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ABSTRACT The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species
from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by
analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve
challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view
of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org)
provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.
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TOsolve challengingdiseaseproblems,weneed tounify the
heterogeneous data that relates genomics to disease traits.

Most databases tend to focuseitheron asingledata type across
species, or on a single species across data types. Although each
database may provide rich, high-quality information, none is
unified and comprehensive across species, over biological
scales, and throughout data types (Figure 1A).

Without a big-picture view of phenotypic data, many
questions in genetics are difficult or impossible to answer.
Use of computable phenotypes—which can be analyzed effi-
ciently with algorithms—is a crucial strategy for gaining this

broader view. When a disease has an unknown genetic basis, or
is associated with mutations in multiple genes, computable
phenotypes can provide valuable clues to the underlying com-
plexity. Aggregating the data in one place is necessary for search
and retrieval (Figure 1B), but aggregation often results in a loss
of data richness and meaning. Connecting the dots enables the
bigger picture to emerge: computable phenotypes (Figure 1C)
provide key links across sources, species, and data types.

The Monarch Initiative (https://monarchinitiative.org)
provides tools for genotype-phenotype analysis, genomic di-
agnostics, and precision medicine across broad areas of dis-
ease. These tools depend on the data integrated through
computable phenotypes for cross-species comparisons.

To fully exploit the power of computable phenotypes,
several obstacles must be overcome. These obstacles are
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illustrated for a specific example related to a family of diseases
in Figure 2:

1. Different communities: Different communities use dif-
ferent language to describe the same phenotypes, even
for the same species (e.g., clinicians use the term “micro-
gnathia,” where patients would use “small jaw”). Simi-
larly, a mouse researcher might describe the orthologous
phenotype as “small mandible.”

2. Phenotype profile matching: Many diseases closely re-
semble each other, and the constellation of phenotypes
associated with any given disease rarely, if ever, manifest
in the same way in every affected patient. Identifying the
hallmark features as well as key differentiating pheno-
types is an essential part of a differential diagnosis. In the
above example, “proptosis” is common in Shprintzen–
Goldberg syndrome, but not in Loeys–Dietz or Marfan
syndromes. Any observed phenotype profile varies depend-
ing on the location and nature of the gene variation. This
degree of variability means that fuzzy matching between
sets of phenotypes can play a key role, both in differential
diagnosis and mechanistic inquiry.

3. Relevance of pathways and co-involvement: Knowing
which genes/proteins are co-implicated in similar phe-
notypes provides important clues. Some evidence in
mice shows that mutations in FBN1 as well as TGFBR1
and TGFBR2 lead to an overlapping set of abnormal phe-
notypes including those of the skeletal system (Arslan-
Kirchner et al. 2016). Alteration of the murine ortholog
of SKI (Ski) is associated with skeletal craniofacial anom-
alies in mouse models, and the SKI gene plays a role in
TGF metabolism.

4. Orthology: Gene orthology between species is not black
and white: some sequences are more closely related than

others. Moreover, describing orthology is complicated by
factors such as gene duplication and splice variation.
Sources differ as to whether given genes are orthologs
and if so, what type (e.g., least diverged ortholog, paralog,
one-to-one, many-to-many, etc.) (O’Brien et al. 2005;
Altenhoff et al. 2016). In the above example, the zebrafish
has two copies of the SKI ortholog: skia and skib.

5. Relevant models across species: A single animal model
rarely recapitulates all of the phenotypes exhibited in
human disease. It often takes a combination of models
to help form a complete picture. In this case, the Marfan
mouse model exhibits the “arachnodactyly” whereas the
zebrafish exhibits the craniofacial abnormalities (Doyle
et al. 2012).

6. Atomic phenotype similarity: Unlike genes, phenotypes
are not discrete entities; this makes querying databases
for phenotypes a difficult problem related to granularity.
For instance, queries for any term (e.g., hyperkeratosis)
should contain all results associated with more specific
variations of the underlying concept (e.g., palmoplantar
hyperkeratosis). It is not only hierarchical relationships
that matter, but basic similarity. For instance, micrognathia
is similar to small mandible but neither of these is a parent
of the other; rather both terms descend from “abnormal
jaw morphology”.

7. Anatomy and biological scales: Similar phenotypes are
recorded in different species for analogous anatomical
regions (e.g., hand vs. paw). They also apply to different
scales (e.g., “neurological phenotype” is related to more
specific concepts such as “dopaminergic cell loss”). Struc-
turing these concepts into networks allows both ma-
chines and humans to navigate complex interlinked
data.

Figure 1 Role of phenotypes in data integration. Computable phenotypes make it possible to deeply integrate databases and infer new insights.
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8. Hypothesis generation: Simultaneously overcoming
challenges 1–7 enables us to generate new hypotheses.
For instance, we could speculate that mutation in the
human SKI gene might lead to a disease with similarities
to Marfan syndrome and Loeys–Dietz syndrome. In fact,
these considerations supported the discovery of mutations
in the SKI gene as the cause of Shprintzen–Goldberg syn-
drome (Schepers et al. 2015).

