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ABSTRACT Although research effort is being expended into determining the importance of epistasis and epistatic variance for complex
traits, there is considerable controversy about their importance. Here we undertake an analysis for quantitative traits utilizing a range of
multilocus quantitative genetic models and gene frequency distributions, focusing on the potential magnitude of the epistatic variance. All
the epistatic terms involving a particular locus appear in its average effect, with the number of two-locus interaction terms increasing in
proportion to the square of the number of loci and that of third order as the cube and so on. Hence multilocus epistasis makes substantial
contributions to the additive variance and does not, per se, lead to large increases in the nonadditive part of the genotypic variance. Even
though this proportion can be high where epistasis is antagonistic to direct effects, it reduces with multiple loci. As the magnitude of the
epistatic variance depends critically on the heterozygosity, for models where frequencies are widely dispersed, such as for selectively
neutral mutations, contributions of epistatic variance are always small. Epistasis may be important in understanding the genetic archi-
tecture, for example, of function or human disease, but that does not imply that loci exhibiting it will contribute much genetic variance.
Overall we conclude that theoretical predictions and experimental observations of low amounts of epistatic variance in outbred pop-
ulations are concordant. It is not a likely source of missing heritability, for example, or major influence on predictions of rates of evolution.

EPISTATIC variance in quantitative traits arises from the
interaction effects or epistasis between segregating genes

at two or more loci that affect these complex traits. Such gene
interaction is a common phenomenon because many factors
have, for example, a regulatory role in a hierarchical system
(Phillips 2008). The statistical theory of quantitative genetics
following Fisher (1918) is based on a partition between av-
erage effects across loci, which contribute to the additive
genetic variance, and to interactions within loci and between
loci, which contribute to the dominance and epistatic vari-
ance, respectively (Cockerham 1954; Kempthorne 1954). The
magnitudes of these components of the genotypic variance
each depend on the frequencies, the effects, and the interac-
tions among the contributing genes (see also Falconer and
Mackay 1996; Lynch and Walsh 1998). The actual causal
genetic factors are usually not known, but many quantitative

genetic analyses, including selection on metric traits, have
been applied successfully without such knowledge.

Among quantitative geneticists, interest in epistasis con-
tinues, both to understand the genetic architecture and as a
potential way to improve the genomic predictions of disease
and quantitative traits, utilizing some of the unexplained parts
of the genetic variation (e.g., Carlborg and Haley 2004; Nelson
et al. 2013; Mackay 2014). Despite the obvious interactions in
the biological system, it has, however, been argued that the
proportion of the genotypic variance contributed by epistatic
variance expected in outbred populations is small and that data
generally support this prediction (Hill et al. 2008). The theory
is based mainly on population and statistical genetics argu-
ments (the data of a more indirect form): for many traits the
covariances among relatives could largely be explained by ad-
ditive models, albeit estimation of epistatic variance per se with
much precision is difficult in most outbred population struc-
tures. Hemani et al. (2013) in contrast, taking an evolutionary
perspective, have argued that much of the variation that will
remain segregating long term in populations under natural
section will be epistatic. It is notable, however, that the loci
in the models they simulated that were still segregating all
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showed overdominance, for which direct data are limited (e.g.,
Charlesworth and Charlesworth 2009). Using models with mul-
tiple loci and two-locus interactions in populations evolving with
bottlenecks, Ávila et al. (2014) found only small contributions of
epistatic variance. Further, it has been argued that the magni-
tude of epistatic variation is essentially irrelevant in evolution
(and in animal breeding) (Crow 2010), because rates of evolu-
tionary change depend only on the additive variance, even in
epistatic and tightly linked systems (Kimura 1965; Nagylaki
1993). Nevertheless Nelson et al. (2013) have recently argued
that epistasis has been ignored in quantitative genetics and in its
evolutionary studies because of convenience, and consequently
statements about its insignificance are misleading.

Genomics offers tools that go much deeper, to identify the
genes involved and their interactions within the system,
perhaps thereby providing an understanding of the causes
of specific complex diseases or traits and a route to their im-
provement. There has, therefore, been a surge of interest in
estimating the magnitude of epistasis and understanding its
source. Despite the challenges in estimation, thousands of
QTL have been found and many findings of interaction effects
reported in crosses of divergent lines of chicken (Pettersson
et al. 2011), yeast (Bloom et al. 2013), and Drosophila (Huang
et al. 2012). Further, there is recent evidence of detection of
epistatic loci for levels of gene expression in human popula-
tions (Hemani et al. 2014; Brown et al. 2014).

Nevertheless the variation contributed by these epistatic
loci detected in segregating populations is generally found to
be small (Huang et al. 2012; Brown et al. 2014; Hemani et al.
2014), which fits with the theoretical predictions (Hill et al.
2008) that only at high heterozygosity levels do loci contrib-
ute much epistatic variance; Bloom et al. (2013) note that the
epistatic variance they found would have been much lower
had they not been using an F1-based population.

The genetic variation accounted for by significant SNPs in
genome-wide association studies (GWAS) in humans for both
metric traits such as height and for multifactorial disease
traits has typically been substantially less than the estimates
of the additive genetic variation found in conventional pedigree-
based quantitative genetic analyses. For example, the top
150 loci identified by SNPs account for only 10% of the
variance in human height (Lango-Allen et al. 2010). If all
SNPs are fitted without constraint as to statistical significance,
the amount explained rises to �40% (Yang et al. 2011) but
still falls well short of the estimates of �80% based on cova-
riances among relatives. Several hypotheses for the so-called
“missing heritability” (Manolio et al. 2009) have been put
forward, among these that epistasis is inflating the pedigree-
based estimates (Zuk et al. 2012).

