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ABSTRACT Both genetic drift and natural selection cause the frequencies of alleles in a population to vary over time. Discriminating
between these two evolutionary forces, based on a time series of samples from a population, remains an outstanding problem with
increasing relevance to modern data sets. Even in the idealized situation when the sampled locus is independent of all other loci, this
problem is difficult to solve, especially when the size of the population from which the samples are drawn is unknown. A standard x2-
based likelihood-ratio test was previously proposed to address this problem. Here we show that the x2-test of selection substantially
underestimates the probability of type I error, leading to more false positives than indicated by its P-value, especially at stringent
P-values. We introduce two methods to correct this bias. The empirical likelihood-ratio test (ELRT) rejects neutrality when the likelihood-
ratio statistic falls in the tail of the empirical distribution obtained under the most likely neutral population size. The frequency
increment test (FIT) rejects neutrality if the distribution of normalized allele-frequency increments exhibits a mean that deviates
significantly from zero. We characterize the statistical power of these two tests for selection, and we apply them to three experimental
data sets. We demonstrate that both ELRT and FIT have power to detect selection in practical parameter regimes, such as those
encountered in microbial evolution experiments. Our analysis applies to a single diallelic locus, assumed independent of all other loci,
which is most relevant to full-genome selection scans in sexual organisms, and also to evolution experiments in asexual organisms as
long as clonal interference is weak. Different techniques will be required to detect selection in time series of cosegregating linked loci.

POPULATION geneticists typically seek to understand the
forces responsible for patterns observed in contempora-

neous samples of genetic data, such as the nucleotide differences
fixed between species, polymorphisms within populations, and
the structure of linkage disequilibrium. Recently, however,
there has been a rapid increase in the availability of dynamic
data, where the frequencies of segregating alleles in an
evolving population are monitored through time, both in
laboratory experiments (Hegreness et al. 2006; Bollback
and Huelsenbeck 2007; Barrick et al. 2009; Lang et al.
2011; Orozco-terWengel et al. 2012; Lang et al. 2013) and
in natural populations (Barrett et al. 2008; Reid et al. 2011;
Denef and Banfield 2012; Winters et al. 2012; Daniels et al.

2013; Maldarelli et al. 2013; Pennings et al. 2013). One
important question is whether the changes in allele frequen-
cies observed in such data are the result of natural selection
or are simply consequences of genetic drift or sampling
noise. In principle, it seems that dynamic data should pro-
vide researchers with more power to detect and quantify
selective forces while avoiding the assumptions of stationar-
ity that are required for many inference techniques based on
static samples (Sawyer and Hartl 1992; Boyko et al. 2008;
Desai and Plotkin 2008). Nonetheless, the behavior and
power of inference techniques based on time series data
have not been thoroughly investigated.

There is a well-developed literature on inferring popula-
tion sizes from genetic time-series data, assuming neutrality
(Pollak 1983; Waples 1989; Williamson and Slatkin 1999;
Wang 2001), and a rapidly growing literature on inferring
natural selection from such time series (Bollback et al.
2008; Illingworth and Mustonen 2011; Illingworth et al.
2012; Malaspinas et al. 2012; Mathieson and McVean
2013). However, even the simplest case—the dynamics of
two alternative alleles at a single genetic locus independent
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of all other loci—presents a number of statistical chal-
lenges that have not been resolved. The main complication
arises when the actual size of the population from which
the serial samples are drawn is unknown. In this case, large
changes in the frequency of an allele might indicate either
that the allele is under selection or that the population size
is small and genetic drift is strong. To favor one alternative
over the other Bollback et al. (2008) proposed to fit two
nested Wright–Fisher models to time-series data at a single
locus (one model with selection and one without) and reject
the neutral model, using the x2-distribution for the likeli-
hood-ratio statistic. Such an approach is generally the most
powerful and unbiased, at least for large data sets. Nonethe-
less, here we show that in practice the actual frequency of
false positives under this approach can vastly exceed the nom-
inal P-value obtained from the x2-distribution—and especially
so at more stringent P-value cutoffs. Since the x2-distribution
does not provide an accurate representation of the false
positive rate, this approach cannot be used to draw sound
statistical conclusions about selection from such time series.
The underlying reason for this problem is that the likeli-
hood-ratio statistic is x2-distributed only asymptotically,
and convergence to this distribution is slow (Wilks 1938). In
most practical applications, such as when sampling from
natural populations (Reid et al. 2011; Denef and Banfield
2012; Winters et al. 2012; Daniels et al. 2013; Maldarelli
et al. 2013; Pennings et al. 2013) or competing two micro-
bial strains (Lenski et al. 1991; Bollback and Huelsenbeck
2007; Lang et al. 2013), the number of sampled time points
is typically small (,10) and the distribution of the likeli-
hood-ratio statistic is far from x2 under neutrality, leading
to more false positives then expected.

