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ABSTRACT In all organisms, the majority of traits vary continuously between individuals. Explaining the genetic basis of quantitative
trait variation requires comprehensively accounting for genetic and nongenetic factors as well as their interactions. The growth of
microbial cells can be characterized by a lag duration, an exponential growth phase, and a stationary phase. Parameters that
characterize these growth phases can vary among genotypes (phenotypic variation), environmental conditions (phenotypic plasticity),
and among isogenic cells in a given environment (phenotypic variability). We used a high-throughput microscopy assay to map genetic
loci determining variation in lag duration and exponential growth rate in growth rate-limiting and nonlimiting glucose concentrations,
using segregants from a cross of two natural isolates of the budding yeast, Saccharomyces cerevisiae. We find that some quantitative
trait loci (QTL) are common between traits and environments whereas some are unique, exhibiting gene-by-environment interactions.
Furthermore, whereas variation in the central tendency of growth rate or lag duration is explained by many additive loci, differences in
phenotypic variability are primarily the result of genetic interactions. We used bulk segregant mapping to increase QTL resolution by
performing whole-genome sequencing of complex mixtures of an advanced intercross mapping population grown in selective con-
ditions using glucose-limited chemostats. We find that sequence variation in the high-affinity glucose transporter HXT7 contributes to
variation in growth rate and lag duration. Allele replacements of the entire locus, as well as of a single polymorphic amino acid, reveal
that the effect of variation in HXT7 depends on genetic, and allelic, background. Amplifications of HXT7 are frequently selected in
experimental evolution in glucose-limited environments, but we find that HXT7 amplifications result in antagonistic pleiotropy that is
absent in naturally occurring variants of HXT7. Our study highlights the complex nature of the genotype-to-phenotype map within and
between environments.
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HERITABLE traits that vary quantitatively are the most
pervasive class of phenotypic variation. Resolving the

genotype–phenotype relationship for quantitative traits re-
mains the central challenge for genetics in the genomic era.
The trait value of any given individual can be considered as
the result of three distinct sets of factors: (1) genetic factors
that confer heritable differences within an environment, (2)
environmental factors that modulate the effects of genotypes,
and (3) the inherent variability of the trait given that genetic

and environmental factors are identical. Our ability to predict
phenotypes from genotypes requires a detailed understand-
ing of how each of these factors contributes to quantitative
trait variation.

A variety of genetic mapping techniques have been de-
veloped for identifying loci underlying quantitative trait var-
iation in diverse organisms. Most studies focus solely on the
additive effects of loci, but accurately mapping genotype-to-
phenotype requires incorporation of both additive and epi-
static effects and an understanding of how these vary with
environment. Indeed, as the number of identified causative
loci grows, it is becoming increasingly apparent that many
genetic effects are conditionally dependent on variation at
other loci or in the environment (Mackay et al. 2009; Liti and
Louis 2012). More precise definition of phenotypes and in-
corporation of additional information about environmental
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conditions might reveal additional genetic determinants and
enable more accurate estimation of effect size (Robinson
et al. 2014). Unbiased genome-wide scans for epistatic effects
on trait variation must overcome the limits on statistical
power imposed by testing the many possible combinations
of loci (Carlborg and Haley 2004). However, technological
and analytical advances are making studies of epistasis in-
creasingly feasible.

Individuals of identical genotypes can exhibit differences
in trait values within the same environment. Although these
differences are not genetically encoded, the extent to which
genetically identical individuals differ in a given environment
is influenced by genetic factors (Geiler-Samerotte et al. 2013).
Hence, predicting phenotypic values on the basis of genotype
(and quantifying the confidence in that prediction) depends
not only on the genetic architecture that underlies average
differences between genotypes, but also on the genetic factors
that influence the phenotypic variability of a trait. Despite an
increasing appreciation of the importance of phenotypic vari-
ability (Pelkmans 2012; Yvert 2014), many questions remain
regarding its genetic and molecular basis (Geiler-Samerotte
et al. 2013). Specifically, the extent to which the loci that de-
termine phenotypic variability and those that determine phe-
notypic variation (i.e., differences in average trait values) overlap
remains poorly understood (Hall et al. 2007; Yang et al. 2012;
Ayroles et al. 2015).

Complex networks of interacting genetic and environmen-
tal factors regulate cell growth in microbes and multicellular
organisms, making cell growth an ideal system to dissect the
genetic basis of complex traits. Moreover, variation in cell
growth is important from an evolutionary perspective as it is a
major component of fitness in microbes (Blomberg 2011).
Therefore, dissecting the genetic basis of cell growth varia-
tion in ecologically relevant environments may also illumi-
nate adaptive variation in natural populations. The rate at
which a cell grows is the result of myriad cellular processes
including nutrient sensing and transport, signal transduction,
macromolecular synthesis, and metabolism. In microbes, cul-
ture growth can be separated into three distinct phases: (1)
a lag phase, which is a period of physiological adaptation
during which cells do not grow; (2) an exponential growth
phase, in which cells grow at a constant rate; and (3) a sta-
tionary phase, in which cell growth stops due to exhaustion of
an essential nutrient from the environment (Monod 1949).
These growth phases vary independently in natural popula-
tions in different conditions (Cubillos et al. 2011; Ziv et al.
2013b). Recently, we have developed a high-throughput micro-
colony growth rate assay (Levy et al. 2012; Ziv et al. 2013b) that
accurately quantifies each of these phases in thousands of
individuals and different environmental conditions, facili-
tating high-resolution dissection of cell growth phenotypes.