We therefore have some dichotomy between, on the one
hand, those who argue that, although there may be epistasis, the
epistatic variance contributed is likely to be small and generally
we can ignore its contribution because it is unimportant, and on
the other those who argue that this is a blinkered view. We
cannot resolve this here, but we do attempt to provide a stronger
theoretical base to the arguments. The analysis and inferences of

Hill et al. (2008) took into account the size and direction of
interaction effects and the allele frequencies or heterozygosity
at all contributing loci. Models were, however, based on pairs of
loci, yet as quantitative geneticists have long assumed, have
subsequently inferred from the continuing responses to selection
for many traits in experiments and breeding programs, and now
inferred more directly from GWAS, very many loci influence
each trait. For multiple loci (n), however, the numbers of pairs
with potential two-way interaction among loci increases as n2

[strictly 1/2n(n – 1)], three-way interactions as n3, etc., and so it
is possible that merely accounting for interactions among pairs of
loci gives a biased impression.

In this article we therefore consider the magnitude of
epistatic variance expected in outbred populations for multilocus
models to check on the robustness of the argument that most
variance is likely to be additive genetic. We concentrate initially
on models without dominance or interactions involving domi-
nance, partly for simplicity of exposition and partly because we
showed previously that additive variance is also expected to
contribute much more than the dominance variance (Hill et al.
2008). We consider alternative distributions of the gene fre-
quency within the populations at segregating loci affecting the
trait because these have an important impact on the magnitude
of the genotypic variance and its components. As these distribu-
tions are not static in populations evolving under selection, we
also consider the impact of consequent gene frequency changes.

Analysis

Genetic model with no dominance

We assume that there are n loci, each of which has two alleles
Ai or ai, i = 1, . . ., n, with frequencies pi and 1 – pi, respec-
tively. We further assume that there is Hardy–Weinberg and
linkage equilibrium among all loci. Genotypic values are
given in Table 1 (second column) for examples of alternative
genotypes, and those for other genotypes are analogous, e.g.,
that for A1A1a2a2A3a3 is 2a1 + a3 + 2[aa]13 (cf. fourth row).
The model readily extends to more loci and to dominance (see
below and third column of Table 1) and is fully parameterized.

The population mean without dominance is

m ¼2
X
i

piai þ 4
X
i

X
j. i

pipj½aa�ij

þ 8
X
i

X
j. i

X
k. j. i

pipjpk½aaa�ijk þ . . . :

With H–W and linkage equilibrium, average effects (also called
“additive effects”) and the additive variance can be found by
averaging over genotypes, by regression of phenotypes on the
number of increasing alleles within loci (Fisher 1918), or from
the first derivative of the mean with respect to the frequency of
the increasing allele (Kojima, 1959, 1961). We adopt Kojima’s
approach, which extends simply to epistatic effects using higher
derivatives involving the corresponding loci. (In the absence of
dominance higher derivatives at individual loci are zero.)
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For locus i, the average effect including up to third-order
interaction terms is

ai ¼ 1
2
@m

@pi
¼ ai þ 2

X
j 6¼i

pj½aa�ij þ 4
X
j 6¼i

X
k 6¼i;k. j

pjpk½aaa�ijk

þ . . . ;  i ¼ 1; :::; n:

(1)

The additive variance is obtained by summing over the n loci

VA ¼
X
i

2pið12 piÞ
�
1
2
@m=@pi

�2

¼
X
i

Hia
2
i ;

where Hi = 2pi(1 – pi) is the heterozygosity at locus i. Sim-
ilarly additive 3 additive interaction effects and variances
are

ðaaÞij ¼
1
4

@2m

@pi@pj
¼ ½aa�ij þ 2

X
k 6¼i;j

pk½aaa�ijk

þ 4
X

l;k 6¼i;j;l. k

pkpl½aaaa�ijkl þ . . . ; 1# i, j#n;

(2)

VAA ¼
X
i

X
j. i

HiHjðaaÞ2ij;

ðaaaÞijk ¼
�
1
8

�
@3m

@pi@pj@pj
¼ ½aaa�ijk þ 2

X
l6¼i; j;k

pl½aaaa�ijkl

þ . . . ; 1# i, j, k# n;

VAAA ¼
X
i

X
j. i

X
k. j

HiHjHkðaaaÞ2ijk;

and so on, with the nth such partial derivatives giving n-
locus epistatic effects and variances.

For three loci, for example,

a1 ¼ a1 þ 2p2½aa�12 þ 2p3½aa�13 þ 4p2p3½aaa�123;

ðaaÞ12 ¼ ½aa�12 þ 2p3½aaa�123 and ½aaa�123 ¼ ½aaa�123;

and therefore

VA ¼
X
i

Hi

�
a2i þ 4pjai½aa�ij þ 4pkai½aa�ik þ 4p2j ½aa�2ij

þ4p2k ½aa�2ik þ 8pjpk½aa�ij½aa�ik þ 8pjpkai½aaa�ijk
þ16p2j pk½aa�ij½aaa�ijk þ 16pjp2k ½aa�ik½aaa�ijk
þ16  p2j p

2
k ½aaa�2ijk

�
;   where  i 6¼ j 6¼ k;

(3a)

VAA ¼
X
i

X
j. i

HiHj

�
½aa�2ij þ 4pk½aa�ij½aaa�ijk

þ 4p2k ½aaa�2ijk
�
   for  k 6¼ i; j; (3b)

VAAA ¼ H1H2H3½aaa�2123: (3c)

The key to subsequent results is that, because two- and three-
locus interactions enter the average effects and additive
variance, they can make a major contribution to VA, depend-
ing on their allele frequencies and sign. Similarly k-locus in-
teraction effects contribute to the epistatic variances of order
,k, whereas single-locus contributions and interaction effects
of order lower than k do not.