We propose two solutions to fix this problem, providing
unbiased tests for natural selection in time-series data
sampled at a single genetic locus. First, we develop an
algorithm for computing the exact distribution of the like-
lihood-ratio statistic under neutrality. Although feasible in
many regimes, this direct approach suffers from several
complications that we discuss below. We also propose an
alternative, computationally efficient, albeit approximate,
statistical method for rejecting the neutral model. Our
approach builds directly on the work of Bollback et al.
(2008), and it is likewise limited to studying time series of
allele frequencies at a single locus under genic selection,
assuming independence from all other loci. The more com-
plicated problem of detecting selection from genomic time
series of many linked loci has received attention elsewhere
(Illingworth and Mustonen 2011; Illingworth et al. 2012),
and the problems identified here likely apply to those situa-
tions as well.

We start our presentation by introducing a likelihood
framework for time-series data at a single genetic locus. We
then demonstrate that the P-value given by the x2-distribution
for the likelihood-ratio statistic underestimates the actual
false-discovery rate. Next, we introduce two methods to cor-
rect this bias, and we verify that they are virtually unbiased

for large sample sizes and conservative for small sample
sizes. We quantify the power of these two tests for selection
in different parameter regimes, considering also noise in the
measurements of allele frequencies. Finally, we apply our
methods to three experimental data sets and demonstrate
that the tests behave as expected in practical situations.

Materials and Methods

Approximate expression of the transition probability
for the Moran process

Calculating the likelihood of an allele-frequency time
series requires knowing the transition probability Ps(x, t|
x9, t9) that the frequency of the observed allele in the
population at time t is x, given that it was x9 at some
previous time t9. The subscript s indicates that this prob-
ability depends on the selection coefficient of the allele.
In general, it will also depend on the population size N
and maybe on other parameters. Under most population-
genetic models no exact analytical expressions for the
transition probability Ps(x, t|x9, t9) are available for ar-
bitrary x, x9, t, t9, and s. The standard approximation to
the discrete Wright–Fisher and Moran models is the dif-
fusion approximation of Kimura and others (Ewens 2004).
Although considerably simpler than the discrete models, the
diffusion equation is still difficult to solve exactly and effi-
ciently in a general case. Although some numerical methods
are available (Kimura 1955a,b; Evans et al. 2007; Bollback
et al. 2008; Song and Steinrücken 2012), they are often
cumbersome to implement or computationally intensive.

Therefore, we use a Gaussian approximation to the
Wright–Fisher process, which is less accurate than the dif-
fusion approximation but allows us to obtain a simple ana-
lytical expression for the transition probability, which can be
computed efficiently and is quite accurate provided the al-
lele has not been lost or fixed during the period of observa-
tion. We emphasize that our two tests for selection proposed
below do not intrinsically depend upon this Gaussian ap-
proximation (that is, they could in principle be implemented
using the full Wright–Fisher model or the Kimura diffusion),
but we nonetheless rely on this approximation for effi-
ciency’s sake. Moreover, as we discuss below, there is little
additional power to be gained by considering time series
that exhibit many sampled time points with fixed alleles,
provided that sampling noise is small.

We describe the Gaussian approximation in detail in the
Appendix and summarize it here. Briefly, if the timescale of
observation is short compared to N in the case of a neutral
allele or to 1/s in the case of a positively selected allele, i.e.,
if absorption events can be neglected, the Moran process can
be approximated by a sum of a deterministic process g and
a Gaussian noise process Z (Pollett 1990). In the absence of
genetic drift, i.e., when N / N, the allele frequency X
behaves deterministically, X / g(t, x0), where g satisfies
the logistic equation
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_g ¼ sgð12 gÞ; (1)

gð0; x0Þ ¼ x0; (2)

whose solution is

gðt; x0Þ ¼ x0
�
x0 þ ð12x0Þe2st�21

: (3)

Here x0 is the initial deterministic allele frequency. When
N , N, genetic drift perturbs the allele frequency X from
its deterministic value and so X(t) = g(t, x0) + Z(t), where
Z(t) is the noise process. Then for any two time points t9 $
0 and t . t9, the transition probability is approximated by

Psðx; t   j x9; t9Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2ps2ðDt;g9Þ

q
3  exp

n
2N ðx2g2ðx92g9ÞMðDt;g9ÞÞ2

2s2ðDt;g9Þ
o
;

