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SUMMARY New genes that arise from modification of the noncoding portion of a genome rather than being duplicated from parent
genes are called de novo genes. These genes, identified by their brief evolution and lack of parent genes, provide an opportunity to
study the timeframe in which emerging genes integrate into cellular networks, and how the characteristics of these genes change as
they mature into bona fide genes. An article by G. Abrusán provides an opportunity to introduce students to fundamental concepts in
evolutionary and comparative genetics and to provide a technical background by which to discuss systems biology approaches when
studying the evolutionary process of gene birth. Basic background needed to understand the Abrusán study and details on comparative
genomic concepts tailored for a classroom discussion are provided, including discussion questions and a supplemental exercise on
navigating a genome database.

Related article in GENETICS: Abrusán, G., 2013 Integration of New Genes into Cellular Networks, and Their Structural Maturation.
Genetics 195: 1407–1417.

Background

LIFE as we know it is encoded by the DNA of our genomes.
Every cellular being has its own genome specifying the

information required for constructing and maintaining its exis-
tence (its genotype). Within each genome there are important
protein-coding genes. In cells, these proteins are instrumental
in biological pathways that affect an organism’s health, appear-
ance, and adaptation to changing environments (its pheno-
type). During evolutionary time periods, species diverge and
acquire new characteristics. Given the constraints of the genetic
code, how do new attributes or morphological changes arise in
species? New genes to carry out these new functions must be
encoded in the DNA, and the DNA must be transcribed into
mRNA and translated into protein.
The best-documented mechanism whereby new genes

arise is through duplication of existing genes, and this is
generally the only mechanism mentioned in textbooks. Gene

duplication has occurred over and over during evolutionary
history, leaving most species with “families” of related genes
arising from multiple duplication events (Demuth and Hahn
2009). When an organism duplicates a gene, one gene copy
can continue to perform the original function of that gene
product, while the other copy, “relieved” of its normal
duties, is now free to accumulate sequence changes that
may eventually lead to a gene with a new, or specialized
functionality. In addition, gene duplication may result in
higher levels of the gene product. A variation that can also
lead to big evolutionary changes is “tinkering” with the ex-
pression patterns of existing genes. That is, small changes to
regulatory sequences near protein-coding genes can change
the levels or timing of transcription or change the cell popu-
lation in which the gene is expressed—often leading to signif-
icant functional or morphological changes in the organism
(Flicek 2013).

In the past few years, scientists began to question the
dogma that new genes arise only from reshuffling and repur-
posing an existing set of genes. Since the majority of an
organism’s genome is non-protein-coding DNA, it is often
thought of as “junk” DNA. Scientists have begun to explore
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whether there is a purpose for these cryptic sequences, and
whether they contribute to fundamental biological processes
like adaptation or evolution. Several research groups have
now demonstrated that an important function of noncoding
DNA is a source for new genes to arise “from scratch.” Because
these new genes lack parents they are also called orphan genes.

How Do New Genes Emerge from
Non-protein-coding DNA Sequences?

For genes that arise from scratch, at some point in history
there was a DNA sequence that was not a gene, and then
that sequence somehow became a gene. Lest we begin to
think in terms of magical transfiguration, it is worthwhile to
consider what being a gene entails. First, genes are
transcribed into RNA. Until a few years ago, most scientists
thought that only genes were transcribed into RNA. In
courses, students learn about how meticulously gene tran-
scription is regulated, with the implication that each cell
transcribes only the genes that are needed at a given time.
It turns out that transcription is much messier than anyone
expected. New technologies have allowed researchers to de-
termine the sequences of all the RNAs found in a cell, and it
was found that a good portion of the genome is transcribed
at one time or another, at least at low levels—even the parts
thought not to contain genes (Bertone et al. 2004; Cheng
et al. 2005; Gerstein et al. 2007). Thus, as new genes arise
from nongene regions, transcribing the DNA into RNA is not
as big of a hurdle as was once thought.