Numbers and magnitude of terms in
variance components

While it is assumed that many loci determine most quanti-
tative traits, the number (n) is not known. To obtain some
understanding of how the relative magnitudes of additive and

Table 1 Genotypic values for representative genotypic combinations for a three-locus diploid model including two- and three-locus
interaction effects

Genotype Genotypic values without dominance Additional terms under dominance

a1a1 a2a2 a3a3 0 0
a1a1 a2a2 A3a3 a3 d3
a1a1 a2a2 A3A3 2a3 0
a1a1 A2a2 A3a3 a2 + a3 + [aa]23 d2 + d3+ [ad]23 + [da]23+ [dd]23
a1a1 A2a2 A3A3 a2 + 2a3 + 2[aa]23 d2 + 2[da]23
a1a1 A2A2 A3A3 2a2 + 2a3 + 4[aa]23 0
A1a1 A2a2 A3a3 a1 + a2 + a3 + [aa]12 + [aa]13

+ [aa]23 + [aaa]123

d1 + d2+ d3 + [ad]12 +[ad]13 + [ad]23 + [da]12 + [da]13
+ [da]23 + [dd]12 + [dd]13 + [dd]23 + [aad]123 + [ada]123
+ [daa]123 + [add]123 + [dad]123 + [dda]123 + [ddd]123

A1a1 A2a2 A3A3 a1 + a2 + 2a3 + [aa]12 + 2[aa]13
+ 2[aa]23 + 2[aaa]123

d1 + d2 + [ad]12 + [da]12 + 2[da]13 + 2[da]23 + [dd]12 + 2[daa]123
+ 2[ada]123 + 2[dda]123

A1a1 A2A2 A3A3 a1 +2a2 + 2a3 + 2[aa]12 + 2[aa]13
+ 4[aa]23 + 4[aaa]123

d1 + 2[da]12 + 2[da]13 + 4[daa]123

A1A1 A2A2 A3A3 2a1 + 2a2 + 2a3 + 4[aa]12 + 4[aa]13
+ 4[aa]23 + 8[aaa]123

0
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epistatic variance depend on n, we undertake some simple
calculations on the basis that the partition will depend at least
to some extent on the numbers of terms contributing to each.
For the additive variance there are contributions from n loci,
and expansions such as in Equations 1 and 3a show that for
each locus there are

1 þ
�
n2 1
1

�
þ

�
n2 1
2

�
::: þ 1 ¼ 2n21

terms in the expression for the average effects and thus
n22(n 2 1) = n4n 2 1 in all when effects are squared (counting
terms such as ai[aa]jk and [aa]jkai separately). There are more
pairs, trios etc. of loci contributing epistatic variance, but the
numbers of terms they each comprise are reduced. For VAA
there are

� n
k

�
= 1/2n(n 2 1) pairs of loci but 4n 2 2 terms

in each pair when squared (Equation 3b). In general, there are
a total of

� n
k

�
4n 2 k terms for the kth-order epistatic variance

among n loci. While terms such as [aa][aaa] that comprise
products of different interaction effects may be negative,� n
k

�
2n 2 k are squared terms and therefore nonnegative.
In the formulae for the average and other effects, terms in L

loci have a coefficient of 2L 2 k 2 1, e.g., 4 for pjpk[aaa]ijk in
Equation 1. But coefficients involving products of gene fre-
quencies also appear in these same terms, each of which take
values of 0.5 when gene frequencies are one-half. Thus if we
assume gene frequencies are 0.5, which is when epistatic var-
iance is typically at a maximum, this cancels the coefficients of
2 alluded to above. Hence while there are arguments for in-
cluding other terms in these simple models, as a basis we re-
strict them just to assuming these factors of two cancel. Hence
the sum of weighted terms is

� n
k

�
4n 2 k and of squared terms is� n

k

�
2n 2 k. Examples of these figures are given in Table 2,

which shows how the number of contributions to the varian-
ces, particularly the additive variance, can be large indeed.

Heterozygosity has a maximum of 0.5 at P = 0.5, when, in
the absence of epistasis, the additive variance is then at a max-
imum. As the epistatic variances among k loci depend on
products of k heterozygosity terms, the epistatic variances
are likely to contribute correspondingly less to the genotypic
variance VG than does VA, and most of the epistatic variance is
likely to derive from second-order components. Thus if we
include heterozygosity in the calculations, letting H be an
“average” or representative figure, the kth component of var-
iance is of order Hk

� n
k

�
4n 2 k. If H = 0.5, its maximum, the

weighted number of terms, becomes (1/2)k
� n
k

�
2n 2 k =� n

k

�
4n 2 k, of which

� n
k

�
2n 2 2k are squared terms. Further,

in all but populations derived from F1 crosses, mean heterozy-
gosity will be less than one-half, and we subsequently consider
the impact of different allele frequency distributions on the ex-
pected proportion of epistatic variance. Accordingly, the weighted
numbers of terms become �� n

k

�
4n 2 4k and

� n
k

�
2n 2 4k, re-

spectively, i.e., very much smaller indeed as k increases.
Examples of the computed values are given in Table 2.

These calculations for multiple loci are intended to serve only
as a guide, but illustrate why a high proportion of epistatic

variance is unlikely, because even very strong multilocus
gene–gene interactions do not automatically lead to a high
proportion of epistatic components in the genetic variation
(cf. Cheverud and Routman 1995).

Examples

The relative magnitude of additive and epistatic variances for
two to five loci including all possible gene–gene interactions is
summarized in Figure 1 for two models with the frequency of
the increasing allele the same at all loci. In both, the magnitude
of gene and (absolute value of) interaction effects are also
assumed to be the same at all loci, and are either all synergistic
([aa] = [aaa] = . . .= a) or antagonistic ([aa] = [aaa] = . . .=
2a). As expected from the above arguments, the genetic var-
iance in many of these examples is seen to be mainly additive
and the remainder mainly additive3 additive, such that higher-
order epistatic variances can generally be ignored. Gene inter-
actions generally make the most substantial contributions to VA
when the frequency of the increasing allele is very low, and only
negative (antagonistic) interactions cause relatively large ratios
of epistatic to additive variance because terms such as ai[aa]jk in
VA are then negative.