Budding yeast is an ideal model for the analysis of complex
traits through genetic analysis (Liti and Louis 2012). Quan-
titative trait loci (QTL) underlying variation in complex traits
can be mapped by analyzing genotype–phenotype relationships
in segregants of crosses. The detection of QTL depends on the

effect sizes and frequencies of alleles whereas resolving causa-
tive variants to individual genes depends on the frequency of
recombination (Mackay et al. 2009). Individual segregant anal-
ysis involves genotyping and phenotyping individual segregants
and testing for associations (Steinmetz et al. 2002; Gerke et al.
2009; Cubillos et al. 2011; Bloom et al. 2013). Alternatively,
bulk segregant analysis involves selecting a subset of the pop-
ulation of segregants based on extreme trait values and
looking for a deviation in allele frequency from that of the
entire population (Michelmore et al. 1991; Ehrenreich et al.
2010; Swinnen et al. 2012). The advantage of bulk segregant
mapping is that the increased sample size increases the
power to detect loci with small effects (Ehrenreich et al. 2010).
However, analysis of individual genotypes is required to identify
genetic interactions (Wilkening et al. 2014). Resolving QTL
to causative variants using bulk segregant mapping can be
improved by using an advanced intercross population, as in-
creased recombination decreases linkage between adjacent
sites (Darvasi and Soller 1995; Parts et al. 2011; Cubillos
et al. 2013; Illingworth et al. 2013).

In this study, we dissected the genetic architecture of cell
growth using a combination of classical interval mapping (a
form of individual segregant analysis) and sequencing under
selection (a form of bulk segregant analysis) to identify QTL.
We defined the genetic architecture of cell growth in two
related environments: minimal chemically defined carbon-
limiting media containing growth rate-limiting (0.22 mM)
and growth rate-nonlimiting (4.44 mM) glucose concentra-
tions. The latter concentration of glucose supports maximal
growth rates, despite being more than an order of magnitude
lower than that contained in standard lab media (111 mM)
(Ziv et al. 2013b). These environments are ecologically rele-
vant, as growth differences in low-glucose conditions distin-
guish sympatric Saccharomyces cerevisiae strains isolated
from different niches within the same local area (Clowers
et al. 2015). We decomposed cell growth by quantifying ex-
ponential growth rate and lag duration distributions, and
mapped loci determining both the phenotypic variation and
phenotypic variability of the traits using interval mapping in
individual F2 segregants. We then used an advanced inter-
cross population and bulk segregant analysis to increase the
mapping resolution for QTL.

We find numerous QTL for cell growth, some of which
depend on the environment. We also find a prevalence of
genetic interactions underlying differences in the phenotypic
variability of traits that do not affect average trait values. We
validated in detail linkage to a QTL on chromosome IV. Allele
replacements confirm the effect of natural variation in the
glucose transporter HXT7, a known target of selection in ex-
perimental evolution (Brown et al. 1998; Gresham et al.
2008; Kao and Sherlock 2008; Koschwanez et al. 2013;
Selmecki et al. 2015) on cell growth rates. We demonstrate
the existence of both intergenic and intragenic interactions
that impact the effect of variation in HXT7. These results
highlight the intricate nature of genotype-to-phenotype map-
ping and illustrate the necessity of identifying the relevant

1646 N. Ziv et al.

http://www.yeastgenome.org/locus/S000002750/overview
http://www.yeastgenome.org/locus/S000002750/overview


genetic loci underlying both variation and variability, and
how the environment modulates their effects, for accurate
phenotypic prediction.

Materials and Methods

Yeast strains and growth analysis

Parental oak (BC248) and vineyard (BC241) strains and the
panel of segregants (Gerke et al. 2006) were obtained from
the lab of Barak Cohen (Washington University). There are a
total of 480 segregants arrayed in six 96-well plates, of which
374 were previously genotyped (Gerke et al. 2009). All seg-
regants were phenotyped using the microcolony assay; only
genotyped strains were used for interval mapping. The F2
pool used in chemostat experiments consisted of all segre-
gants. NCYC3606 and NCYC3591 (Cubillos et al. 2009) were
used during allele replacements. Strains shown in Supple-
mental Material, Figure S9 in File S2 are from Gresham
et al. (2008); the evolved clone with HXT6/HXT7 amplification
is from population G2. All media were minimal chemically
defined carbon-limiting media (Saldanha et al. 2004;
Brauer et al. 2005) without amino acid or nucleotide sup-
plements. Growth conditions, microscopy, and analysis of
growth profiles were performed as described (Ziv et al.
2013b).

Data normalization

For interval mapping, growth rate assays were performed in
96-well plates with each parental strain present in four wells
per plate. We found that, although the difference between the
parents was clear on each plate, the absolute growth values
and the magnitude of the difference changed slightly between
plates (between 0.11 and 0.13 for growth rate in limiting
glucose, 0.04–0.05 for growth rate in nonlimiting glucose,
and 1.25–3.7 for lag duration in limiting glucose). Estimates
for mean growth rate and median lag duration within each
well on a plate were corrected for plate effects by subtracting
the mean phenotype of the two parents and dividing by the
difference between parent phenotypes for each plate. This
has the effect of scaling segregants across plates, where 0.5
and 20.5 are the values of the vineyard and oak parents
(Figure S1 in File S2). Parental phenotypes were calculated
as the mean of all well estimates for a given parent on a given
plate. Plate corrected values gave similar LOD profiles to
unnormalized data (Pearson correlation . 0.98), only with
sharper peaks. For variability traits, residuals of a loess re-
gression (SD regressed against mean growth rate or median
absolute deviation (MAD) regressed against median lag du-
ration) were used. For a discussion on the use of loess resid-
uals for variability estimation, see Geiler-Samerotte et al.
(2013). Residuals were calculated using the “loess” function
in R (R Development Core Team 2012), with default param-
eters. For regression analyses, we used unscaled values for
each segregant. All segregants, including those that were not
genotyped, were included in regression analyses for each
environment. Use of different measures of central tendency

and variability had little effect on the results. For example,
we used within-plate ranks of dispersion to confirm that plate
effects do not bias the results for variability traits. We calcu-
lated genetic variance proportions by subtracting from one,
the ratio of the average parental replicate variance (calcu-
lated for each parental strain across 24 wells) to the F2 phe-
notypic variance (calculated for all segregants, including
those that were not genotyped).