What else does being a gene entail? For protein-coding
genes, the RNA must be processed and exported from the
nucleus to associate with ribosomes in the cytoplasm for
translation. Several recent studies have found that many
non-protein-coding RNAs are found associated with ribo-
somes, suggesting that some of the background “noise” of
superfluous transcription gets translated into rudimentary
proteins (Wilson and Masel 2011; Brar et al. 2012; Carvunis
et al. 2012). With the knowledge that lots of extragenic
transcription and translation occurs in the average cell, it
is not hard to imagine how new protein-coding genes could
begin to arise. Carvunis et al. (2012) have suggested a likely
course of events whereby new genes arise, and we have
summarized these steps in Figure 1. Nongene sequences
are routinely transcribed at low levels (Figure 1A). Over
time, mutations occur in DNA sequences that create
stretches between start and stop codons called open reading
frames (ORFs) (Figure 1B). These RNAs begin to be trans-
lated at low levels (Figure 1C). Over time, some of these
short ORFs may acquire new mutations, resulting in a longer
ORF and, eventually, achieve higher levels of transcription
and translation (Figure 1D). Carvunis et al. (2012) called
“developing” genes in the C and D groups proto-genes (Fig-
ure 1), a term also used in the Abrusán (2013) article.

Another aspect of being a gene is that the gene product
has some function. Gene function is thought to develop dur-
ing the later proto-gene stages (Carvunis et al. 2012). The

products of proto-genes may give the organism an adaptive
advantage or begin contributing to a cellular process (Figure
1D). By the time a proto-gene becomes a bona fide gene, it
has developed a function. Genes also have developed robust
and regulated transcription and translation, and they are
generally conserved between related species (Figure 1E).
The reason conservation is observed is because it takes a long
time for a gene to develop from scratch, and chances are that
during this long period, one or more speciation events takes
place, leaving that gene in several closely related species.

How Can We Determine Which Genes
Are in the Process of Being Born?

Even though the timescale for the progression of events in
Figure 1 is millions of years, it is still possible to experimen-
tally study the process of gene birth. At any given time, we
can assume that all species have genes at each stage along
the gene-birth continuum. To determine which genes are in
the process of forming, the age of a gene can be estimated
based on conservation with other species. The divergence of
species during evolutionary history is a way of counting the
passage of time (on a millions of years scale). If a particular
gene sequence is found in two different species, it suggests
that back before those species diverged from each other, that
gene already existed. Once the speciation event occurred,
both ended up with that sequence.

Once species have diverged from each other, each will
continue to undergo random genetic change, and the shared
sequences between them will begin to become more and
more different from each other over time. However, impor-
tant genes stay conserved (similar) between the species.
Conservation suggests that gene is undergoing purifying
selection—that is, loss of the gene has detrimental consequences
for the organism and, thus, any individual with a severe
mutation in that gene would not survive to pass on that genetic
change.

Conservation of molecular sequence data (DNA, RNA,
and protein) between different species is used by scientists
to create depictions of evolutionary relatedness in the form
of a tree diagram. A phylogenetic tree (also called a phylogeny)
is a diagram that depicts the lines of evolutionary descent of
different taxa from a common ancestor. Interpreting this
information is not always straightforward and requires some
understanding of the elements of a phylogeny and what they
represent. There are different ways to depict phylogenies,
but we discuss the specific type shown in Abrusán (2013,
Figure 1).

What information does this tree contain? The tree in
Figure 1 is a graphical representation of a phylogeny derived
from known evolutionary relationships between yeast spe-
cies (Hedges et al. 2006). In this simplified tree, the hori-
zontal dimension (called a branch) represents the degree of
genetic change over time. Depending on the type of analysis
used to estimate evolutionary divergence, different units are
given on the tree. Here, the units, which are not drawn to
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scale, are millions of years (for example, Saccharomyces cer-
evisiae and Schizosaccharomyces pombe diverged ~760 mil-
lion years ago, or MYA). Such estimations are generally
determined based on the degree of change between pub-
lished DNA sequences from each species and standard mu-
tation rates. In the tree shown in Figure 1, existing species
are depicted on the right, connected by a series of branch
points called nodes. Each node represents a putative com-
mon ancestor of the two lineages that descended from that
node. Since the tree branches from left to right, the earliest
ancestor is on the left, and time increases to the right. For
example, ancestor 10 existed prior to ancestors 9 and 8, etc.
In the figure, there are nine different common ancestors,
which include different fungal lineages based on this rank-
ing of branch point nodes. Thus, the 14 different species on
the tips of this tree cluster in a rank that is determined by
relatedness (or conservation) at the genetic level.