Expected variances for different allele
frequency distributions

The components of genetic variance and their relative
magnitudes depend on the allele frequencies in addition to
the individual gene effects and their interactions. Although
there is little information on allele frequencies for quantitative
trait genes, it is possible to predict their frequency distribution
under different assumptions about relevant evolutionary
factors, such as mutation, selection, finite population size
(drift), and migration. Allele frequencies of 0.5, i.e., from a re-
cent inbred cross, serve as one reference point and, as evi-
dence suggests that many genes influence metric traits and so
there is presumably very mild natural selection on them, the-
ory for neutral alleles in finite populations serves as another.

Two allele frequency distributions are considered, each
with mean 0.5. One is a closed finite population under drift
without mutation, when the steady-state distribution is uniform
over (0, 1) (e.g., Crow and Kimura 1970; Falconer and Mackay
1996). The other is for mutation–drift balance, when the
frequency density of mutants is proportional to 1/p (Wright
1931); but, if increasing and decreasing mutants for the
trait are assumed equally likely, the frequency distribution
of segregating increasing mutants for the trait is U shaped,
with f(p)}1/[p(1 – p)] (Hill et al. 2008). The distributions
and expected heterozygosities E(H) are

F2   based  population :  p ¼ 0:5;  EðHÞ ¼ 0:5

uniform : fðpÞ ¼ 1; 0# p#1;EðpÞ ¼ 0:5; EðHÞ ¼ 0:333

U shaped : f ðpÞ} 1=½pð12 pÞ�; 1=ð2NÞ# p#1� 1=ð2NÞ;
 EðpÞ ¼ 0:5;EðHÞ � 1=½2lnð2NÞ�:

For the U-shaped distribution and effective population sizes
N = 10, 20, 100, 1000, and 100,000, E(H) �0.167, 0.136,
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0.0944, 0.0658, and 0.0410, respectively. Examples are
given in Figure 2 for the partition of variance under different
epistatic and frequency distribution models for three and
more loci. The largest proportion of epistatic variance is
expected when P = 0.5 while uniform and U-shaped allele
frequency distributions yield mostly additive variance, even
with antagonistic gene–gene interaction. In all cases the
epistatic variance is almost entirely contributed by the two-
locus epistatic variance.

When n loci contribute nearly equally to the variation, for
given total genetic variance, their individual effects a will
tend to decline approximately in proportion to 1=

ffiffiffi
n

p
as n

increases to and, similarly, epistatic interactions between
pairs of loci [aa] are likely to decline roughly in proportion
to 1/n and between trios of loci [aaa] by 1=ðn ffiffiffi

n
p Þ. The dimin-

ishing relative size of the interaction effects with increasing
number of loci shown above for those with equal effect is
therefore exacerbated as the interaction terms become indi-
vidually smaller (Figure 2A vs. Figure 2B). Hence, if there is
a very large number of interacting loci (say .50) almost all
the variation is expected to be additive. If their effects differ
greatly, then the results become like those for fewer loci.

To illustrate the effect of increasing the number of loci,
we include interactions only up to second or third order with
positive (or negative) sign consistent over loci. Again, unless
interaction terms are such that, for example, [aa] is negative
and its products in the expressions for variance balance the
positive a2 and [aa]2 term (Figure 2), the general conclusion
is that, with a very large number of loci, only in special cases
are the positive and negative terms likely to counter each
other and the epistatic variance to be larger than the addi-
tive variance. Similarly, as the number of loci become very

large, epistatic variance of higher order also become trivial
compared to VAA.

Dominance

The diploid models can easily be extended to incorporate
dominance effects and Kojima’s (1959) method can be used to
compute the different components of genetic variance. This
has been done to illustrate the close correspondence with ad-
ditive models (Appendix 1). The inclusion of dominance intro-
duces three additional two-locus interaction terms [ad], [da],
and [dd]. Similar to the way in which the additive interactions
contribute to the additive variance, the dominance interactions
contribute to both the additive and dominance variance. The
number of additional terms in the formulae for the variances
increases rapidly, so for clarity, results are given only for two
loci with positive interactions (Figure 3).

As in the case of additive interactions, the proportion of
epistatic variance is small, in particular when allele frequen-
cies are not concentrated at intermediate values. The pro-
portion of dominance variance stays the same or is slightly
increased when adding the dominance interaction while the
ratio between additive and dominance variance is not
changed, implying that the interaction terms contribute to
these variances in the same way. When the allele frequencies
are 0.5 there is most epistatic variance, but its contribution
rapidly decreases for a higher number of loci, with the same
pattern as with only additive effects and interactions.