QTL mapping using R/qtl

We used the R package R/qtl for interval mapping (Broman
et al. 2003). To identify individual additive QTL, we performed
genome scans with a single-QTL model (“scanone” function),
using a normal phenotype model, a 1-cM step size, and the
Haley-Knott (HK) algorithm for all traits. To determine exper-
imentwise significance thresholds for each QTL scan, we
employed the method of Churchill and Doerge (1994) as
implemented in R/qtl (Broman et al. 2003). Briefly, for each
QTL scan we performed 10,000 permutations of the trait-
specific data. From each permutation, the genome-wide max-
imum LOD score was retained and the resulting 10,000 values
used to define the experimentwise null distribution. This ap-
proach has the effect of creating an empirical null distribution
for a particular trait while controlling the overall type I error to
be a or less across the multiple hypotheses tested in a genome-
wide screen. Only one QTL per chromosome can be identified
using the single-QTL scan, corresponding to the position with
the maximum LOD score. Empirical null distributions gener-
ated from extreme values were used to compute the P-value of
the maximum LOD score for each chromosome (Figure S10 in
File S2). QTL were identified using significance thresholds,
based on an a of 0.05 or 0.1, in an attempt to balance type I
and type II errors. Because LOD profiles showed evidence for
more than one QTL on some chromosomes, we also performed
genome scans with a two-QTL model (“scantwo” function)
using a 5-cM step size. The presence of a second additive
QTL on the same chromosome was identified from the two-
dimensional scan by considering both the additive and the
difference between additive and single-QTL LOD scores (con-
sidering only self–self pairs of chromosomes), and comparison
with an empirical null distribution generated using 1000 two-
dimensional permutations at an a of 0.05 or 0.1 (Figure S11 in
File S2). To identify significant interactions between pairs of
loci, we used the scantwo function to compute the LOD scores
for a pairwise interaction model (the difference between an
additive and full model per pair of loci) (Broman et al. 2003),
and determined threshold LOD values at an a of 0.05 or
0.1 based on an empirical null distribution generated using
1000 two-dimensional permutations (Figure S12 in File S2).

Final models included all identified additive loci and ge-
netic interactions. QTL models were fit using the “fitqtl” func-
tion to determine the estimated effect sizes and percent of
variance explained. Both within and between traits, QTL
were considered the same locus if they were within 30 cM
from one another. Average chromosome length is 250 cM
(range: 67–537 cM).
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Creation of an advanced intercross population

We created an advanced intercross population by 11 rounds of
sporulation and mating starting with a hybrid (F1) of the oak
and vineyard strains. As both parental strains are homothallic,
we sought to maximize intertetrad mating as follows. Typi-
cally, 2.53 108 cells were sporulated for an average of 9 days.
Cells were sporulated at room temperature in 1% potassium
acetate at a density of 5 3 107 cell/ml. For mating, the spor-
ulated culture was resuspended in equal amounts of water
and ether, and vortexed for 10 min to kill unsporulated cells.
Spores were separated using centrifugation, washed with
water, and incubated in 1 mg/ml Zymolyase for 10 min at
30�. Spores were resuspended in a large volume of 0.01%
Triton and vortexed to increase separation of spores. Spores
were subsequently concentrated and plated at high density
on multiple YPD plates (�1.5 3 108 spores per plate). After
19 hr of growth, cells were scraped off the plates and resus-
pended in 1% potassium acetate to begin a new round of
sporulation. Following the final round of sporulation, spores
were resuspended in liquid YPD and incubated overnight to
facilitate selfing via mating type switching and subsequent
mating between mother and daughter cells, resulting in a
mapping population comprising homozygous diploids.

Whole-genome sequencing and analysis

Libraries for DNA sequencing were prepared and multiplexed
using standard protocols and sequenced using an Illumina
HiSeq to an average depth of 40–175 3. Reads were aligned
to the reference genome (genome version R64-1-1 released
2/3/2011, also known as sacCer3) using BWA (Li and Durbin
2009) and single-nucleotide polymorphisms (SNPs) were
identified using SAMtools (Li et al. 2009). SNP alleles, position,
quality, and the number of high-quality reads mapping to the
reference or alternate alleles were extracted from VCF files and
analyzed in R. Oak- and vineyard-specific alleles were identified
in each sample by comparing to SNPs found by sequencing the
oak and vineyard strains. The read depth at each locus was
calculated as the sum of reads mapping to reference and alter-
nate alleles. The number of crossover events was identified in
the advanced intercross F12 clones by identifying transitions
between oak and vineyard SNPs. We required at least two ad-
jacent SNPs from the same parent to define a crossover. For the
panel of F2 segregants, numbers of crossovers were based on
single transitions in marker genotypes.

QTL mapping using MULTIPOOL

To analyze sequencingunderselectiondataweusedMULTIPOOL,
which performs genetic mapping from pooled sequencing
experiments using a discrete dynamic Bayesian network
(Edwards and Gifford 2012). The software takes SNP posi-
tions per chromosome as input and the read counts of each
allele. MULTIPOOL analysis was performed on filtered data.
SNPs with minor allele frequency , 10% were excluded.
Samples used for comparative analysis of SNP frequencies were
separated by 12–14 generations (low dilution rate chemostat)
or 20–26 generations (high dilution rate chemostat). Replicate

chemostats were analyzed separately and by combining reads at
each SNP. Analyses were run in ‘contrast’ mode, with the ex-
ception of the advanced intercross results shown in Figure S5 in
File S2. “Contrast” mode identifies significant differences be-
tween two experiments based on the null hypothesis that the
underlying allele frequencies across the genome are the same
between the two experiments. Each comparison was run with
parameters n = 1000 or n = 200 (number of individuals) and
r = 1000 or r = 2500 (length of centimorgan in bases). We
found that different parameter combinations did not change the
overall shape of the LOD profile; however, the n parameter has a
large effect on the magnitude of LOD scores. To assess statistical
significance, we performed null comparisons between replicate
chemostats assayed prior to selection in the chemostat. The null
comparisons had LOD scores ranges of 20.3 to 0.74 for n =
200 and 0.4–3.03 for n = 1000.

