and octagonal
blue nodes are nematode genes whose expres-
sion levels are also modulated within the net-
work. Colored lines indicate direct connections
to the parasite HEM1 locus. This network in-
cludes 10 genes annotated as MADS-box TF
genes, five of which (highlighted in yellow)
are directly connected to HEM1.
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signi�cance threshold, those that involved polymor-
phisms with a missing data rate of ,6.5% and that did
not show evidence for a departure from Hardy–Weinberg
equilibrium were maintained in the �nal set of results.
Using this highly stringent �ltering approach, and despite
the low sequence coverage and limited number of human
polymorphisms tested, we were able to detect three bac-
terial genes associated with cross-species eQTL (Table S3
in File S2).

Conclusions

This is the �rst comprehensive study to explore connections
between genetic variation in one organism and gene ex-
pression responses in an interacting organism. We have
demonstrated the applicability of the approach to both
eukaryotic–eukaryotic and eukaryotic–prokaryotic inter-
actions, using linkage analysis and association mapping,
and under circumstances whereby the host polymorphisms
affect pathogen response and vice versa. The power of
cross-species eQTL mapping is its ability to identify inter-
acting sets of hosts and pathogen genes, rather than focus-
ing on one side of the interspeci�c relationship.

While the systems we have described here involved two
species, the approach can readily be applied to any number of
interacting systems. For instance, it has recently been shown
that the relative abundances of taxa [operational taxonomic
units (OTU)] in the human gut microbiome are affected by the
genotype of the individual human host (e.g., Goodrich et al.
2016). While these studies have examined variations in the
proportions of OTUs from individual to individual, it is a
logical next step to consider how the identi�ed microbes reg-
ulate gene expression differently depending on their host’s
genotypes. Cross-species eQTL mapping is immediately ap-
plicable for addressing this question.
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