Effect of selection on the expected variances

For traits under stabilizing selection with intermediate opti-
mum, frequencies of increasing and decreasing alleles will also
tend to be distributed around 0.5 as in the neutral case. In a

Table 2 Number of variance components of order k among n loci
� n
k

�
(k = 1 denotes additive variance), numbers of

terms in the expansion of the variance from effects, and number of such terms that are squared terms,
� n
k

�
2n 2 k

No. of loci n k
�
n
k

� �
n
k

�
4n2k

�
n
k

�
2n2k

�
n
k

�
2n22k

�
n
k

�
2n24k

1 1 1 1 1 0.5 0.125
2 1 2 8 4 2 0.5

2 1 1 1 0.25 0.0156
3 1 3 48 12 6 1.5

2 3 12 6 1.5 0.0938
3 1 1 1 0.125 0.0020

4 1 4 256 32 16 4.0
2 6 96 24 6 0.375
3 4 16 8 1 0.0156
4 1 1 1 0.0625 0.0002

5 1 5 1280 80 40 10
2 10 640 80 20 1.25
3 10 160 40 10 0.0781
4 5 20 10 0.625 0.0024
5 1 1 1 0.0312 0.0000

6 1 6 6144 192 96 24
2 15 3840 240 60 3.75
3 20 1280 160 20 0.313
4 15 240 60 7.5 0.0145
5 6 24 12 0.375 0.0004
6 1 1 1 0.0156 0.0000

The number of squared terms are also shown multiplied by the maximum heterozygosity (1/2)k for the k order term, i.e.,
�
n
k

�
2n 2 2k, and also by

a more typical mean heterozygosity in a long standing population (1/8)k, i.e.,
�
n
k

�
2n 2 4k.
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population newly under directional selection, the mean fre-
quency of increasing alleles will increase .0.5, but under long
continued selection stabilize as new mutants come in. Hence
we consider the results for neutral distributions to be still relevant.
We examine some limited examples, however.

In a population under selection the contribution of epistatic
to total variance changes as frequencies change. Thus as
Hansen (2013), for example, emphasizes, although selection
response at any given time depends almost entirely on the
additive variance (Kimura 1965; Crow 2010), the long-term
trajectory depends on the nature of the interactions among

the loci. Further, allele frequency distributions can no longer
remain symmetric around P= 0.5 under directional selection.
In a small investigation of the robustness of some of our con-
clusions under selection, for example, that a high proportion
of VG is contributed by VA, we used transition probability
matrices to obtain the distributions for pairs of unlinked loci,
modeling with quite small population size values. For sim-
plicity a haploid model with population size Nh was assumed.
Details of the model are given in Appendix 2.

Several simple situations were modeled using two loci
with synergistic or antagonistic epistatic effects ([aa] = +a

Figure 1 Multilocus models with gene interaction involving four to 30 loci. The proportion of additive variance (gray), two-locus (red), three-locus (dark
red) and four-locus (blue) epistatic variance in the total genotypic variance for models with different numbers of loci with interactions of all orders
among them. The loci have equal effects and allele frequencies (p), and either (A) positive (synergistic) or (B) negative (antagonistic) interaction effects,
all of the same absolute value as the single locus effect. (A) [aaaaa] = [aaaa] = [aaa] = [aa] = a. (B) [aaaaa] = [aaaa] = [aaa] = [aa] = 2a.
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or –a). These included cases where (i) the increasing alleles
at each locus were mutants at initial frequency 1/Nh, (ii) the
frequency at one locus was at steady state under neutrality
(i.e., U shaped) and at the other locus a mutant allele of
either increasing or decreasing effect, and (iii) initial fre-
quencies at the two loci were set as either 1/Nh or 1 – 1/
Nh with equal probability. Components of variance were
obtained by averaging over 100 generations.

Detailed findings are given in Appendix 2. Although lim-
ited in scope, the results are clear: the asymmetry in the
allele frequency distributions caused by selection does not

seem to influence the relative proportions of additive and
nonadditive variance and thus substantially alter the gen-
eral expectation that the proportion of epistatic variance is
likely to be small.

Discussion

Main findings

When the genetic variation is caused by segregation at many
loci, the magnitude of the epistatic variance is almost certain
to be trivial relative to the additive variance. This result is

Figure 2 Expected components of genetic variance under gene–gene interaction. As Figure 1, but for fewer loci, assumed allele frequency (p)
distributions of P = 0.5, uniform and U-shaped (N = 100) distribution (respective expected heterozygosities E(H)) with two- and three-locus interaction
effects with (A) constant or (B) declining gene and negative interaction effects with increasing number of loci. (A) [aaa] = [aa] = 2a. (B)
a ¼ ffiffiffi

n
p

; ½aa� ¼ 2 1=n; ½aaa� ¼ 2 1=n3=2:
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nearly invariant to the order of the interaction, allele fre-
quencies, and type and magnitude of interaction effects. The
models show how the gene-interaction effects appear in
the average effects and contribute to the additive variance
and produce more positive terms there than in the epistatic
components. The epistatic components depend on the magni-
tude of heterozygosity and are generally small for low hetero-
zygosity. For the same reasons, under most of the assumptions
the majority of the epistatic variance is due to the two-locus
epistatic component.

When the variation is due to only a few interacting loci or
there are major genes with substantial gene–gene interac-
tion effects segregating in the population, there are no gen-
eral patterns in the proportion of epistatic variance, but the
following are the main observations: high heterozygosity (or
allele frequency 0.5) and/or negative interaction can gener-
ate high proportions of epistatic variance; the proportion of
the variance that is epistatic variance is lowest at low het-
erozygosity, notably for the U-shaped allele frequency distri-
bution but even for the uniform distribution compared to
P = 0.5; and deviations from symmetry of the distribution
caused by mild selection do not increase the low proportion
of epistatic variance.

Models and assumptions

Only biallelic loci were analyzed but we cannot see that the
general results would be fundamentally affected if loci are
multiallelic. Each of the m two-way interactions for m alleles
at each locus with no dominance appear in the average
effects for the m alleles at the m loci, giving m3 terms after
squaring effects, whereas the number of additive 3 additive
effects and variance components increases only in propor-
tion to the number of allelic pairs, m2, as each has only one

two-way interaction. Although we focused on models with-
out dominance, as the interaction effects containing domi-
nance contribute to the dominance variance in the same way
as do the additive3 additive effects to the additive variance,
the qualitative finding remains that the proportion of epi-
static variance in the total genotypic variance is small.