(4)

where

MðDt; jÞ ¼ e2sDt
�

j þ ð12jÞe2sDt
�22

; (5)

s2ðDt; jÞ ¼ M2ðDt; jÞð2 þ sÞjð12 jÞs21

3 ½2jð12 jÞsDt þ j2esDt 2 ð12jÞ2e2sDt

þ ð12jÞ2 2 j2�;
(6)

and we used shorthands g [ g(t, x0), g9 [ g(t9, x0), Dt = t 2 t9.
Under the neutral null hypothesis (i.e., when s = 0), the
transition probability simplifies to

P0ðx; t j x9; t9Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2ps2

nðDt; x0Þ

s
  exp

(
2N

ðx2x9Þ2
2s2

nðDt; x0Þ

)
;

(7)

with

s2
nðDt; x0Þ ¼ 2x0ð12 x0ÞDt: (8)

Note that functions (3)–(8) depend on parameters N and s
and on the nuisance parameter x0 that in principle can be

estimated along with N and s. However, for the sake of re-
ducing the number of fitted parameters, we fix x0 to be equal
to the observed allele frequency at time zero, x0 [ n0.

We assume here that time is measured in generations. If
time is measured in physical units, Equations 3 and 5 still hold,
with rescaled parameters N / Nt and s / s/t, where t is the
generation time; Equation 6 does not hold exactly because of
the term 2 + s, but holds approximately as long as s � 1, which
is true in most cases. Thus, Equations 4 and 7 can still be used.

Implementation

In Results and Discussion, we obtain the expression for the
likelihood L(Data; N, s) of allele-frequency data as a function
of two parameters, N and s. We estimate these parameters
by maximizing this likelihood expression. First, consider the
case when the allele frequency is measured at only two time
points t0 and t1 with the corresponding frequencies being
n0 and n1. Then the likelihood expression (9) with the
Gaussian approximation (4) becomes

LðData;N; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
2ps2ðDt; n0Þ

s
  exp

(
2N

ðn12gðt1; n0ÞÞ2

2s2ðDt; n0Þ

)
;

which is maximized at N̂ ¼ N and

ŝ ¼ 1
t1 2 t0

ln
�

n1

12 n1

12 n0

n0

�
:

In this case, the Gaussian likelihood function collapses to
a d-function centered at ŝ so that LðData; N̂; ŝÞ ¼ N. In other
words, with two data points there is enough information to
estimate the selection coefficient but not the population size.
Thus, the likelihood-ratio approach can be applied only to
three or more sampled time points, in which case we find
the maximum-likelihood parameter values using the Nelder–
Mead simplex method (Nelder and Mead 1965) implemented
in the Gnu Scientific Library (GSL) package. We limit the
search to the interval [22, 2] for s (although in practice
|s| � 1) and to the interval [1021, 108] for N, and we
allow a maximum of 3 3 104 function evaluations.

Figure 1 Distributions of test statistics under the neutral
null hypothesis. Histograms show the probabilities that the
value of a test statistic generated under the neutral null
hypothesis falls within each vigintile (quantiles of size 0.05)
of another, approximate, distribution. If the approximate
distribution is close to the true distribution, the probability
for each bin will approximately equal 0.05 (dashed line).
The left three panels show the probability distributions for
the likelihood-ratio statistic (LRS) to fall into the vigintiles
of the x2-distribution with 1 d.f., the LRS distribution un-
der the true N, and the empirical LRS distribution under
Ň, respectively. The LRS falls in the top vigintiles of the x2-
distribution more often than expected, indicating that the

P-value given by the x2-distribution underestimates the probability of a type I error. The distribution of LRS under the true N is shown as a control case.
The distribution of LRS under Ň closely approximates the true LRS distribution. The rightmost panel shows the probabilities for the frequency increment
statistic (FIS) to fall into each vigintile of Student’s t-distribution with L 2 1 d.f. Student’s t is a good approximation for the true distribution of the FIS.
Parameter values were N = 103, T = 100, D = 20, L = 5, and n0 = 0.5; the number of Wright–Fisher simulations was 3.5 3 105.
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Even though the frequency increment test described
below does not rely on the calculation of N̂ and ŝ; it too can
be applied only when three or more sampled time points are
available, for the same conceptual reason as described
above. Mathematically, when only one frequency increment
is observed, the variance of the distribution of increments
cannot be estimated and the t-statistic cannot be computed.

