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ABSTRACT There has been a continuing interest in approaches that analyze pairwise locus-by-locus (epistasis) interactions using
multilocus association models in genome-wide data sets. In this paper, we suggest an approach that uses sure independence screening
to first lower the dimension of the problem by considering the marginal importance of each interaction term within the huge loop.
Subsequent multilocus association steps are executed using an extended Bayesian least absolute shrinkage and selection operator
(LASSO) model and fast generalized expectation-maximization estimation algorithms. The potential of this approach is illustrated and
compared with PLINK software using data examples where phenotypes have been simulated conditionally on marker data from the
Quantitative Trait Loci Mapping and Marker Assisted Selection (QTLMAS) Workshop 2008 and real pig data sets.
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GIVEN the fast development of high-throughput labora-
tory and statistical marker imputation techniques, the

currently available number of markers in genome-wide asso-
ciation studies or genomic prediction studies can be tens of
millions of markers (Georges 2014; 1000 Genomes Project
Consortium 2012). Screening through these enormous sets
using single-locus association techniques may be time-
consuming because of slowed computation times when cor-
recting the data with respect to cryptic relatedness (Kang
et al. 2010). The number of markers to be analyzed becomes
ultrahigh dimensional if the set of markers is extended to in-
clude all pairwise locus-by-locus interaction terms as pseudo-
markers (Sillanpää 2009; Li and Sillanpää 2012). In fact, this
creates a tradeoff between execution time and accuracy in
breeding-value estimation (Hu et al. 2011).

Use of multilocus association models to analyze genome-
wide associations or to estimate genomic breeding values
necessitates variable selection. This is often done using Bayes-
ian variable selection methods (O’Hara and Sillanpää 2009).
Computation times required to estimate parameters in these

models are generally much higher than when single-locus
models are used. Therefore, one may prefer to apply faster
maximum a posteriori probability (MAP) estimation tools
rather than Markov chain Monte Carlo (MCMC) techniques
(Kärkkäinen and Sillanpää 2012a; Knürr et al. 2013).

To reduce thedimensionof this problemandtomake itmore
regularized (possibly with a higher rank and reduced multi-
modality) before variable selection, a sure independence
screening method (Fan and Lv 2008) has been proposed. In
this method, a subset (say, 5000–10,000) of best-ranked
marginal associations is selected, and this marker subset
is subjected to Bayesian variable selection using mod-
ern variable selection methods (Kärkkäinen and Sillanpää
2012a; Knürr et al. 2013). Even though this strategy seems
towork efficiently in practice, there are still two camps: groups
accepting this approach (e.g., Kärkkäinen and Sillanpää
2012a; Knürr et al. 2013) and groups proposing even fancier
MCMC or MAP estimation algorithms of QTL effects from
even larger original marker sets (e.g., Peltola et al. 2012;
Gao et al. 2013). The common problem of the latter ap-
proaches is the prolonged execution time and thus difficulty
in monitoring the convergence of the algorithms in the
ultrahigh-dimensional space.

In this paper, we illustrate with real-world data sets and
simulated genetic architectures that we are able to map large
partsofQTLwithepistatic genetic architecturesusingourown
specification of sure independence screening and extended
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Bayesian LASSO (Kärkkäinen and Sillanpää 2012b). The sizes
of the illustrated problems are originally of order of 280 mil-
lion markers or even more.

Materials and Methods

Conventional single-locus epistasis model

Single-locus approaches have been used widely for estimat-
ing the epistasis effects of both quantitative and binary traits
(Wei et al. 2014). A standard single-locus model to search
pairwise G 3 G interactions is defined by

yi ¼ b0 þ bjxij þ bkxik þ bjkxijxik þ ei (1)

where yi denotes the phenotypic value of the n individuals, xij
or xik is the genotype value of individual i of marker j or k
( j; k ¼ 1; . . . ; p, j 6¼ k, where p represents the total number of
loci), b0 is the population intercept, bj and bk are the main
effects of the loci j and k, bjk is the pairwise interaction effect
of loci j and k, and ei corresponds to the residuals, assumed to
be independently Gaussian distributed as ei � Nð0;s2

eÞ. The
marker genotypes are coded so that 1 and21 refer to the com-
mon and rare homozygotes, respectively, while 0 refers to the
heterozygote. Based on the model, one can calculate the
t-statistic and the corresponding P-value of the interaction effect
bjk as evidence for declaring the significance. The approach
has been implemented in several software tools for genome-
wide associationmapping such as PLINK (Purcell et al. 2007).