Analysis of variation in HXT6 and HXT7

The HXT6 and HXT7 genes were amplified individually using
locus-specific PCR primers from the oak and vineyard strains
and cloned in plasmids. Plasmid inserts were Sanger se-
quenced to catalog genetic variation between the oak and
vineyard genes and used as templates for generating allele
replacements. For the structure homology model, the vine-
yard HXT7 was modeled from PDB entry 4GBZ (Sun et al.
2012) using ModPipe (in ModBase) (Pieper et al. 2014). Re-
ciprocal hemizygote strains were created by first replacing
the HXT6 or HXT7 locus with a construct containing the
G418 resistance marker (kanMX) in the homozygous oak
and vineyard parental strains (BC248 and BC241). These
strains were then mated to the opposite parental strain to
create heterozygous gene deletions in the hybrid back-
ground. Allele replacements were created in haploid strains
of the oak and vineyard genetic backgrounds [NCYC3606 and
NCYC3591 (Cubillos et al. 2009)]. Overlapping PCR was used
to create alleles containing single-amino acid modifications.
For each allele replacement, HXT6 or HXT7 was first replaced
by the URA3 gene and subsequently replaced by the modified
allele. These strains were then crossed to the original oak and
vineyard strain (BC248 and BC241) of the same background.
The mated strains were sporulated and tetrads were screened
to identify diploid homothallic prototrophs (i.e., containing
functional HO and URA3 genes) exhibiting sensitivity to
G418 and resistance to hygromycin, indicating inheritance of
the sporulation marker from the original parental strains. The
genotype at the HXT7 locus was determined by Sanger se-
quencing. Final allele replacement strains were also crossed
to the opposite parental background to create homozygous
allele replacements in the hybrid background.

Data availability

Strains and mapping populations are available upon request.
Data andscriptsused foranalysis areavailable through theOpen
Science Framework: https://osf.io/p5z3f/ (DOI 10.17605/
OSF.IO/P5Z3F) and bulk segregant sequencing data are avail-
able through the Sequence Read Archive (SRP101668).
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Results

Distinct genetic architectures determine growth rate
and lag duration distributions between environments

We have previously shown that two wild yeast isolates, iso-
lated from an oak tree (BC248, hereafter “oak”) and from a
vineyard (BC241, hereafter “vineyard”) differ in exponential
growth rate (hereafter “growth rate”) and lag duration (here-
after “lag”) in media containing different glucose concentra-
tions (Ziv et al. 2013b). On average, oak cells grow faster and
lag for shorter amounts of time than vineyard cells, consistent
with the general pattern that oak-associated strains grow
better than vineyard strains in low-glucose conditions (Clowers
et al. 2015). The difference in the response to increasing nutri-
ent concentration can be characterized by growth in two differ-
ent glucose environments: 0.22-mM (“growth rate-limiting” or
“limiting”) and 4.44-mM (“growth rate-nonlimiting” or “non-
limiting”) glucose. To identify QTL that underlie variation in
growth rate and lag, we used a panel of 374 recombinant seg-
regants (Gerke et al. 2006) genotyped at 225 loci throughout
the genome (Gerke et al. 2009). Each segregant was pheno-
typed in both growth rate-limiting and growth rate-nonlimiting
glucose environments using a high-throughput microscopy-
based microcolony assay (Levy et al. 2012; Ziv et al. 2013b).

The microcolony assay enables estimation of both the
central tendency and dispersion of growth rate and lag for
each genotype by measuring the growth of hundreds to
thousands of genetically identical microcolonies within a
single well of a microtiter plate. Growth rate distributions
for wild isolates in both glucose environments are approxi-
mately normal and the central tendency, and dispersion, are
characterized by the mean and SD, respectively. By compar-
ison, lag distributions tend to be asymmetric and therefore the
central tendency and dispersion are characterized by their
median and MAD. Cell growth commences in , 1 hr of in-
oculation in nonlimiting glucose, so microcolonies do not
have measurable lag times in that medium using our assay
(Ziv et al. 2013b). As microcolonies collide prior to running
out of glucose, our assay does not enable quantification of the
stationary phase. Therefore, our phenotypic analysis resulted
in three traits defined by central tendency and three traits
defined by dispersion that are amenable to genetic mapping
(Figure S1 in File S2).

Phenotypic analysis of recombinant segregants recapitu-
lated three known correlations between phenotypes (Ziv et al.
2013b): (1) a strong positive correlation between median lag
and lag MAD; (2) weak correlations between mean growth
rate and growth rate SD; and (3) a negative correlation be-
tween mean growth rate and median lag (Figure S2 in File
S2). There is also a positive correlation for mean growth rate
in the limiting and nonlimiting glucose concentrations. As
there are frequently relationships between the central ten-
dency and dispersion of trait values, quantifying phenotypic
variability requires estimates that are independent of the
central tendency (Geiler-Samerotte et al. 2013). Therefore,
we performed loess regression of estimates of dispersion (i.e.,

SD or MAD) as a function of estimates of central tendency
(i.e., mean or median) and defined the residuals of the re-
gression as phenotypic variability values used for mapping
purposes (Figure S1 in File S2, Materials and Methods).