Epistasis also arises, even with infinitesimal additive effects
on some underlying variable, if there is a nonlinear relation-
ship between genotypic and observed phenotypic values, such
as with a multiplicative, optimum, or threshold model (e.g.,
Wright 1931; Dempster and Lerner 1950; Cockerham 1959).
Kojima’s (1959, 1961) methodology provides a simple way to
partition the genotypic variance and can also be applied to
these models. Basically, the proportion of epistatic variance is
high only when the transformation departs far from linearity:
a high coefficient of variation in the multiplicative model, the
population mean near the optimum value in the optimum
model, and with a proportion truncated near 0 or 1 in the
threshold model (see also Mäki-Tanila and Hill 2014).

In an attempt to explain some of the missing heritability,
especially that estimated from human twin studies, Zuk
et al. (2012) suggested that the additive component was
overestimated, biased inter alia by epistatic variance. They
proposed an extreme type of threshold model, with the all-
or-none output dependent on whether, in some underlying
system of multiple identically independently (i.i.d.) nor-
mally distributed variables, the lowest exceeded the cutoff.
This model undoubtedly generates substantial epistatic var-
iance, but has been queried both because it is sensitive to
assumptions, such as i.i.d. and is biologically implausible
(Stringer et al. 2013). Indeed there is little evidence of such
limiting pathways, and models based on flux through sys-
tems without “limiting steps” have firmer foundation
(Kacser and Burns 1973). Analysis of genetic models of flux
in pathways shows that largely additive variance is to be
expected (Keightley 1989; Hill et al. 2008). Much of the
missing heritability can be accounted for by fitting all SNPs
without regard to statistical significance (Purcell et al. 2009;
Yang et al. 2011), showing that multiple sites are involved.
This observation that multiple loci influence the traits coupled
with our demonstration that this lends support to additive
rather than nonepistatic models argues against the belief
that much of the missing heritability is due to epistatic
variation.

In the examples studied, we set the gene–gene interac-
tions [aa], [aaa], . . ., to be of the same magnitude as the
single-locus effects a. This is important in assessing the pro-
portion of epistatic variance for models with very few loci
but ceases to do so as the number of loci increase. It seems
biologically reasonable to assume that the interaction effects
are smaller, however, in which case a higher proportion of
additive variance is seen with even a few loci and strong
antagonistic pleiotropy. In the models studied we assumed
that all loci were interacting with each other, but most inter-
actions would not involve them all and consequently there
would be relatively more additive variance.

Figure 3 Components of genetic variance under dominance. Influence
of positive two-locus additive and dominance interaction on (A) the
expected values of additive, dominance and epistatic components of
genetic variation with allele frequency distributions P = 0.5, uniform
and U-shaped distribution, model i: a = d and all interaction terms = 0,
j: a = d = [aa] = [ad] = [da] = [dd], and (B) the partition of genetic variation
with a varying number of loci with equal allele frequency of 0.5 (VA gray,
VD dark gray, VAA red, VAD+VDA dark red, VDD black) and effects like in
the model j.
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Linkage disequilibrium

An important assumption made is that there is linkage equilib-
rium (no LD) among all pairs of loci comprising the analysis,
indeed contributing to the trait. In higher organisms most
pairs of loci are on different chromosomes or far apart on the
same chromosome. Further, even for closely linked loci, LD is
likely to be small in populations of large effective size, such as
for humans and Drosophila melanogaster, although not so for
closely linked loci in domestic livestock (e.g., de Roos et al.
2008, Veroneze et al. 2013) and laboratory populations of
experimental species. A theoretical analysis of variance parti-
tion in the presence of LD is problematic because trait effects
of different loci are not orthogonal; i.e., fitting locus B after A
removes less variance than fitting B alone, and epistatic var-
iance may be confounded with that of average effects. An
alternative approach is to be pragmatic and consider just
the quantities that can readily be estimated from the cova-
riances among relatives such as half-sibs, full-sibs, parent–
offspring, and grandparent–offspring. We have analyzed
this complete LD scenario for pairs of epistatic loci including
only additive effects and interactions. We made a further
assumption that, as substantial LD occurs only among very
tightly linked loci, recombination between close relatives can
be ignored. Our preliminary analysis shows that the magnitude
of epistatic variance, as judged say by the sire 3 dam interac-
tion component or the difference between the full-sib and
offspring–parent covariance, remains small relative to the
‘additive’ component (e.g., 4 3 covariance of half sibs), as
in similar models examined here for linkage equilibrium
(Mäki-Tanila and Hill 2014).

Prediction of selection responses due to epistasis

The success of a selection scheme within populations depends
on utilizing the additive variance. Griffing (1960) showed
with theoretical analyses how the genetic changes obtained
with mass selection that derive from the epistatic variation
are only temporary, as selected haplotypes break up. Similar
predictions were made by Bulmer (1980) by comparing the
offspring–parent and grandoffspring–grandparent regres-
sions. Estimates of VA based on four times the half-sib covari-
ance, which has expectation 1/4VA + (1/16)VAA + . . ., are,
however, unlikely to be substantially biased by epistatic vari-
ance because, for typical quantitative VAA, they are expected to
be small compared to VA. While the rate of recombination loss is
lower with linkage, as shown by Kimura (1965) and Crow
(2010), only the additive variance contributes to the steady-
state response even in the presence of linkage.

Hansen (2013) has argued that epistatic effects must be
included in predicting long-term responses to natural selec-
tion. While short-term response to selection can be predicted
from the additive variance, changes over many generations
depend on genetic architecture, including the distribution
of gene effects and frequencies at loci that do not exhibit
epistasis and therefore on many unknowns. Thus, under
most circumstances, Hansen’s objective is not achievable

in practice, and adding another level of complexity would
only exacerbate the uncertainty. Further, the changes ob-
served in plant and animal breeding have continued for very
many generations, often with little or no sign of slowing
down even in very intensive selection schemes (Dudley and
Lambert 2004; Hill 2010). The achieved changes have been
far beyond what could be foreseen in the early stage of
selection.