Abrusán investigated the genes of the yeast S. cerevisiae
and compared them to the genes in other sequenced ascomy-
cete fungi species shown in Abrusán (2013, Figure 1). The
classification scheme was similar to that previously used by
Carvunis et al. (2012); briefly, ORFs were classified into 10
groups based on their level of conservation. For example,
level 1 ORFs are annotated genes that are found only in
S. cerevisiae, while level 2 ORFs are also conserved in the
closely related S. paradoxus. About 2% of the total ORFs
are found only in S. cerevisiae (level 1), whereas 12% are
conserved among the four closely related Saccharomyces species
(levels 1–4). Levels 1–4 have been designated proto-genes
because of their relatively recent emergence. The remaining
ORFs in S. cerevisiae (about 88%) had homologs in more dis-
tant species (levels 5–10, shown in Abrusán (2013, Figure 1),
and can be confidently considered bona fide genes.

A Systems Biology Approach Toward
Investigating Gene Birth

One final introductory note: while the Abrusán (2013) arti-
cle is indeed hypothesis-driven research, it may seem a bit
different from what most people think of as experimental

science. The study presented is completely computer based,
using publicly available data sets. The Abrusán (2013) arti-
cle uses a systems biology approach—rather than studying
one gene at a time, all genes, all proteins, all transcription
factor binding sites, etc., are considered. These data are
frequently called “-omics” data (which includes genome,
transcriptome, proteome, interactome), and the technical
advances that have enabled the collection of these data have
revolutionized the way biology can be studied. The work pre-
sented by Abrusán provides an example of how to use -omics
data to examine the differences between new and old genes.

Unpacking the Experiments

Using a computational systems biology approach, Abrusán
explores the functional characteristics of proto-genes within
the context of their cellular regulatory networks. Taking
advantage of the entire collection of S. cerevisiae ORFs clas-
sified by conservation level (gene age), Abrusán investigates
the differences between young and old genes by integrating
gene classes with existing system-wide data. The features he
examined, which we discuss here, fall into four categories:
(1) gene regulatory interactions, (2) gene essentiality, (3)
protein structure, and (4) genetic and protein interactions.

Gene regulatory interactions

Changes in the timing and the level in which genes are
expressed are recognized to play an important role in
evolution. A major mechanism underlying changes in gene
expression involves the interactions between protein tran-
scription factors and cis-regulatory DNA sequences surroun-
ding gene regions (cis refers to DNA sequences located near
the gene, as opposed to a different part of the genome, or
trans). Gene expression by its very nature involves multiple
genes—both those that encode the regulatory transcription
factors and those that are being regulated. Thus, rather than
studying single genes as isolated entities, systems biology
researchers are beginning to discern important evolutionary
phenomena at the level of networks of regulatory interactions
between genes.

Figure 1 Proposed progression of events in
de novo gene birth. DNA in blue, RNA in
red, protein in purple, open reading frame
(ORF) as a blue rectangle. Adapted from
Carvunis et al. (2012).
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Because the transition from proto-gene to gene is pre-
dicted to involve regulated transcription (as opposed to the
low-level chance transcription that occurs in nongene
regions or early proto-genes), it is therefore expected that
proto-genes will be in the process of developing distinct
gene elements for regulated transcription. Regulated tran-
scription requires cis-regulatory elements near the gene
where RNA polymerase and transcription factors bind. To
explore the gene regulatory interactions of new genes and
compare them to older genes, Abrusán employed a database
called YEASTRACT that catalogs information about tran-
scription factors and their target genes. YEASTRACT is
a compilation of data from S. cerevisiae examining 110 dif-
ferent transcription factors, and the genes that they regulate
(Abdulrehman et al. 2011). Much of these data originate
from various types of high-throughput experiments.