We identified QTL, defined as statistically significant as-
sociations between genotypes and traits, using the R package
R/qtl (Broman et al. 2003) (Materials and Methods). We first
searched for additive QTL and identified multiple such QTL
for most traits (Figure 1 and Figure S3 in File S2). Genotype
probabilities and LOD scores were calculated at each cM po-
sition (total map length is 4076 cM) and the average distance
between genotyped markers is 19.4 cM (Materials and Meth-
ods). Both within and between traits, QTL were considered
the same locus if they were within 30 cM of one another. We
determined genome-wide significance levels for each QTL
scan by determining the distribution of maximum LOD scores
from 10,000 permutations of the data (Churchill and Doerge
1994; Broman et al. 2003). For mean growth rate in non-
limiting glucose, mean growth rate in limiting glucose, and
median lag in limiting glucose, we found (using a genome-
wide significance threshold of a = 0.05) seven, six, and five
QTL, respectively (Figure 1). As expected based on trait cor-
relations, some QTL are common between traits, but we also
identified unique QTL for each trait (Figure 1 and Figure S3
and Table S1 in File S2). The amount of overlap between
traits may be underestimated by eliminating loci that are
close to significance. Increasing the significance threshold
to 0.1 resulted in the identification of three additional loci.
Although the new QTL were shared between phenotypes,
each trait still retained unique loci (Figure 1). It should be
noted that the overlap between correlated traits might also
be overestimated due to correlated errors. The estimated
effect of each QTL ranged from 4 to 23% of the difference
in parental phenotypes (Figure S4 in File S2). Alleles at QTL
that increase the trait value are found in both parents for each
trait (Figure 1 and Figure S4 in File S2). We identified fewer
QTL with additive effects for phenotypic variability traits:
two for growth rate in nonlimiting glucose, none for growth
rate in limiting glucose, and one for lag in limiting glucose
(Figure 1). No additional QTL for variability traits were iden-
tified when the significance threshold was increased to 0.1
(Figure 1). Two of the three additive QTL contributing to
phenotypic variability were also found to underlie pheno-
typic variation (Figure 1 and Table S1 in File S2). One of
these two, a locus on chromosome IV, had an additive effect
on four traits: mean growth rate in both glucose environ-
ments as well as median lag and lag variability in limiting
glucose.

We tested for genetic interactions using two-dimensional
genome scans (Materials and Methods). We identified (using
a genome-wide significance threshold of a = 0.05) a total of
five significant interactions across all traits (Figure 2 and Table
S2 in File S2). The majority of interactions were found for
variability traits (4/5). This pattern did not change when the
significance threshold was increased to 0.1 (Figure 2), which
results in the identification of three additional interactions (6/8
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interactions for variability traits). We identified a case of sign
epistasis, between a locus on chromosome I and a locus on
chromosome X, that was common to two phenotypic vari-
ability traits: growth rate variability and lag variability in
limiting glucose (Figure 3A). In this case, oak–oak and vineyard–

vineyard combinations of the two QTL result in low variabil-
ity whereas both combinations of oak–vineyard QTL result in
high variability (Figure 3B). This symmetrical relationship
means that the QTL exhibit no additive effects across the
panel of segregants. Additionally, three loci that interact to
contribute to lag variability, on chromosomes IX, XII, and XV,
have interactive and additive effects on other traits. The chro-
mosome XII locus interacts to affect mean growth rate in the
limiting glucose concentration, whereas the loci on chromo-
somes IX and XV have additive effects on mean growth rate
and median lag (Figure 1 and Figure 2). The effect sizes of
interacting loci (given the genotype of the interaction part-
ner) are comparable to the effect sizes of additive loci (Figure
S4 in File S2).

Central tendency traits differ from variability traits in the
proportion of total trait variance explained by additive QTL
compared with interactions. For central tendency traits, ad-
ditive effects account for 29–56% of the total variance and
genetic interactions only account for an additional 0–1.2% of
the variance. By contrast, additive QTL effects only account
for 0–14% of the variance in variability traits whereas inter-
actions explain an additional 12–14% of the variance (Figure
4). It is not surprising that we explain less of the variance for
variability traits overall as measuring variability is inherently
noisier than measuring central tendency. Using estimates of
variance between replicate wells of the parental strains, we
estimated the proportion of phenotypic variance between the
F2s that is genetic (Figure S1 in File S2, Materials and Meth-
ods). For central tendency traits, we find 83, 94, and 94% of
the variance for growth rate in nonlimiting glucose, growth
rate in limiting glucose, and lag duration in limiting glucose is
genetic. As expected, the proportions for variability traits are
lower; 14, 24, and 44% of the variance is genetic for the
respective conditions.

Sequencing an advanced intercross population under
selection increases mapping resolution

One of the challenges of QTL mapping is resolving loci to the
causative gene and variant. We sought to improve the reso-
lution of QTL mapping by using a method of bulk segregant
mapping in which a pooled advanced intercross population is
subjected to selection for the trait of interest and sequenced to
identify changes in allele frequencies (Parts et al. 2011). We
created an advanced intercross population starting from an
oak/vineyard F1 using 11 rounds of meiosis and random
mating (Materials and Methods). Allele frequencies and link-
age in the advanced intercross population were determined
by sequencing the final (F12) population and isolated clones.
Allele frequencies in the F12 population deviated from the
expectation of 0.5 at a number of loci (Figure S5 in File S2). A
possible cause of this deviation is inadvertent selection dur-
ing creation of the population. Indeed, two of the three major
sporulation efficiency QTL known to segregate in this cross
(Gerke et al. 2009) show strong nonrandom deviations in the
F12 population (Figure S5 in File S2). Despite inadvertent
selection during generation of the advanced intercross
population, . 85% of SNPs still segregated with minor allele
frequencies . 10% throughout the genome. Linkage in the
intercrossed population was decreased compared with the F2
segregants as an average of 79.6 6 19 crossover events were
identified in three F12 clones (Figure S5 in File S2, Materials
and Methods), compared to an average of 31.9 6 5.6 in the
374 F2 segregants (Materials and Methods). The increase in
recombination frequency is consistent with the genetic map
expansion observed in previous studies (Parts et al. 2011).

Bulk segregant mapping requires a means of selecting,
or enriching, genotypes with extreme phenotypes. We have
previously shown that the effect of glucose concentration
on the mean growth rates of the oak and vineyard strains
can be recapitulated using glucose-limited chemostats (Ziv
et al. 2013b). Therefore, to enrich for QTL conferring in-
creased mean growth rate, we maintained the advanced in-
tercross population in replicate glucose-limited chemostats at