Results and Discussion

We consider the problem of determining whether selection
has played a role in shaping the fluctuations in the observed
frequencies of an allele in a population sampled over time.
Suppose that at each time point ti (0 , t1 , . . . , tL) we
sample a diallelic locus in ni individuals from a given pop-
ulation of an unknown size N and observe that bi individuals
carry allele A and 1 2 bi individuals carry allele a. Thus, we
observe sampled allele frequencies n0 = b0/n0, n1 = b1/
n1, . . ., nL = bL/nL. We ask whether genetic drift and sam-
pling noise alone are sufficient to explain the fluctuations in
the sampled allele frequencies or whether these frequency
changes implicate the action of natural selection at either
the specified locus or another completely linked locus. Ini-
tially, we treat this problem while neglecting sampling noise.
That is, we initially assume that ni � 1, 1 � bi � ni for all i,
so that the sampled allele frequencies ni accurately represent
the actual frequencies in the entire population. We later in-
vestigate how sampling noise affects our conclusions.

We approach the problem using the standard likelihood-
ratio test. Following Bollback et al. (2008), we consider a pair
of nested hypotheses. Under the neutral null hypothesis,
changes in the allele frequency are caused only by genetic
drift; i.e., the selection coefficient s of allele A is assumed to be
zero. Under the alternative hypothesis there is no restriction
on s. In both cases, allele a is not under selection. We calcu-
late the likelihoods of the allele-frequency time series under
each of these hypotheses, compute the likelihood-ratio statis-
tic (LRS), and reject neutrality if the LRS falls in the tail of the

x2-distribution with 1 d.f. Because the LRS need not be x2-
distributed when the number of data points is small, we first
report comparisons between the x2-distribution and the true
distribution of the LRS, for a range of sample sizes. To do this,
we simulate samples from the neutral Wright–Fisher process
and report whether the probability of type I error in the x2-
test is accurately predicted by the associated x2 P-value.

Likelihood of time-series data and the
likelihood-ratio statistic

Under standard single-locus population-genetic models, the
dynamics of an allele with selection coefficient s in a popu-
lation are described by a Markov process that specifies the
transition probability Ps(x, t|x9, t9) that the allele frequency
is x at time t, given that it was x9 at some previous time t9. In
addition to the selection coefficient s, this transition proba-
bility depends also on the population size N and possibly on
other nuisance parameters (Ewens 2004). Ignoring sam-
pling noise, the likelihood of observing allele frequencies
n0, n1, . . . , nL at times 0, t1, . . . , tL is

LðData;N; sÞ ¼ Uðn0Þ
YL

i¼1

Psðni; tijni21; ti21Þ; (9)

and, under the neutral null hypothesis,

LðData;N; 0Þ ¼ Uðn0Þ
YL

i¼1

P0ðni; tijni21; ti21Þ  : (10)

Here U(x) denotes the probability of observing allele fre-
quency x at time point 0, which for simplicity we set to be
uniform on the interval (0, 1); i.e., U(x) [ 1.

Computing likelihoods (9) and (10) is nontrivial even for
the standard Wright–Fisher process, because no exact ana-
lytical expression for the transition probability Ps(x, t|x9, t9)
exists, and approximate numerical procedures, based on the
diffusion equation (Kimura 1955a,b; Evans et al. 2007;
Bollback et al. 2008; Song and Steinrücken 2012), are

Table 1 Accuracy of the x2-based P-value in estimating the probability of type I error in the likelihood-ratio test

Sampling parameters a

N T L Δ Absorption probability Ň/N 0.05 0.01 0.001 0.0001

104 10 10 1 2.6 3 1023 1.3 1.4 1.7 2.3 3.3
104 100 10 10 7.9 3 1024 1.3 1.4 1.7 2.3 2.9
104 1000 10 100 1.2 3 1023 1.3 1.6 2.4 4.3 8.1

103 100 10 10 2.2 3 1023 1.3 1.7 2.5 4.5 8.3
104 1000 10 100 1.2 3 1023 1.3 1.6 2.4 4.3 8.1
105 10000 10 1000 1.3 3 1022 1.3 1.2 1.5 2.3 3.6

104 100 5 20 7.7 3 1024 1.7 2.0 2.9 5.2 8.5
104 100 10 10 7.9 3 1024 1.3 1.4 1.7 2.3 2.9
104 100 100 1 8.0 3 1024 1.0 1.1 1.1 1.2 1.4

Columns 1–4 show simulation and sampling parameters (see text for notations). Column 5 shows the probability that the allele fixes or goes extinct within the sampling
period. Column 6 shows the ratio of the population size most likely under the neutral null hypothesis Ň to the true population size N. Columns 7–10 show the ratio of the
true fraction of false positives in the likelihood-ratio test to the fraction a expected under the assumption that the LRS is distributed as x2 with 1 d.f., across a range of
a-values. We performed 106 neutral Wright–Fisher simulations with the initial allele frequency n0 = 0.5. See Table S1 for results for other initial frequencies. Simulations with
absorption events were excluded from the analysis.
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difficult to implement or computationally intensive. Since our
investigation requires us to evaluate the likelihood function
millions of times, we desire a fast algorithm for evaluating
expressions (9) and (10). Therefore, we choose to compute
these likelihoods, using analytical expressions obtained under
the Gaussian approximation of the Wright–Fisher process, as
described in Materials and Methods and in the Appendix. Be-
cause the Gaussian approximation is accurate only when the
allele frequency is far from 0 or 1, our results are restricted to
time-series data that lack absorption events.