A transcription factor may regulate many genes, but also,
individual genes may be regulated by many transcription
factors—some to turn it on, others to turn it off –in response to
different cellular stimuli. It was previously shown that proto-
genes in S. cerevisiae are less likely than true genes to have
a transcription factor bound nearby (Carvunis et al. 2012).
Abrusán extended this analysis to examine the number of
genes regulated by the same transcription factors, the number
of transcription factors that regulate each gene, and the pres-
ence of a feed-forward loop, where two transcription factors,
one regulated by the other, both regulate the gene of interest.
All of these measures aim to address how well integrated
proto-genes are into the existing gene regulatory network.

Examination of the gene regulatory interactions of proto-
genes revealed that young genes have fewer known gene
regulatory interactions and are regulated by fewer tran-
scription factors than their older counterparts. However, the
differences between old and young genes for each of the
examined gene regulatory properties (co-regulated genes,
number of transcription factors regulating a gene, and feed-
forward loops) reveal that proto-genes still possess regula-
tory interactions, suggesting that they are quite rapidly
assimilated into the gene regulatory network.

Gene essentiality

Imagine all the parts that go into making a car. You could
not remove a wheel or part of the engine and still have
a drivable car, but the air conditioner and cup holders could
certainly go. Similarly with genes, some are required for life,
while others are not. You might predict that genes that are
just beginning to acquire a cellular function would not yet
be required for life, while older, highly conserved genes
would be more likely to be essential to the cell.

The yeast S. cerevisiae has been studied as a simple eukary-
otic model organism for many years, and scientists have cre-
ated separate strains of yeast that individually delete each and
every gene (Winzeler et al. 1999). Essentiality, as determined
by the viability of a deletion mutant, gives an indication of the
importance of the gene to the species. These “deletion strains”
have also been used to assess the impact of the loss of a given

gene on the overall growth rate. Abrusán takes advantage of
such a data set to compare the essentiality of newer genes to
older genes. Yeast can grow as either haploid or diploid cells,
and this study looked at how loss of one or two copies in
a diploid state affected a yeast strain’s growth rate; thus, the
genes in this data set are suggested to be required for normal
yeast fitness (Deutschbauer et al. 2005). Using the homozy-
gous deletion data sets, Abrusán found that older genes in
higher conservation levels tend to be more essential than
younger genes. Thus, only the oldest, most conserved genes
seem to have a significant effect on yeast fitness.

Protein structure

Do new translatable open reading frames possess any
structural characteristics? Due to their lack of conservation
and young age, one might expect the protein products of
new genes to initially be less structurally well formed. In
contrast, the products of conserved genes are likely to have
developed stable structures. A good starting point at which
to address the structure of genes as they age is to examine
the predicted secondary structures of the protein products
from all different conservation levels.

As every protein is produced, it must be folded into its
native conformation—that is, there are limited correct ways
for the protein to fold, and alternative ways of folding will
result in a nonfunctional protein. Many human genetic dis-
orders are caused by DNA mutations that lead to small
changes in the protein sequence that negatively affect the
stability or structure of a protein. The sequence of the poly-
peptide chain (the primary protein structure) of a predicted
protein is determined by the genetic code or the codons
within the boundaries of the open reading frame of the
gene. The primary protein structure is a major determinant
for the ability of a protein to fold into an ordered three-
dimensional structure. A protein fold is a spatial arrange-
ment of helices (generally a-helices) and extended chain
segments (b-strands or sheets) that are separated by flexible
loops and relatively rigid regions in the form of turns and
coils. Helices are stabilized by local backbone hydrogen-
bonding interactions. In turn, b-strands establish backbone
interactions with distant strand elements. Folds are gener-
ally defined by the composition and organization of their
core helix and sheet secondary structure elements.