The multilocus method

Complex traits are often controlled by multiple genes and
interactions among them, and such a process cannot be
adequately described by a single-locus model. A multilocus
method that simultaneously estimates the additive effects of
multiple SNPs in one computational procedure may better
mimic the true genetic mechanism under a complex trait.

A multilocus Gaussian association model is defined by

yi ¼ b0 þ
Xp

j¼1

bjxij þ ei (2)

where yi denotes the phenotypic value of the n individuals,
xij is the genotype value of individual i of marker j, b0 is
the population intercept, and ei corresponds to the residuals,
assumed to be independently Gaussian distributed as
ei � Nð0;s2

eÞ.
When the number ofmarkers p is larger than the number of

individuals n, Equation (2) becomes an oversaturated model,
so variable selection and shrinkage estimation are required to
provide a valid and unique solution to the equation. We have
selected a generalized expectation-maximization (GEM) ver-
sion of the extended Bayesian LASSO (EBL) to perform the
shrinkage estimation [seeMutshinda and Sillanpää (2010) for
the EBL and Kärkkäinen and Sillanpää (2012b) for the GEM
algorithm). Following common Bayesian LASSO (e.g., Park
and Casella 2008), the EBL sets a Laplace prior density for

the pmarker effects bj in a linear Gaussian association model.
Similar to the hierarchical Bayesian LASSO, the Laplace prior
is expressed as a scale mixture of Gaussian densities with an
exponential mixing distribution. A Gaussian prior with inde-
pendent locus-specific variances is assigned to the marker
effects bjjs2

j � Nð0;s2
j Þ, and a further exponential prior is

assigned to the variances s2
j . However, under the EBL, the

variances s2
j have independent exponential prior densities

s2
j

��l2j � Expðl2j =2Þ, where the regularization or LASSO pa-
rameters l2j are locus specific. The LASSO parameter is di-
vided into two parts; i.e., l2j ¼ d2h2

j , where d2 is the model
sparsity common to all loci, and h2

j is a locus-specific devia-
tion representing the shrinkage at locus j. Gamma(k; j) and
Gamma(u; y) hyperpriors are given for the components of the
LASSO parameters d2 and h2

j , respectively. The rate parame-
ters of the Gamma densities j and y affect the model sparsity
and need to be tuned to a data-specific value. The shape
parameters k and u are set to unity. The population intercept
and the residual variance are given uninformative prior den-
sities pðb0Þ}1 and pðs2

eÞ}1=s2
e, respectively. The parameter

estimation is performed by a GEM algorithm that finds the
maximum point of the joint posterior density by updating the
parameters, one at the time, to the expected values of the fully
conditional posterior densities (Kärkkäinen and Sillanpää
2012a, b).

Model (2) can be extended to include the pairwise in-
teraction terms, which are defined by

yi ¼ b0 þ
Xp

j¼1

bjxij þ
Xp

k, l

bklxikxil þ ei (3)

where bkl represents the pairwise interaction effect of marker
pair ðk; lÞ. Recoding the indexes of Equation (3) can lead to an
expression that is similar to that in Equation (2). Alterna-
tively, the interaction terms can be interpreted as pseudo-
markers, and the interaction effects can be estimated
simultaneously with themain effects (Li and Sillanpää 2012).

The critical point in the estimation is managing the ultra-
high number of explanatory variables (i.e., the dimension of
the model). The number of possible interactions between
marker loci will get wildly out of hand very rapidly with in-
creasing marker sets: already with merely 1400 marker loci,
there are 1 million pairwise interactions; with 50,000
markers, the number of interactions exceeds 1 billion. It is
unlikely that any multilocus model could handle such a num-
ber of variables without any dimensional reduction.