Given an algorithm for computing expressions (9) and
(10), we find the parameter values N̂ and ŝ that maximize
the likelihood function (9) and the value Ň that maximizes
the likelihood function (10), and we compute the ratio

RðDataÞ ¼ 2  log

0
@L

�
Data; N̂; ŝ

�
L
�

Data; Ň; 0
�
1
A: (11)

Note that the likelihood-ratio statistic can be obtained only if
the number of sampled time points is three or more, as
explained in Materials and Methods.

If our null hypothesis were simple, i.e., if the null distribu-
tions of the observed random variables did not depend on any
free parameters, the Neyman–Pearson lemma would guaran-
tee that the LRS defines the most powerful test of a given size
for rejecting such a null hypothesis (Stuart et al. 2009, Chap.
20). In other words, the Neyman–Pearson lemma instructs
us to reject the null hypothesis whenever R(Data) . 8a,
choosing 8a so that the probability of a type I error is a. This
test is guaranteed to have the lowest probability of type II
error among all tests that have the same probability of type I
error, a.

In our case, however, the null hypothesis is composite; i.e.,
the distributions of allele frequencies depend on a parameter,
N, whose value is unknown. This implies that the distribu-
tion of the LRS under the null hypothesis is unspecified.
Thus, not only is the likelihood-ratio test not guaranteed
to be the most powerful, but also there is no general way
of determining the critical regions for the LRS distribution.
The standard way to circumvent the latter problem is to use
the asymptotic distribution for the LRS. When the number of
data points approaches infinity, the LRS distribution con-
verges to the x2-distribution (in this case, with 1 d.f.), under
appropriate regularity assumptions (Wilks 1938). This ap-
proach has been previously used in the context of allelic
time series by Bollback et al. (2008). It is worth noting that,
although the allele frequencies sampled at successive time
points are not independent, the allele frequencies at succes-
sive time points conditioned on the frequencies at preceding
time points are independent [this fact is reflected in expres-
sions (9) and (10)], and so the classical convergence results
for LRS still hold.

Although the LRS is guaranteed to be asymptotically x2-
distributed, the rate of convergence to this distribution is
Oð1= ffiffiffi

L
p Þ; where L is the number of sampled time points

(Wilks 1938). Therefore, we characterize how well the x2-
distribution approximates the true distribution of the LRS
when the number of data points is finite. This question is
important because the use of an incorrect null distribution
can result in a test that underestimates the fraction of type I
errors and thus erroneously rejects the null hypothesis more
often than indicated by its P-value.

Likelihood-ratio statistic is not x2-distributed for
finite data

With this goal in mind, we simulated the neutral two-allele
Wright–Fisher model with population size N, without muta-
tion, with allele A initiated at 10%, 20%, 30%, 40%, or 50%
of the population. We recorded the frequency of allele A
every generation, for T generations. To ensure that absorp-
tion events are rare within the sampling period we set T #

N/10. We then produced a data set consisting of these fre-
quencies sampled every D generations. We sampled a total
of L + 1 time points, so that D = T/L. For each population
size N, we simulated 106 allele-frequency trajectories, sam-
pled allele frequencies from these trajectories using various
combinations of T and L, and computed the LRS for each of
the sampled time series. Thus, for each combination of N, L,
and T we obtained the true distribution of the LRS under the
neutral null hypothesis. We compared this distribution with
the x2-distribution with 1 d.f. in two ways. First, we calcu-
lated the probabilities for the LRS to fall into each of the 20
vigintiles (quantiles of size 0.05) of the x2-distribution. Sec-
ond, we computed the probability of type I error of the x2-
based test for a range of nominal P-values a.

The results of these analyses are shown in Figure 1,
Supporting Information, Figure S1, Table 1, and Table S1.
Figure 1 and Figure S1 demonstrate that the x2-distribution
is a poor approximation for the true distribution of the LRS

Table 2 Accuracy of the t-distribution-based P-value in estimating
the probability of type I error in the frequency increment test

Sampling parameters a

N T L Δ 0.05 0.01 0.001 0.0001

104 10 10 1 1.00 1.00 0.98 1.02
104 100 10 10 1.00 1.00 1.00 1.04
104 1,000 10 100 0.96 1.05 1.25 1.37

103 100 10 10 0.99 1.08 1.31 1.38
104 1,000 10 100 0.96 1.05 1.25 1.37
105 10,000 10 1,000 0.73 0.68 0.65 0.62