Nelson et al. (2013, p. 671) find classical quantitative
genetics incapable of giving “insight to infer the underlying,
functional architecture of the traits required to predict phe-
notypes of individuals in other populations, as desired in
medical diagnostics, or long-term changes in populations
studied in evolutionary biology.” The incorporation of epis-
tasis in predicting breeding values or individual risks would,
for example, also depend on the distribution of gene effects
across loci and the genome. Although they consider the
existing research insufficient for characterizing epistatic effects
needed in predicting individual phenotypes, their objective,
like that of Hansen (2013), is laudable. The incorporation
of epistasis in predicting breeding values or individual risks
would depend on distribution of gene effects across loci
and genome. The prediction of response to directional selection
over multiple generations, however, already contains many
unknown even without epistasis, not least the consequences
of mutations. Adding another level of complexity would only
exacerbate problems.

Epistatic variance and findings on functional epistasis

Experiments from crosses among lines have revealed many
clear cases of epistatic QTL, by Bloom et al. (2013) in yeast,
Huang et al. (2012) in Drosophila, and Pettersson et al.
(2011) in chickens. These contributed a sizable proportion
of the variance. As we have shown, however, the contribu-
tion of epistasis is likely to be largest with genes at frequency
one-half, and so these findings do not imply substantial con-
tributions of epistatic variance in natural or domesticated
populations maintained segregating with large effective pop-
ulation size. In contrast to such studies using defined crosses
e.g., in which gene frequencies are all 0.5, in (outbred) hu-
man and livestock populations minor allele frequencies are
likely to be diverse and typically low. There are hundreds of
loci affecting both continuous and disease traits, hence vast
numbers of potential locus combinations, most of which are
not present in the populations analyzed. This is in line with
the findings by Huang et al. (2012) and Hemani et al. (2014)
of several epistatic QTL but nevertheless these made very
little overall contribution to the genetic variances. In an anal-
ysis of gene expression, for loci found to be interacting by
variance heterogeneity, Brown et al. (2014) detected on av-
erage 4.3% of the variance to be epistatic, with the highest up
to 16%. This represented two successive selection processes
in the analysis, however.

Mackay (2014) argues for the importance of epistasis,
and while acknowledging the fact that substantial amounts
of epistasis do not in themselves produce much epistatic
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variance, provides experimental data on behavioral traits in
D. melanogaster. For Drosophila inbred lines that were de-
rived from an outbred population the variance among lines
was much more than twice the additive variance within
populations expected under an additive model. This com-
parison is, however, subject to potential biases due to non-
additive gene action within loci: notably low-frequency
recessives contribute little variance within lines but a lot
between lines. Her group also concluded from comparisons
of QTL detected from GWAS and from selection within
a population that there was little correspondence in the
estimates of effects (regions of large effect) between them,
interpreting this as epistasis. In such an experiment, al-
though lack of power in either analysis leads to noncorres-
pondence and apparent interaction, this was minimized by
focusing on variants with highly significant marginal effects.

The best-known biochemical networks of up to a few
dozen nodes in laboratory organism exhibit much interac-
tion (Phillips 2008). Therefore it is important that research
on functional epistasis of individual genes is pursued to gain
more knowledge about the nature of quantitative trait var-
iation. The new findings can be then incorporated in the
statistical models elucidating the state and potential in the
variation. Quantitative geneticists would like to exploit all
the information underlying genotypic values. The challenges
in detecting interaction effects are great for a number of
reasons: multilocus genotypic classes have lower frequency,
epistatic effects are likely to be smaller than main effects,
power of detection in GWAS depends on there being LD
between two pairs of trait genes and markers, and their
detection has to pass more stringent statistical thresholds
because so many tests are undertaken. Therefore it is not
yet feasible to obtain information on epistasis among indi-
vidual loci for quantitative traits pending as-yet-unforeseen
advances in technology or ideas are achieved.

Conclusions

We show that substantial epistasis among multiple loci is
likely to lead to mostly additive genetic variance in outbred
populations. The common error is, however, to assume a lot
of one implies a lot of the other. Perhaps the controversies
arise because it is not fully appreciated or scientists choose
not to acknowledge this rather mundane theoretical finding.
An understanding of the biology, however, requires that the
epistasis be identified. A pragmatic approach is likely to be
more successful in areas such as livestock improvement or
understanding the variation of most traits in humans. Only
when at the individual gene or gene pair do we need to
concern ourselves greatly with epistasis.
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Appendix

Appendix A: Partition of Variance for Loci Showing Dominance

Inclusion of dominance yields an additional term such that heterozygotes differ from the homozygous mean at locus i by di,
with corresponding interaction terms A 3 D, D 3 A, and D 3 D for two loci, defined in Table 1 for three loci and extending
naturally to more.