Figure 1 Multiple QTL underlie phenotypic variation and variability of cell growth. Additive QTL identified for all analyzed traits are depicted.
Chromosome size and QTL position correspond to genetic distance (in cM). Colors depict estimated effect sizes. Different shapes are used to distinguish
distinct QTL on the same chromosome. Positive effects (blue) correspond to oak alleles that increase growth rate traits or decrease lag duration traits,
whereas negative effects (red) correspond to vineyard alleles that increase growth rate traits or decrease lag duration traits. All loci were significant at
a = 0.05 except those shown in gray, which were significant at a = 0.1.
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a low (D = 0.18 hr21) or high (D = 0.35 hr21) dilution rate. A
lower dilution rate results in a lower steady-state glucose
concentration in the chemostat (Ziv et al. 2013a). Therefore,
the high dilution rate serves as a proxy for the nonlimiting
glucose environment and the low dilution rate serves as a
proxy for the limiting glucose environment. To directly assess
the contribution of the advanced intercross population to
QTL mapping resolution, we also pooled the panel of F2
segregants and grew them in the same chemostat conditions
(Materials and Methods). We collected and sequenced multi-
ple samples from each chemostat over 20–40 generations
to minimize the chance of de novo mutations contributing
to the selection. We determined allele frequencies using
whole-genome population sequencing and identified QTL
by comparing the allele frequencies between early and late
time points using MULTIPOOL (Edwards and Gifford 2012)
(Materials and Methods) (Figure S6 in File S2).

To directly compare results from the advanced intercross
population with the genetic map used for interval mapping,
we computed the maximal LOD score for each genomic in-
terval flanked by markers used for interval mapping. We
defined 209 intervals, with a median physical distance of
50 kb (range: 14–139 kb). A number of intervals with high
LOD scores are common to all three QTL analyses (interval
mapping of F2s, bulk segregant mapping of F2s, and bulk
segregant mapping of the F12 intercross) (Figure S3 and
Figure S6 and Table S3 in File S2). Among these intervals
are those that contain the shared or environment-specific
additive QTL for mean growth rate on chromosomes IV, VIII,
and XVI. Additionally, the growth rate QTL at the left tip of
chromosome VII, originally identified in both glucose concen-
trations, was also found using bulk segregant approaches, but
only in the low-dilution condition. A failure to identify a QTL
using the advanced intercross can be explained by inadver-
tent selection in the same region during creation of the ad-
vanced intercross, for example, the middle of chromosome
VII (Figure S5 in File S2). However, additional regions were
also missing from the analysis of the advanced intercross (but

common for the bulk segregant and interval mapping of the
F2s), specifically, regions of chromosomes VII, XI, XII, and XV
(Table S3 in File S2). The small sample size for F2 segregants
used for sequencing under selection could potentially con-
found the analysis as nonrandom associations between true
QTL and unlinked loci may result in spurious linkage signals.
This is supported by the observation of regions with high LOD
scores for the F2 pool not shared by the advanced intercross
or the interval mapping of the F2 segregants (Table S3 in File
S2). As the differences between the interval mapping of F2s
and the bulk segregant mapping of the advanced intercross
may be due to technical or biological reasons, we focused on
loci identified by both methods, which represent strong can-
didates for loci that are important for growth in low glucose
environments.

Decreased linkage in the advanced intercross population
has two consequences for QTL resolution exemplified by two
QTL. First, LOD scores decreased rapidly from their peaks at
individual QTL (Figure 5A). The size of 2-LOD drop intervals
for the chromosome IV QTL decreased from 67 kb (limiting)
and 245 kb (nonlimiting) using interval mapping with F2s to
9.3 kb (low dilution) and 31.8 kb (high dilution) using the
advanced intercross population. Most of the increased reso-
lution was due to the use of the advanced intercross and not
the bulk segregant approach, as the interval for the pooled
F2s ranged between 22.9 and 78.8 kb in low glucose and
between 66.2 and 203.4 kb in high glucose, depending on
the choice of MULTIPOOL parameters (Materials and Meth-
ods). The increased resolution enabled us to identify HXT6
and HXT7, which encode high-affinity glucose transporters,
as candidate causative genes at the chromosome IV QTL (Fig-
ure 5A). Second, linkage analysis in the advanced intercross
population indicates that a QTL on chromosome VIII is com-
posed of multiple linked QTL (Figure 5B). Analysis of the F2
pool suggests only a single QTL at this locus, which may be an
example of a ghost QTL (Doerge 2002), in which two linked
QTL result in a maximum LOD score at a location between the
two loci due to insufficient mapping resolution (Figure 5B).

Figure 2 Genetic interactions contribute to phenotypic variation and variability of cell growth. Significant genetic interactions identified for phenotypic
variation and variability traits are shown as lines connecting loci. Chromosome size and QTL position correspond to genetic distance (in cM). Line widths
correspond to the percent of variance explained when only the two interacting loci are modeled. Interactions underlying heritable variation in central
tendency (pink) and heritable variation in variability (green) were identified. Different shapes distinguish distinct loci on the same chromosome and
correspond to shapes in Figure 1. Interactions were significant at a = 0.05 except those indicated by dashed lines, which were significant at a = 0.1.
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Sequence variation in HXT7 contributes to variation
in growth

HXT6 and HXT7 encode nearly identical high-affinity glucose
transporters, making them plausible candidate genes under-
lying the growth rate QTL on chromosome IV. De novo am-
plifications of these genes are frequently selected during
experimental evolution in glucose-limited chemostats (Brown
et al. 1998; Gresham et al. 2008; Kao and Sherlock 2008);
however, whole-genome sequencing of the oak and vineyard
parental strains did not identify copy number variation at this
locus. As high-throughput short-read sequencing is unable to
accurately resolve nucleotide variation in duplicate genes, we
cloned and sequenced HXT6 and HXT7 from each parent (File
S1, Materials and Methods). To assess the contribution of
natural variation in HXT6 and HXT7 to variation in growth
rate and lag duration, we created all possible reciprocal hemi-
zygotes, in which one parental allele of HXT6 or HXT7 is
knocked out, in the F1 hybrid. Hemizygosity for either paren-

tal HXT6 allele results in no phenotypic difference in the F1,
whereas the F1 containing only the oak HXT7 allele shows
significant phenotypic differences from the F1 containing
only the vineyard HXT7 allele, suggesting that variation in
HXT7 alone contributes to variation in growth (Figure S7 in
File S2).