Additional biological complexities make it even harder
to build a complete and accurate picture with the avail-
able phenotypic information. To name a few not illus-
trated above:

9. Inference: Phenotypes are often associated with dis-
eases and diseases to genes; thus the relationship be-
tween a specific phenotype and a specific gene may
need to be inferred. For instance, if we know that FBN1

is implicated in Marfan syndrome and that skeletal
anomalies such as arachnodactyly are associated with
Marfan syndrome, then we can infer that FBN1 is likely
to play some role in skeletal development and
homeostasis.

10. Staging and severity: Interpretations are affected by the
stage of an organism or the stage of disease at which the
phenotype is observed, in combination with phenotypic
severity.

11. Time: Biological processes occurring at different devel-
opmental times are hard to compare across organisms.

12. Phylogenetic distance: A model organism may not pre-
sent the exact spectrum of phenotypes when faced with
an orthologous genetic variation, and the similarities be-
tween phenotypes become subtler and thus harder to
find and quantify as phylogenetic distances increases

Figure 2 Challenges associated with integration of data using phenotypes. Published relationships are shown in solid lines. Dashed lines show
relationships that require computation and/or data integration. Around the perimeter of the figure are examples of the types of questions that are
difficult to answer using traditional (nonintegrative) methods. These questions are divided into “clinical,” “basic,” and “translational” research
categories. Each challenge is explained in the main text of the article.
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(e.g., pleiotropic phenotypes in Bardet–Biedl syndrome
are similar to effects seen in the cilia and basal bodies of
single-celled eukaryotes).

13. Noise: Observations may be incomplete or artifactual
(noise).

A Common Conceptual Framework

Data scientists often apply ontologies to organize heteroge-
neous data. Ontologies are collections of concepts logically
organized and linked. Most anatomy, phenotype, and disease
ontologies describe the biology of one particular species.
Examples are the Human Phenotype Ontology (Köhler et al.
2014) and the Mouse Anatomy Ontology (Hayamizu et al.
2015). The Monarch Initiative has developed four species-
agnostic ontologies designed to unify their species-specific coun-
terparts: GENO for genotypes (Brush et al. 2013), Uberpheno
for phenotypes (Köhler et al. 2013), UBERON for anat-
omy (Haendel et al. 2014), and MONDO for diseases
(Mungall et al. 2016). These ontologies provide a bridge be-
tween species-/domain-specific ontologies, allowing unified
analysis of disparate data sources (Figure 3). Monarch also
contributes to the Gene Ontology, which also unifies gene
function and subcellular anatomy across species (Ashburner
et al. 2000).

Monarch tools leverage this conceptual framework to help
users understand and diagnose disease. Statistical similarity
calculations enable comparison across species (Figure 2.5),
biological scales (Figure 2.7), and community-specific vocab-
ularies (Figure 2.1) (Smedley et al. 2013). Monarch supports

researchers and clinicians using this data with visualization
tools, application programming interfaces, and a rich web
site (https://monarchinitiative.org). These approaches make
it possible to overcome limitations in the data for many ap-
plications; including disease diagnostics (Bone et al. 2016),
drug repurposing, and improved phenotyping; both clinically
and in model organisms (e.g., helping identify candidate phe-
notyping assays based on preliminary phenotyping). Indeed,
Monarch’s unified data corpus and tools have been applied to
diagnosing real patients and plans are underway to scale up
their use with larger efforts, including the Undiagnosed Dis-
eases Network (Brownstein et al. 2015) and the 100,000
Genomes Project (http://www.genomicsengland.co.uk/the-
100000-genomes-project/).

To achieve this vision, we need technological advances
and collaborative processes beyond the common conceptual
framework. Existing descriptions of phenotypes and their
relationships to genomic variations are all-too-frequently pro-
vided in community-specific formats, which lack the details
and computational meaning needed for integration. Although
we have made some progress with natural language ap-
proaches to extracting key details (Groza et al. 2015), expen-
sive manual curation is still necessary.

To increase the portability and computability of phenotype
descriptions, data providers and journals should use common
phenotype information models. Such models require proper
identification of the organisms being phenotyped. We have
shown that �33% of mouse strains and 13% of fish strains
were not uniquely identifiable in the literature, causing the

Figure 3 The Monarch Initiative’s ontology-driven data integration pipeline. Diverse data from disparate sources and annotated to disparate species-
specific ontologies is integrated with unifying ontologies. The unified data corpus is used by analysis tools and interfaces.
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associated phenotype data to be lost to public repositories
(Vasilevsky et al. 2013). Increased use of organism-specific
nomenclature and identifiers, as supported by the Model Or-
ganism Databases, will be necessary for more effective shar-
ing of phenotype data.

A standard data exchange format is needed to ensure that
phenotypic knowledge is computable and accessible across a
variety of sources. Toward this end, we are developing an
exchange format (http://phenopackets.org) that will do for
phenotype data what existing formats [e.g., FASTA, Variant
Cell Format (VCF), and Browser Extensible Data (BED)] have
done for sequence data. Phenopackets can be used in a vari-
ety of settings, such as for submission to journals, in public
databases, for biodiversity collections, and for clinical data
sharing. They can apply to one organism or to groups of
organisms, and for qualitative or quantitative data.

We invite the community to aid in the sharing, aggregation,
and integration of cross-species phenotype data. By using,
testing, and contributing to the phenopacket standard, you
will be connecting the very dots that maximize mechanistic
discovery of the genetic bases of health and disease.
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