Computational structural biologists have learned how to
predict fairly accurately the structure of a protein starting
with a primary protein sequence. That is, with some degree
of confidence, one can use an algorithm to deduce regions of
a-helical and b-stranded structures in a protein just by pro-
viding the open reading frame DNA sequence. These pre-
dictive tools are handy for solving functional questions and
even evolutionary questions related to protein structure. To
test the emergence of structural characteristics of genes as
they age, Abrusán predicted the secondary structures of all
S. cerevisiae proteins, binned into the 10 different conserva-
tion level groups. His findings revealed that the a-helical
content of proteins does not change with conservation level.
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In contrast, the structures of proto-genes and randomly gen-
erated protein sequences are predicted to be composed of
higher levels of b-strands than what is predicted for older
genes. These results suggest that newer translatable open
reading frames have a propensity to form proteins contain-
ing a higher degree of b-strand content and that older open
reading frames have lost this structural characteristic.

Is there a negative selective pressure against b-strands in
conserved genes? Proteins must carry out their functions in
a crowded, complex environment of a cell, and while proteins
will often physically interact with certain other proteins to
carry out a task, it would be disastrous if a protein aggregated
promiscuously with too many other cellular proteins. Some
human disorders like Huntington’s disease are caused by mu-
tant proteins that improperly aggregate with other proteins in
the cell, eventually leading to cell death (Polling et al. 2012).
Based on evidence that higher b-strand content is associated
with protein aggregation, Abrusán tested the overall aggre-
gation tendency using an algorithm that scores a protein’s
aggregation propensity. The results of this test confirmed that
proto-genes with higher b-strand content are more likely to
aggregate. These results have implications on the evolution of
protein structure and suggest that globally, higher b-strand
content is a characteristic of less evolved structures.

Mutations accumulated over time shape the primary
structure of a protein and its resulting three-dimensional
structures. If a protein can tolerate a number of amino acid
substitutions with little change in structure, stability, or
function, it is said to be robust. Using a sequential in silico
mutagenesis approach to simulate evolution, Abrusán tested
proto-gene robustness, or the ability of a proto-gene to resist
large structural changes with increasing mutation rates. His
analysis showed that the predicted secondary structures of
young genes change faster with sequence change than the
older genes, and therefore proto-genes have low robustness
against mutations. Similarly, he assessed the decay rates of
a-helices vs. b-strands and found that b-strands decay con-
siderably faster. Together, these data validate the suggestion
that b-strand structure is more difficult to maintain over
longer evolutionary periods than a-helices.

Genetic and protein interactions

Proteins generally carry out their biological functions in
conjunction with other proteins in the cell. If two proteins
physically interact with one another, it suggests that they
function together. Other proteins genetically interact with
each other. We discuss what a genetic interaction is, below,
but this type of interaction also suggests that the two pro-
teins function in the same process. Thus, both genetic and
protein interactions are a measure of how well a gene is
integrated into the cellular interaction network. Another
way to think of this is whether the gene is a loner, working
by itself within the cell, or whether it is social, doing its tasks
in conjunction with other gene products.

We would expect that proto-genes, which are still in the
process of developing a function, would have fewer genetic

and protein interactions, assuming that the increased aggre-
gation propensity of proto-genes does not lead to non-
specific protein interactions. Physical interactions between
proteins are detected in several different types of experi-
ments, including co-immunoprecipitation and yeast-two-
hybrid assays (we do not discuss these methods here). The
BioGRID database, which Abrusán used, includes protein–
protein interaction data compiled from many different sour-
ces (Chatr-Aryamontri et al. 2013). Mining these data and
binning the number of identified protein interaction part-
ners for each gene in each of the 10 age groups revealed
that older genes have more protein interaction partners.
Thus, as a gene ages, it becomes much more connected to
the interaction network than younger genes. These results
are consistent with an earlier publication showing similar
trends (Capra et al. 2010).