Sequence analysis of the oak and vineyard HXT7 alleles
revealed 79 SNPs and 26 aa differences in the 1713-bp
(571 aa) open reading frame (ORF). To test the effect of
sequence variation in HXT7, we performed allele swaps in
parental strains and in the F1. We created HXT7 allele re-
placement strains that contained no additional genetic mod-
ifications except the replaced allele, which included the
entire ORF and 530 bp of upstream sequence (which con-
tained three SNPs and a 2-bp indel) (Materials and Methods).
By considering sequence conservation and the nature of the
amino acid changes, we identified a variant amino acid,
T469Q, as potentially affecting protein function. This was
further supported by using a protein structure model based
on the crystal structure of the bacterial homolog XylE (Sun
et al. 2012) (Materials and Methods). The structural homol-
ogy model showed the amino acid pointing into the trans-
porter channel, in close proximity to amino acids known to
interact with the translocating sugar molecule (Sun et al.
2012; Madej et al. 2014). To test the effect of the T469Q
variant, we also created single-amino acid replacement al-
leles in each genetic background.

Phenotypic analyses revealed significant differences attrib-
utable to allele replacements in the growth-limiting glucose
concentration consistent with effects determined by linkage
mapping. Namely, the oak HXT7 allele confers enhanced
mean growth rate (Figure 6A) and decreased median lag
(Figure 6B). Interestingly, the effect of either the oak or vine-
yard HXT7 allele is dependent on the genetic background. A
strain containing the vineyard allele in the otherwise oak
background grows slower and lags for a longer time than
the vineyard parent. In contrast, the oak allele in the vineyard
background caused a small but significant increase in growth
rate and decrease in lag duration. Similar effects were found
in the F1 background (Figure 6). This is consistent with ge-
nome background effects modifying the effect of either pa-
rental HXT7 allele. We found that the single-amino acid
modification T469Q in the oak allele significantly reduces
the growth rate of the oak parent, but has a smaller effect
than replacement with the entire HXT7 vineyard allele for
both mean growth rate (Figure 6A) and median lag (Figure
6B), suggesting that additional variation within HXT7 affects
growth. Conversely, engineering the reciprocal Q469T mod-
ification into the vineyard HXT7 allele does not alter any of
the growth phenotypes in a vineyard genetic background
consistent with intra-allelic variation in the oak HXT7 allele
mediating the effect of the T469Q variant. Consistent with a
smaller effect size of the QTL in the nonlimiting glucose con-
centration as determined using linkage mapping, replacing
the entire oak HXT7 allele with the vineyard HXT7 allele in
the oak background is required to detect a decrease in growth

Figure 3 A sign epistatic interaction underlies heritable variation in
growth rate variability. (A) LOD scores corresponding to additive (two-
QTL) or full (two-QTL and interaction) models for each combination of
chromosome I and X positions for linkage to phenotypic variability in
growth rate measured in limiting glucose. (B) Average growth rate vari-
ability in the limiting glucose condition for the four genotype combina-
tions corresponding to the two markers with the maximum LOD score
difference shown in (A). Error bars represent SEs.
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rate in nonlimiting conditions (Figure S8A in File S2). Al-
though the chromosome IV QTL containing HXT7 is linked
to variability in lag, we did not find a significant effect on lag
variability in allele-swapped strains (Figure S8B in File S2).
However, this is likely due to the small number of strains used
in the regression to estimate median-independent lag vari-
ability, which reduces our power to detect a statistically sig-
nificant difference (Levy and Siegal 2008).

Although we have not found evidence for adaptive evolu-
tion at the HXT7 locus in natural populations, it is noteworthy
that HXT7 is a recurrent target of selection in long-term ex-
perimental evolution in glucose-limited environments. Copy
number variation containing HXT6/HXT7, but not nucleotide
variation, has been reported in multiple experimental evolu-
tion studies (Brown et al. 1998; Gresham et al. 2008; Kao and
Sherlock 2008; Koschwanez et al. 2013; Selmecki et al.
2015). To study the effect of an HXT6/HXT7 amplification on
glucose-dependent growth, we measured growth rates of an
evolved clone in which HXT6/HXT7 is amplified. (Gresham
et al. 2008) at different glucose concentrations using the
microcolony assay. We find that a HXT6/HXT7 amplification
has a growth-rate advantage only at the limiting glucose con-
centration but results in decreased growth rate at higher
glucose concentrations (Figure S9 in File S2), consistent with
antagonistic pleiotropy. By contrast, the naturally occurring
HXT7 allele in the oak strain is beneficial in both limiting and
nonlimiting glucose environments.

Discussion

The field of quantitative genetics was established nearly
100 years ago, reconciling the inheritance of continuously
distributed traits with Mendelian genetics (Nelson et al.
2013b). Large-scale genetic mapping of quantitative traits
first became feasible following the utilization of molecular
polymorphisms as genetic markers (Botstein et al. 1980) and
development of analytical methods (Lander and Botstein
1989). Recently, with increased sample sizes and resources,

genetic mapping studies are detecting more QTL but also
uncovering surprising complexity, including gene-by-environment
interactions, epistasis, and linkage between causative loci
(Mackay et al. 2009). The results of our study serve to em-
phasize the prevalence of these characteristics even when
considering closely related traits and environments. Further-
more, we show that genetic interactions and gene-by-envi-
ronment interactions underlie variation in both the central
tendency and variability of traits.

Gene-by-environment interactions are a result of genetic
loci that have different effects on phenotypic variance in
different conditions. Gene-by-environment interactions are
frequently found in QTL studies, and in one study were shown
to affect the expression of a third of yeast genes (Smith and
Kruglyak 2008). We find both shared loci with different effect
sizes as well as environment-specific loci and genetic interac-
tions when quantifying cell growth in two environments that
differ in glucose concentration 20-fold. Measuring changes in
QTL effect sizes over a finer gradient of glucose concentration
may be informative, analogous to dose-dependent effects ob-
served for chemical resistance (Wang and Kruglyak 2014).
For example, the contribution of HXT7 to growth rate varia-
tion might indicate the extent of control that the nutrient
transport step has on growth rate, potentially relating the
transporter Km to the Monod constants (Ks) of the oak and
vineyard strains (Ziv et al. 2013b). We find that natural var-
iation in HXT7 does not exhibit antagonistic pleiotropy,
whereas amplification of HXT7, which is repeatedly observed
in experimental evolution studies, confers a cost at higher
glucose concentrations. Identification of a target of selection
in laboratory evolution experiments that also shows causa-
tive natural variation suggests that experimental evolution
serves as an important window into evolutionary adaptation
in nature. Contrasting the outcomes between experimental
evolution in the lab and natural variation may prove fruitful
for understanding the causes and consequences of short-term
adaptation on allelic variation, as compared with long evolu-
tionary histories.