Our proposed strategy for efficiently searching G 3 G
interactions

Our proposed approach is based on a combination of pre-
selection of the variables and a Bayesian multilocus associa-
tion model. The dimensions of the model are first reduced by
selecting a predetermined number of interactions based on
their marginal correlation with the trait value [sure indepen-
dence screening by Fan and Lv (2008)]. Similar strategies
have been applied for main effect QTL detection in association
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studies (Li et al. 2011; Fang et al. 2014). Originally, the sure
independence screening is performed by multiplying a p 3 n
matrix of genotypes by an n-vector of trait values and select-
ing d largest values of a p-vector of correlation coefficients,
leading to computational complexity OðnpÞ. However, because
of the overwhelming number of interaction terms (p2), we
compile the pseudomarkers and compute the correlations
one at the time, saving only the d currently most highly cor-
related ones. This procedure increases the computation time
because the d-vector has to be sorted during each round, but
it decreases memory usage to a feasible level because the
p2 3 n pseudomarker matrix is not held in memory. The pre-
selection by sure independence screening is expected to se-
lect a set of variables that includes all the important ones to
the actual multilocus model, while the multilocus model per-
forms the final pruning and estimates the marker effects. The
number of variables selected for the multilocus analysis de-
pends on the number of individuals in the data set. Generally,
the maximum number is assumed to be 10 times the number
of individuals (Hoti and Sillanpää 2006), but in our experi-
ence, an even smaller proportion may be optimal (Kärkkäinen
and Sillanpää 2012a).

We argue that when markers and pseudomarkers are
simultaneously subjected to variable selection, the procedure
may erroneously favor single-interaction effects instead of
selecting two main effects owing to the strong prior toward a
small number of trait-associated terms in the model [see
example analysis in Sillanpää (2009)]. Thus, to prevent the
interaction effects from masking the main effects, we begin
by estimating only the main effects, after which the interac-
tion effects are estimated from the residuals. Because the
two-step approach consists of two separate estimation proce-
dures, it also enables a higher total number of variables to be
included into the multilocus analysis.

The procedure can be summarized as follows:

1. Use sure independence screening to select the markers
most correlated with the phenotype (this step is obsolete
if marker number is low compared to the number of
individuals).

2. Estimate the main effects with a multilocus model.
3. Residual = phenotype 2 sum of the estimated main

effects.
4. Use sure independence screening to select the pseudo-

markers most correlated with the residual.
5. Estimate the interaction effects with a multilocus model

using the residual as the response variable.

The Matlab codes for simulating the phenotype data and
implementing the method are provided in the Supporting
Information, File S1.

Data sets

The first set of genotypes originates from simulated data in-
troduced in theXIIQuantitativeTrait LociMappingandMarker
Assisted Selection (QTLMAS) Workshop 2008 (Lund et al.
2009; Crooks et al. 2009). The data set consists of 5865 indi-

viduals from seven generations of half-sib families, with infor-
mation on 6000 biallelic SNP loci evenly distributed over six
chromosomes of length 100 cM each.

The seconddata set consists of real genotypesof 933F2pigs
from a White Duroc3 Erhualian intercross (Ma et al. 2013),
genotyped on the Illumina Porcine SNP60 Beadchip. After
removing markers with missing genotypes or a minor allele
frequency (MAF), 0.05, the number of markers in the anal-
yses was 23,491. The genotype data are available at the
Dryad repository (http://dx.doi.org/10.5061/dryad.7kn7r).

In both cases, the genetic architecture of the trait and the
corresponding phenotype data were simulated based on the
genotypes. We created 50 QTLMAS and 10 pig data sets. Each
simulation began by randomly selecting 10 marker loci with a
MAF . 0.4 to act as causal variants. The high MAF limit was
introduced to produce detectable interaction effects. Two of
the randomly selected loci were set to have main effects only,
while two had both main and mutual interaction effects, and
the remaining six loci had only locus-by-locus interaction ef-
fects, resulting a total of eight genetic effects (four main and
four interaction effects). The genetic effects then were drawn
from a Gamma density with shape 4 and scale 0.5. The phe-
notypic value was constructed as the sum of the genetic effects
and a random residual drawn from a normal distribution with
mean zero and variance set to produce heritability 0.5 within
the QTLMAS data sets and 0.8 within the pig data sets. Note
that the causal loci were excluded from the QTLMAS marker
set but were included in the pig data given to the EBL.

Data availability

File S2 contains SNP data originally simulated in the QTLMAS
2008 workshop.

Example Analyses/Results

In the QTLMAS genotype set, the number of markers was
roughly the same as the number of individuals, and there
was no need for preselection (the first of the preceding steps
was obsolete).Hence, all themarkerswith aMAF. 0.05 (total
of 5702) were included in the main effects EBL (step 2). The
number of possible locus-by-locus interaction terms in this case
was 57022=2 � 16 million, of which 10,000 pseudomarkers
were selected for the interaction EBL (steps 4 and 5). For both
EBL estimations, the shrinkage-inducing hyperprior parame-
ters j and y were set to 0.1. The hyperprior parameters were
selected to yield a reasonable, although not necessarily the
best, result by arbitrarily testing several different values.