104 100 5 20 1.00 1.02 1.02 1.09
104 100 10 10 1.00 1.00 1.00 1.04
104 100 100 1 0.99 0.99 1.00 0.96

Columns 1–4 show simulation and sampling parameters (see text for notations).
Columns 5–8 show the ratio of the true fraction of false positives in the FIT to the
fraction a expected under the assumption that the frequency increment statistic is
distributed according to Student’s t-distribution with L – 1 d.f., across a range of
a-values. We performed 106 neutral Wright–Fisher simulations with the initial allele
frequency n0 = 0.5. Unlike our implementations of the LRT and the ELRT, the FIT can
formally be applied in cases when the observed allele is either fixed or lost at the last
sampled time point. Thus, the fraction of simulations in which absorption events
prevented us from applying the FIT was ,1025.

Selection in Genetic Time Series 513

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158220/-/DC1/genetics.113.158220-1.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158220/-/DC1/genetics.113.158220-8.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158220/-/DC1/genetics.113.158220-2.pdf
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158220/-/DC1/genetics.113.158220-8.pdf


under neutrality when the number of sampled time points is
finite. If the LRS under the neutral null hypothesis followed
the x2-distribution, then the probability for the LRS to fall
into each vigintile of the x2-distribution would equal 0.05.
Instead, the LRS more often falls in the top vigintiles of the
x2-distribution and, correspondingly, less often in the bot-
tom vigintiles. This fact is problematic because it implies
that the P-values calculated from the x2-distribution will
underestimate the probability of type I error. Table 1 and
Table S1 show that this is indeed the case, even when as
many as 100 time points are sampled. While the discrepancy
between the actual probability of false positives and the x2-
based P-value is moderate (less than a factor of 2) for rela-
tively high nominal P-values (e.g., .1%), the discrepancy
becomes increasingly more severe for stringent P-values,
so that in some regimes the x2-test rejects neutrality 50
times as often as it should (see Table S1).

The classical result of Wilks (1938) guarantees that the
LRS distribution will converge to the x2-distribution as the
number of data points increases. In our case, the LRS distri-
bution should converge to the x2-distribution with 1 d.f. as
the number of sampled points L increases (and D decreases),
while the time-series length T remains constant. The x2-
based P-value should likewise converge to the true proba-
bility of type I error. As expected, the values in columns 7–10
in Table 1 and in the corresponding columns in Table S1
approach 1 as L increases.

In addition to the deviation of the LRS distribution from
the x2-distribution, the most likely population size under the
null hypothesis, Ň, systematically overestimates the true
population size, N, especially when the number of data

points is small (see Table 1 and Table S1). This phenome-
non is consistent with previous reports (Waples 1989;
Williamson and Slatkin 1999; Wang 2001). The bias in
the inferred population size decreases with increasing num-
ber of data points, almost independently of the true popu-
lation size or the observation time (see Figure S2).

Two alternative tests of selection

The empirical likelihood-ratio test: We propose two
approaches to fix the shortcomings of the x2-likelihood-ratio
test for selection in time series data. The ideal approach
would be to obtain the true distribution of the LRS by sim-
ulating the neutral Wright–Fisher model with the true pop-
ulation size, N. But since we are concerned with the case when
N is unknown, we propose to use the estimated maximum-
likelihood population size under neutrality, Ň to obtain the
null distribution of the LRS. We call this approach the empir-
ical likelihood-ratio test (ELRT).

Figure 1 shows that the LRS distribution generated under
Ň is an excellent approximation to the true LRS distribution,
even when the number of sampled time points is small. As
a result, the P-values computed with the empirical LRS dis-
tribution provide an accurate description of the false-positive
rate. Nevertheless, the ELRT approach suffers from two draw-
backs, at least in its simplest implementation. First, the
Gaussian approximation that we employed to calculate
the likelihoods becomes problematic in cases when the ob-
served allele-frequency changes are large (for example, if
the allele is under very strong selection). Large changes in
allele frequency lead to small Ň, which leads to a high prob-
ability of absorption events in neutral simulations, and the