Figure 4 Variance in phenotypic variation is mainly
explained by additive QTL whereas variance in phe-
notypic variability is mainly explained by genetic in-
teractions. Percent of total trait variance explained
per trait by a model comprising all identified addi-
tive QTL (black) or comprising all identified additive
QTL and genetic interactions (gray) is shown.
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Recently, there has been increased interest in searching
for so-called variance QTL (vQTL), by analyzing the difference
in variance between genotypic classes, instead of the differ-
ence in means (Ronnegard and Valdar 2011; Shen et al. 2012;
Yadav et al. 2016). vQTL are not the same as variability QTL,
because for vQTL the relevant variance is computed across
strains (specifically those strains with a particular allele at a
particular locus). Therefore, vQTL analyses are unlikely to
uncover loci that affect within-strain variance (variability),
and instead they uncover loci with alleles that suppress or
enhance the mean effects of genetic differences at other loci
(Nelson et al. 2013a; Yadav et al. 2016). When clonal data
and repeated measurements of different individuals with the
same genotype are available, phenotypic variability can be
directly estimated and mapped as a quantitative trait. Alleles
determining variability segregate in natural populations and
have been mapped in yeast (Ansel et al. 2008), flies (Mackay
and Lyman 2005; Ayroles et al. 2015), plants (Hall et al.
2007; Jimenez-Gomez et al. 2011), and mice (Fraser and
Schadt 2010). To our knowledge, our study is the first to find
genetic interactions determining phenotypic variability.

Moreover, we find that genetic interactions make up a larger
proportion of explained trait variance for variability traits
compared to traits of central tendency. This is consistent with
the observation that phenotypic stabilizers (genes that in-
crease phenotypic variability when absent or impaired) tend
to be interaction hubs (Levy and Siegal 2008; Bauer et al.
2015). In particular, stabilizers are characterized by many
synthetic lethal genetic interactions (Levy and Siegal
2008). However, these studies have also shown that single-
gene mutations can affect phenotypic variability. It is tempt-
ing to think that, in our study, the parental strains have
evolved to have low variability and the combination of dis-
parate alleles leads to higher variability. This is supported
by the effects of some but not all of the identified genetic
interactions, including a sign epistatic interaction in which
the interaction between two loci results in high phenotypic
variability when the alleles are inherited from different
parents and low variability when the alleles are from the
same parent. It will be interesting to see if this observation
will generalize to variability in different phenotypes and
systems.

Figure 5 Increased QTL resolution due to increased recombination in an advanced intercross population. (A) LOD score profiles for all of chromosome IV
obtained by interval mapping using F2 segregants (dark purple) or sequencing under selection of an advanced intercross population (orange). For the
interval mapping profile, genetic distances were converted to physical distances based on marker positions. The inset shows LOD profiles for a 15-kb
region (gray region in main plot) centered on the peak LOD score and the corresponding physical position of genes within the QTL. (B) LOD score profiles
for a region of chromosome VIII analyzed by sequencing under selection of a F2 pool (light purple) or using an advanced intercross population (orange).
MULTIPOOL parameters for depicted data are n = 1000 and r = 1000.
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Our study highlights the advantage of using different
mapping approaches to dissect the genetic basis of complex
traits. Although individual segregant analysis has the advan-
tage of detectinggenetic interactions, the increased resolution
of our bulk segregant approach was remarkable. The in-
creased resolution is due to both use of an advanced intercross
population and the increased sampling due to bulk segregant
analysis. Importantly, our implementation of bulk segregant
analysis did not require extensive parental-strain construc-
tion. Although previous studies used genetically engineered
strains (Ehrenreich et al. 2010; Cubillos et al. 2013), we cre-
ated our advanced intercross population using homothallic
diploid strains without the need for auxotrophic or drug re-
sistance markers. This approach should be readily adaptable
to other strains and related species, enabling bulk segregant
approaches without extensive strain manipulation.

We confirmed the effect of sequence variation in HXT7 on
variation in growth rate and lag duration. However, we iden-
tified important distinctions between the segregant analysis
and the allele replacements. Specifically, the differential ef-
fect of the allele depending on the genetic background indi-
cates the presence of additional genetic interactions not
identified by our two-dimensional scan. These effects might
reflect higher order interactions involving more than two loci
(Taylor and Ehrenreich 2014). Alternatively, they might be
the result of an accumulation of undetected pairwise interac-
tions. Although we did not find significant interactions in-
volving the chromosome IV QTL position for mean growth
rate and median lag duration, the estimated effect of the
locus was consistently smaller in the vineyard background
when considering the genotype at other additive loci, partic-
ularly in the higher glucose concentration.

Figure 6 Background-dependent effects on HXT7 contribute to cell growth rate variation. Distributions of (A) mean growth rate and (B) median lag
duration for allele replacement strains grown in limiting glucose. P-values are for two sample t-tests (n = 12 for each analyzed strain). The diploid strain
genotype and the genotype at the HXT7 locus are of either oak (blue) or vineyard (red) parental origin. Single-amino acid allele replacements within
HXT7 are depicted as mosaics of oak and vineyard genotypes at the HXT7 locus.
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Our study emphasizes the inherent challenges of accu-
rately predicting phenotype from genotype. It is necessary
to account for genetic interactions, environmental variation,
and phenotypic variability, as the estimated marginal additive
effect of an allele may not reflect the actual effect in any
specific genetic background.
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