In the pig genotype set, the number of markers was 25 times
the number of individuals, and the marker set was pruned
based on the marginal correlation between the markers and
the phenotype (step 1).We selected 3000 (representing�1/8
of the markers) most correlated markers for the main effects
EBL (step 2). The number of locus-by-locus interactions pos-
sible with the pig data was 280 million, of which 5000 pseu-
domarkers were selected for the interaction EBL (steps 4
and 5). The hyperprior parameters for both the EBLs were
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set to j ¼ 1 and y ¼ 1. Additionally, for comparison purposes,
the classic single-locus interaction search method was imple-
mented on both data sets using PLINK software. For the
PLINK analyses, we included all causative SNPs to themarker
sets to be analyzed.

A causal locus was considered to have been correctly
identified if one or more signals were reported within a
10-cM window (5 cM on both sides; 1 Mb ffi 1 cM) around
a simulated locus. The number of true positives ntp was the
number of windows consisting of one or more signals, while
the number of false negatives nfn was the number of win-
dows without a reported signal. Signals outside the win-
dows were considered to be false positives nfp. The number
of true negatives ntn was the number of markers and pseu-
domarkers that fell outside the windows around the simu-
lated loci minus the number of false positives. These
quantities were used to examine the performance of the
methods.

Averaged over the 50 simulated QTLMAS-based data sets,
our multilocus method was able to identify 8.72 of the 10
causal loci with a confidence level corresponding to an aver-
age number of false positives of ,1. Closer examination
revealed that, on average, 1.68 of the 2 main effects loci,
5.28 of the 6 interaction effects loci, and 1.76 of the 2 loci
with both effects were found. The performance of themethod
is illustrated in Figure 1 as the red ROC curve (Fawcett
2006). Our proposed approach clearly outperforms the
PLINK software in terms of the power to detect true QTL
and the ability to exclude false positives.

Regarding to the pig data sets, which are almost 18 times
the number in the QTLMAS data sets, our multilocus method
detected, on average, 5.50 of the 10 causal loci, consisting
1.30 of the 2main effects, 2.50 of the 6 interaction effects, and
1.70 of the 2 loci with both effects. At the same time, our
method also reported five false-positive loci. The ROC curve
presented in Figure 2 illustrates the performance of the
method with the 10 pig data sets. As in the QTLMAS data,
the performance of our suggested approach was clearly su-
perior to that of the PLINK software.

The computation time of the algorithm, implementedwith
Matlab v. 7.10.0, was �40 min for the QTLMAS data and a
few hours for the pig data with a 64-bit Windows 7 desktop
computer with a 4.20-GHz Intel(i7) CPU and 16.0 GB of
RAM. The time-consuming part of the estimation was the
sure independence screening for the interaction terms; the
rest took only few seconds.

ThePLINKanalysis, conductedby a16-corehigh-performance
server, took �15 hr for the QTLMAS data sets and 52 hr for
the pig data sets. This indicates that our suggested approach
for epistasis analysis also has certain computational advan-
tages over the conventional single-locus method.

Although the primary motive for this work was to deter-
mine whether it is possible to perform a genome-wide inter-
action search with a multilocus model, there is an additional
point of interest concerning estimation of the interaction
effects separately from the residual. Based on our numerical
experiments, it seems that it is useful to perform the esti-
mation separately for the main and interaction effects. We

Figure 1 QTLMAS data sets. ROC
curves acquired with the proposed
method including sure independence
screening and the EBL when the main
and interaction effects are estimated
separately (red) and when all the effects
are estimated simultaneously (blue). The
black curve corresponds to the standard
single-marker-based PLINK analysis for
interactions.
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tested simultaneous estimation of the main and interaction
effects with the 50 QTLMAS data sets. A total of 10,000
variables were selected by sure independence screening for
the multilocus analysis based on their correlation with the
phenotype. Only 20 of the selected variables were original
markers (i.e., selected owing to main effect), while the
remaining 9980 were pseudomarkers. As earlier, the hyper-
prior parameters j and y for the EBL estimation were set to
0.1. With these settings, only 4.34 of the 10 causal loci (i.e.,
specifically, 0.94 of the 2 main effects loci, 2.38 of the 6 in-
teraction effects loci, and 1.02 of the 2 loci with both effects)
were identified. The average performance of the simultaneous
estimation is illustrated by the blue ROC curve in Figure 1.