Assuming Hardy–Weinberg and linkage equilibrium, the mean is

m ¼
X
i
2pifai þ ð12 piÞdig þ

X
i

X
j. i

4pipj
n
½aa�ij þ

�
12 pj

�½ad�ij þ ð12 piÞ½da�ij þ ð12 piÞ
�
12 pj

�½dd�ij
o

þ  
XXX

k. j. i
8pipjpk

n
½aaa�ijk þ ð12 pkÞ½aad�ijk þ . . .þ ð12 piÞ

�
12 pj

�ð12 pkÞ½ddd�ijk
o
þ . . . :

The average effect at locus i, including only terms up to two loci for illustration, is

1
2
@m

@pi
¼ fai þ ð12 2piÞdig þ

X
j 6¼i

2pj
n
½aa�ij þ

�
12 pj

�½ad�ij þ ð12 2piÞ½da�ij þ ð12 2piÞ
�
12 pj

�½dd�ij
i
þ . . . ;

and the dominance deviation at the locus, obtained by differentiating again with respect to pi (Kojima 1959), is

1
4
@2m

@p2i
¼ 2 di 2

X
j 6¼i

2pj
n
½da�ij þ

�
1-pj

�½dd�ij
o
þ . . . :

To simplify these expressions and those for epistatic effects, we define the following symbolic expressions

a9i ¼ ai þ ð12 piÞdi;
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a*
i ¼ ai þ ð12 2piÞdi ¼ @

	
pi
�
a9j
�
�

@pi;

d*i ¼ di;

and the outcomes of symbolic products, all of which are commutative, among them. For example,

�
a*a9

�
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�
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�
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and similarly for higher-order terms.
Hence, from the above and equivalent expressions it can be seen that

m ¼
X
i
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i

X
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giving symbolic form of similar structure to that for m and 1
2 @m/@pi in the additive case (cf. Equation 2). Then
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and so on for higher-order terms. This form shows results in a similar pattern to that of the additive model. For the
dominance deviation we have
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The variances VA and VD are the sums over loci of Hi(1/2@m/@pi)2 and Hi
2(1/4@2m/@pi2)2, respectively. The total for VAAD, for

example, comprises sums over locus trios
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and similarly for higher-order terms.
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Appendix B: Method for Analysis of Effect of Selection on the Expected Variances

Based on diffusion equation approximations (e.g., Crow and Kimura 1970) the results should approximate those for pop-
ulations with larger N values but similar values of N 3 gene effects (or selection coefficients) for such loci, on a time scale
proportional to N. We use a haploid model but approximate a diploid population of (approximate) effective size Nh/2. The
vector of gene frequency values has dimension (Nh + 1)2, where each element specifies the probability P(i1, i2) that there are
i1 copies of the increasing allele at the first locus and i2 at the second at some generation t. The transition matrix of
dimension (Nh + 1)2 3 (Nh + 1)2 defines conditional probabilities of joint frequency change between states. Selective
values are computed assuming truncation selection on the trait being modelled, with specified selection intensity S and
selective values Sa1 and Sa2, where a1 and a2 are the average effects (i.e., including interaction terms) in units of the
phenotypic standard deviation SD (based on Robertson 1960).

Mild selection (with S = 0.29 and values of a1 and a2 of 0.1 SD) was applied to represent the selection intensities when
there is both genetic variation from many loci and environmental variation. The (haploid) population size was set at Nh =
40. Initial allele frequencies were set at 0.05 (2/Nh) for both loci and iteration was continued for 100 (i.e., 1.5N) generations,
i.e., close to fixation. Iteration was also undertaken with the same starting frequencies and random mating, but no selection
(i.e., S = 0). The results were computed as the average of the components of variance over the 100 generations. With
positive interaction ([aa] = a), 96.8% of the genetic variation is additive with random mating vs. 96.5% with selection. For
negative interaction ([aa] = – a), the proportions are 94.6 and 93.3%, respectively. In the results for this two-locus case the
epistatic variance has a higher proportion with negative interaction while selection seems to alter this proportion very little.
Checks undertaken with Nh = 20, the same starting frequency (1/20), higher intensity (S = 0.58), and fewer generations
(50) gave proportions 92.9 vs. 92.2 for positive and 96.3 vs. 96.2% for negative interaction, respectively. The difference due
to N is small, so the results with this order of population size serve as good indicators for the effect of selection.

In the second case, the initial frequency at locus j was set to 1/Nh (or 1 –1/Nh) (i.e., mutant in a population of size Nh =
40) and that for locus i at the frequency distribution expected at steady state of mutation and drift without selection (i.e., U
shaped) after 100 generations of random mating or selection with the selection intensity as above. With no selection VAA is
the same in all the runs, as is the additive variance in the mutated locus j while that for locus i changes greatly depending on
the sign of the interaction [aa] of mutation due to the term pjaj[aa]ij in the formula for VA. The epistatic variance is again
highest for negative interaction, while the results with and without selection differ very little and, in general, the genetic
variation is mainly additive.

In the third example the starting allele frequencies for each of the two loci were set as either 1/Nh or 1 – 1/Nh and the
results are presented as weighted averages over these four different initial conditions. Two relative mutation rates at locus B
were considered: equal, (B / b) = (b / B), and unequal, (B / b) = 3(b / B), with Nh = 40. With positive interaction
([aa] = a) VA/VG averages 98.2% for the model with equal probability and 98.5% if unequal, when there was no selection
and with selection (S = 0.29) 98.3 and 98.8%, respectively. When the gene interaction is negative, these values are slightly
smaller, with no selection 90.4 and 84.2%, and with selection 90.3 and 84.2%, respectively. Hence, selection produced
negligible difference. In conclusion, the asymmetry in the allele frequency distributions caused by selection does not seem to
alter the general picture about the proportion of epistatic variance.

Table A1 The transition matrix approach used to study the influence of genetic background on the impact of a newmutation (either with
increasing or decreasing effect) on the proportion of additive variance (VA) in the genotypic variance (VG)

Mutation b / B Mutation B / b

No selection VA/VG Selection VA/VG No selection VA/VG Selection VA/VG

Positive interaction [aa] = a 0.965 0.968 0.981 0.988
Negative interaction [aa] = 2a 0.923 0.904 0.793 0.742

The variation is caused by two interacting loci. A haploid population of size 40 is first iterated for 100 generations with or without selection to reach a steady state on one
locus and the impact of mutation (either to decreasing b or increasing B allele) at the other locus is estimated after another 100 generations with or without selection,
respectively. Selection intensity applied was 0.29.
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