Figure 2 Power of the ELRT and the FIT to detect selection
of different strength. Power is reported as the fraction of
trial data sets generated by the Wright–Fisher model with
selection for which the ELRT (left column) or the FIT (right
column) rejects the neutral null hypothesis at P-value a =
0.05 in short (T = 0.01N, top row) and “long” (T = 0.1N,
bottom row) time series. Both tests gain power with in-
creasing selection pressure, but in long time series they
start to lose power when selection becomes very strong
(see text for details). Power of both tests grows weakly
with the number of sampled time points, L. We ran 103

trials with N = 104 and initial allele frequency n0 = 0.5.
Trials that produced absorption events within the sampling
period were discarded.
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Gaussian approximation becomes inaccurate. Thus, some-
what paradoxically, we expect the ELRT based on the Gauss-
ian approximation to lose power when the data come from
populations under very strong selection. This problem is not
intrinsic to the ELRT method, and indeed it could be reme-
died by calculating likelihoods using the (computationally
intensive) diffusion approximation. The second drawback of
the ELRT is that it is computationally intensive, even when
using the fast Gaussian approximation for likelihoods. In
particular, to obtain the approximate empirical LRS distri-
bution, many Wright–Fisher simulations must be per-
formed, each accompanied by the calculation of the LRS.

In the next section we propose another alternative to the
x2-likelihood-ratio test that is computationally inexpensive,
but somewhat less accurate than the ELRT.

The frequency increment test: We define the rescaled
allele-frequency increments as

Yi ¼ ni 2 ni21ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ni21ð12 ni21Þðti 2 ti21Þ

p ;  i ¼ 1; 2; . . . ; L:

Since under the neutral null hypothesis the allele frequency
n behaves, away from the boundaries 0 or 1, approximately as
Brownian motion (see Ewens 2004 and the Appendix), the
random variables Yi are independent and approximately nor-
mally distributed with mean 0 and variance 1/N (see Equa-
tions 7 and 8). Under the alternative hypothesis, Yi are also
independent and approximately normally distributed, but
with a nonzero mean and a different variance (see Equations

4–6). Thus, the problem of testing whether serial data come
from a neutral population reduces to the problem of testing
whether the rescaled allele-frequency increments come from
a normal distribution with mean zero (and unknown vari-
ance). The latter problem is one the most classical problems
in statistics, and it has a well-known and elegant solution: the
t-test. The frequency increment statistic (FIS), defined as

tFIðDataÞ ¼ Yffiffiffiffiffiffiffiffiffiffi
S2=L

p ; (12)

where Y and S are the sample mean and the sample variance

Y ¼ 1
L

XL

i¼1

Yi and S2 ¼ 1
L2 1

XL

i¼1

ðYi2YÞ2;

is distributed according to Student’s t-distribution with L 2 1
d.f., under the neutral null hypothesis. Note that the un-
known nuisance parameter, N, in the population-genetic
problem corresponds to the unknown variance in the t-test.
We call this test the frequency increment test (FIT). In ad-
dition to being simple and computationally trivial, this test is
also the most powerful similar test (see Stuart et al. 2009,
Chap. 21) of the selection hypothesis against the neutral
null hypothesis, provided frequencies are far from the
boundaries 0 and 1.

Figure 1 and Table 2 show that the FIT substantially
outperforms the x2-likelihood-ratio test, in the sense that
the nominal FIT P-value represents the probability of
a type I error more accurately than does the x2-based
P-value. Nevertheless, the FIT P-value is not exact. Under
most parameter regimes where the probability of type I
error deviates from the P-value reported by the t-distribution,
the FIT appears to be overly conservative (i.e., the P-value
overestimates the probability of type I error), but how pre-
cisely this depends on N, L, and D is complicated (Table 2). In
any case, the inaccuracies in the probability of type I error
under the FIT are an order of magnitude smaller than those
under the x2-LRT, in all parameter regimes tested.

Power of the ELRT and the FIT to detect selection

Next we determined the power of the ELRT and the FIT to
detect selection in allele-frequency data, in terms of the
strength of selection, time-series length, and sampling
frequency. To this end, we ran Wright–Fisher simulations
with population size N = 104 as described above, but now
with allele A possessing selective advantage s. For each
value of the scaled selection coefficient Ns ranging from 1
to 100 we simulated 104 allele-frequency trajectories and
sampled from them in the first T = N/100 = 100 or in the
first T = N/10 = 1000 generations. These two sampling
schemes gave rise to the “short” and “long” allele-frequency
time series. For each time series, we sampled the frequencies
of the selected allele at L + 1 time points equally spaced D

generations apart, with L taking values 5, 10, and 50. For

Figure 3 Schematic diagram describing the power of any test for selec-
tion in allele-frequency time-series data. Thick solid lines show the
expected frequency dynamics (Equation 3) of alleles with selection coef-
ficients s = 0.001, 0.005, 0.01, initiated at frequency x0 = 0.05. Shaded
areas denote 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðt; x0Þ=N