Genetic interactions are a bit more complicated to
understand than physical interactions. The way genetic
interaction (also called epistasis) is observed is via mutant
phenotype analysis. Specifically, when a mutation in one
gene affects the phenotype conferred by a mutation in
another gene, we say that the two genes genetically interact.
This can happen in different ways. For example, two
different genes may both function in muscle contractility.
A mutation in each gene individually may decrease the
contractile ability of muscle cells only slightly, but together
they may cause complete contractility failure; this is an
example of phenotype enhancement. Alternatively, a muta-
tion in a second gene might suppress the phenotype of a mu-
tation in the first gene—this is also genetic interaction.
Many studies have examined genetic interactions between
genes, since it has been a useful method with which to
identify new genes involved in particular biological pro-
cesses. Most genetic interaction results have been compiled
into the BioGRID database. Some of these genetic interac-
tions also have scores associated with them, which indicate
how strong that interaction is (Costanzo et al. 2010). Abrusán
used these data to compare the average strength of the genetic
interactions between proto-genes and true genes. His analysis
showed that genetic interactions, like protein interactions, also
increase with age.

In summary, the Abrusán (2013) study used a systems bi-
ology approach to investigate the differences between young
and old genes in the yeast S. cerevisiae. This study found, in
general, that older genes are more integrated than young
genes into both gene regulatory networks and gene interac-
tion networks. It also showed that old genes are more likely
than young ones to be essential. Finally, Abrusán showed that
older genes tend to encode proteins with lower b-strand con-
tent and lower aggregation propensity compared to young
genes and that the structures of old genes are more robust
than the structures of young genes to mutation. Overall, these
data support the proposed hypothesis from Carvunis et al.
(2012), summarized in Figure 1, for how de novo genes form.
The Abrusán (2013) article is one study using fungal lineages.
There are many other species with fully sequenced genomes
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and significant amounts of systems biology data. Future stud-
ies will show whether Abrusán’s findings are indeed charac-
teristic changes that occur to all de novo genes as they evolve
in other lineages.

Suggestions for Classroom Use

This primer is aimed for undergraduate students. The pri-
mer is meant to accompany the Abrusán (2013) article in
a genetics or evolution course. We suspect that most faculty
members have their own ideas for how to introduce under-
graduates to the primary literature, and excellent ideas for
such introductions have also been suggested in previous
primer articles. We include two items to facilitate teaching
with this article: a list of questions for review and discussion
and a short supplemental exercise on navigating a genome
database. For systems biology articles such as this, we think
there is value in introducing students to some of the actual
data sets that were used, to demystify the approach. The
supplemental exercise could be done as a group exercise
in class or expanded upon to create an assignment.

Questions for Review and Discussion

1. Estimate your evolutionary relatedness to the cockroach
Periplaneta americana using TimeTree (http://www.
timetree.org/index.php).

2. Consider the effects of mutations in protein-coding
genes vs. mutations in noncoding DNA as driving evo-
lutionary phenotypic change. How might mutation in
noncoding DNA affect evolution?

3. On the basis of textbook knowledge of RNA polymerase
II-mediated transcription and RNA processing, describe
the steps required for a proto-gene to develop regulated
transcription and for the proto-gene mRNA to become
translated into a protein.

4. Imagine yourself as a proto-gene, walking into a large,
complex factory (the cell) with thousands of other
“worker” genes doing their specific jobs. You would like
to be useful, but it seems that all the jobs are taken!
How might you enhance the efficiency of production in
the factory? Tie your ideas in to those examined by
Abrusán—how far can you take this analogy?

5. In Figure 1 of this primer article, the arrows are going
toward the right, toward gene evolution. Could the
arrows also go backward? For example, could you have
a proto-gene that loses its ORF, returning to become
a nongene sequence? Would you expect the backward
arrows be of equal, higher, or lower prevalence than the
forward arrows?

6. In the phylogenetic tree in Abrusán (2013, Figure 1), if
a gene that was present in S. cerevisiae was also present
in Candida albicans, but was not present in Debaryomy-
ces hansenii, would you think that gene should be in-
cluded in the conservation group for level 7? How could
such a situation have arisen?

7. Abrusán (2013, Figure 3) reports on the number of
essential genes in each conservation level group that
do not overlap with other genes. For this analysis,
why might you consider only proto-genes that do not
overlap with other genes? How does the number of
genes in each group affect your confidence in the data?
Particularly note groups 1, 5, and 10.