By closely examining the results of the PLINK analysis of
both data sets, we found the following interesting phenom-
enon:whenmarkerA andmarkerB are highly correlatedwith
each other, they might be detected as an interaction pair,
although, in reality, they should represent a single locus with
a main effect instead of two separate loci with an interaction
effect (cf. Wood et al. 2014). This phenomenon partially ex-
plain why the number of false positives reported by the PLINK
software in our analysis is high. Therefore, our strategy of
estimating the interaction effects based on the residual also
might help the PLINK software to avoid misclassifying the
main and interaction effects. This point needs to be validated
with real data sets in future research.

Discussion

Direct application of multilocus association models is ques-
tionable with genomic data sets of tens ofmillions of markers.
The situationgetsevenworsewhenallpairwise locus-by-locus
interaction terms are also included in the model. The prevail-

ing practice in epistasis studies is to consider the interaction
terms hierarchically—i.e., only between the loci with signif-
icant main effects. Even if such a practice can reduce the
number of terms to be considered in the models drastically,
it is possible that a trait may exhibit strong pairwise locus-by-
locus interaction effects in the presence of negligible main ef-
fects (e.g., Frankel and Schork 1996). In this paper, we have
considered another strategy, in which all possible pairwise in-
teraction terms are considered, but the efficient dimension-
reducing step makes the problem more suitable to multilocus
association models so as to find a small subset of important
predictors. Even if the dimension-reducing step is huge, reduc-
ing an original 280 million discrete predictors to 5000 impor-
tant candidates, the sure independence screening seems to
work surprisingly well in including a significant number of
relevant predictors in the chosen subset. This is not a trivial
task because it is complicated by the discrete nature of marker
data as well as the apparent collinearity among them. The EBL
is thus finally picking up themost important few from the 5000
candidates but cannot do anything if those 5000 do not happen
to include the important candidates in thefirst place. Therefore,
sure independence screening can be thought to be the most
important ingredient here for success. Thus, this initial work
hopefully will lead in a direction in which dimension reduction
is seen as a necessary first step in genome-wide analysis.

In the case studies, ourmultilocus approachwas evaluated
mainly based on empirical evidence. Further effort is needed
to make the method truly suitable for practical use. For
example, this work simply suggested that a marker was
significant if its effect was larger than a certain threshold.
In real data analysis, it is often necessary to adopt a method-
ologically more sound decision rule for QTL judgment. To for-
mally declare significance of a (pseudo) marker in a multilocus

Figure 2 Pig data sets. The ROC curve (red) acquired
with the proposed method including sure independence
screening and the EBL and estimating the main and in-
teraction effects separately. The black curve corresponds
to the standard single-marker-based PLINK analysis for
interactions.
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model, phenotype permutation can be used (Xu 2003; Li and
Sillanpää 2012). Because necessary reanalyses in phenotype
permutation are done only after sure independent screening,
the computation time needed may be reasonable. However,
because phenotype permutation is conservative, our ability to
find a significant association using the EBL and phenotype
permutation highly depends on the level of collinearity among
markers (which came from the sure independence screening
step). A high level of collinearity will increase the tendency of
multilocus models to distribute the effect over several neigh-
boring loci, leaving individual signals undetected. High col-
linearity in the originalmarker set alsomay lead to the situation
that prescreening will select markers very unevenly—some ge-
nomic regions may have too many representatives, and others
may have no representation at all. Therefore, it is a future
challenge to find the appropriate changes needed for the sure
independence screening step to provide a good representa-
tion of markers from different trait-associated genome re-
gions and where between-marker dependency is moderate.
Some putative solutions could be (1) constraining the pre-
screening step so that all the included loci must have a cor-
relation that is lower than a given threshold or the number of
included loci from a single genomic region is limited or (2)
developing multilocus inference methods to be more ro-
bust to collinearity [e.g., see Heuven and Janss (2010)
and Pasanen et al. (2015) for alternative ways to com-
bine/reconstruct the distributed signal over two or more
neighboring loci in the MCMC context].
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