8. In this study, Abrusán (2013) was limited by the data
that were available, which is only on annotated genes
(i.e., previously identified genes). How might this limita-
tion skew the findings on characteristics of proto-genes?

9. On the basis of results from this article, what additions
would you suggest to Figure 1, the summary of how
genes develop de novo?

10. Abrusán investigated certain gene characteristics in this
study. Can you think of any other characteristics for
which it might be interesting to investigate the differ-
ences between young and old genes?

Supplemental Exercise on Navigating a
Genome Database

To begin, let us navigate through the Saccharomyces Ge-
nome Database (SGD) to examine some specific yeast
genes. We start with a well-annotated conserved gene,
HMT1.

Step 1: Obtain HMT1 protein sequence information
1. Go to http://www.yeastgenome.org/.
2. In the search box in the upper right type HMT1 and

click Enter.

From the Summary tab, what is the full name and function
of this gene?

3. At the top of page click the Protein tab.

How many amino acids does this protein have?
On the basis of the number of amino acids, how many

nucleotides make up the protein-coding region in the DNA
sequence?

4. Under the predicted sequence section, click on Down-
load the sequence in FASTA format button. A new page
will appear highlighting the HMT1 primary protein
sequence. This can be highlighted and copied.

Step 2: Predict the HMT1 protein secondary structure
1. In a new tab, go to the protein secondary structure

prediction program PSSPred: http://zhanglab.ccmb.
med.umich.edu/PSSpred/.

2. Paste the HMT1 protein sequence and input your
e-mail address.

3. Press RunPSSPred.
4. The server will return the results via e-mail or you can

click the provided link on the page (it may take
15 min).
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5. The output is a secondary structure prediction pre-
sented in different formats. The output shows the pro-
tein sequence with a letter beneath each amino acid
abbreviation, where C stands for coil (generally used
when the sequence does not form an a-helix or
b-strand), H stands for helix, and E stands for strand.

6. Tally up the number of H’s and E’s and determine the
overall percentage of each structure by dividing the num-
ber of each category by the total amino acids of HMT1.

What are the differences between primary, secondary, ter-
tiary, and quaternary protein structure? Which of these are we
investigating here?

7. Validate the prediction results with another program:
SGD has a link to secondary structure predictions. Go
back to the SGD HMT1 result under the summary tab
and find the External Links under Resources toward the
bottom of the page. Find the UniProtKB and click on the
link to see an alternative database. Under the secondary
structure prediction on UniProt, click the details link.

Does the UniProt prediction look similar to the PSSPred
prediction?

Step 3: Explore other data sources
1. Explore how many other yeast species the HMT1 gene

is conserved in. Under the Summary tab, in the Analyze
sequence section, click Fungal alignment. The results
show an alignment of the protein sequence between
different species, color coded for how similar they are.

How many other fungal species also have the HMT1 gene?
Overall, how would you characterize the similarity (primar-

ily identical/strong similarity vs. primarily weak similarity)?

2. Explore the BioGRID protein interactions. These are
summarized on SGD under the Interactions tab.

How many total interactors does HMT1 have?
How many are physical interactions vs. genetic interactions?

3. Explore gene regulatory interactions. Abrusán used the
YEASTRACT data set; in SGD under the Regulation tab,
YEASTRACT data (along with some other data sour-
ces) are displayed. Only genes that are transcription
factors would be expected to have any transcriptional
targets (and HMT1 has none, since it is not a transcrip-
tion factor). Transcriptional regulators are the genes
that likely regulate the transcription of the HMT1 gene.

How many transcriptional regulators are predicted for
HMT1?

After having gone through this exercise, students should
choose one S. cerevisiae proto-gene and one bona fide gene
from Table 1, and go through the same analysis steps. Did
your two genes turn out to be similar to Abrusán’s systems
biology findings (Table 1)?
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Table 1 List of sample proto-genes and bona fide genes in
S. cerevisiae

Proto-genes Bona fide genes

YFR035C YLR310C
YBR050C YGR119C
YPR053C YBR170C
YGL188C-A YIR033W
YER186C YLR113W
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