p
, where s2 is given by Equation 6 and N =

104, which illustrate the size of stochastic fluctuations around the
expected frequency. Vertical dashed shaded lines show hypothetical sam-
pling time points. When the selection coefficient is low (Ns = 10), sto-
chastic fluctuations dominate, and tests of selection have low power.
When the selection coefficient is high (Ns = 100), fixation events occur
within the sampling interval and some sampling points (at 800 and 1000
generations) become uninformative, which also leads to loss of power.
For a given sampling interval T power is maximized for intermediate
selection coefficients (Ns = 50).
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each combination of s, T, and L, we performed the ELRT and
the FIT, and we calculated the frequency with which they
reject neutrality at P-value = 0.05. When computing the null
distribution of the LRS in the ELRT, we encountered some
neutral Wright–Fisher trials that exhibited an absorption
event during the observation period T. Instead of discarding
such trials, we include them into the estimation of the em-
pirical LRS distribution by conservatively assigning them to
the maximum LRS value of the neutral trials.

Figure 2 shows that both tests possess substantial power
to detect moderate to strong selection (Ns . 10), but they
lose power when selection is very strong. As illustrated in
Figure 3, such behavior is expected for any test of selection
from time-series data. Consider a fixed sampling duration T.
Clearly, if selection is very weak, it will not be able to change
the allele frequency substantially during this time interval,
and so the observed allele-frequency changes will be domi-
nated by noise. On the other hand, when selection is very
strong, the allele will go to fixation within the interval T,
and so some of the samples in the later part of the interval
will carry no information about the allele dynamics. For
example, in Figure 3, an allele with selection coefficient
Ns = 100 typically fixes in ,800 generations, and so sam-
ples taken after generation 800 are uninformative. In the
extreme case of very strong selection, the allele will fix be-
tween the first and second sampling time points. In this case,
without knowledge of the population size, we could not
determine whether the time series was caused by strong
selection or strong genetic drift. Thus, any test of selection
based on time series data will lose power for either very
weak or very strong selection pressures.

The intuition outlined above suggests that a given
sampling interval T sets the scale for selection coefficients
that we have power to detect, spower(T). We can estimate
spower(T) by inverting the logic of this intuition: for selection
strength s, there is an optimal sampling interval that max-
imizes the power of tests to detect this selection. Such a sam-
pling interval should be long enough for selection to
substantially change the allele frequency but short enough
to avoid fixation. From Equation 3, the expected time t(xf,
x0; s) it takes for an allele with selection coefficient s to
reach frequency xf from the initial frequency x0 is approxi-
mately given by

t
�
xf ; x0; s

� ¼ 1
s

ln
�

xf

12 xf

12 x0

x0

�
:

Setting t(xf, x0; spower) = T with some arbitrary xf close to 1,
we predict that tests of selection in a time series of length T
will have the maximal power to detect selection coefficients
on the order of

spowerðTÞ ¼ 1
T

ln
�

xf

12 xf

12 x0

x0

�
:

Setting x0 = 0.5 as in our simulations and xf = 0.95 (this
choice is arbitrary and not critical for determining the order
of magnitude of spower), we predict that tests of selection will
have maximal power to detect selection of strength spower =
0.029 in time series of length T = 100 generations and
spower = 0.0029 in time series of length T = 1000 genera-
tions. For a population of size N = 104, this translates into
Nspower = 290 and Nspower = 29, respectively, which is con-
sistent with our numerical results (Figure 2). These power
calculations are generic properties of any test of selection in
time-series data.

The ELRT and the FIT have an additional complication in
that they cannot be applied to data points after an absorption
event. In plotting Figure 2, we discarded all trials in which an
absorption event occurred within the sampling period, even
though some of these trials likely had a detectable signature
of selection prior to the absorption event. Thus, Figure 2
shows the lower bound on the power of our tests.

Aside from these gross properties of power, we found that
the FIT has slightly more power than the ELRT and that
power of both tests increases weakly with the number of
sampled time points L, with all other parameters being equal.

The effects of noisy sampling

So far we have studied tests of selection, assuming that
allele frequencies are measured with perfect accuracy in
successive time points. In this section, we investigate the
behavior of the FIT and the ELRT in a more realistic
situation—when allele frequencies are estimated, at each
time point, by sampling a limited number of individuals
from the population and typing them with respect to the
focal locus. To study this, we used the same simulated

Figure 4 Distributions of test statistics
under the neutral null hypothesis, when
allele frequencies are sampled with
noise. Histograms show the probabili-
ties that the value of a test statistic gen-
erated under the neutral null hypothesis
falls within each of the vigintiles (quan-
tiles of size 0.05) of another, approxi-
mate, distribution. Notations are as in
Figure 1. Parameter values were N =
103, T = 100, D = 20, L = 5, n0 = 0.5,
and n = 500; the number of Wright–
Fisher simulations was 2 3 105.
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time-series trajectories as in previous sections, but instead of
analyzing the true allele frequencies, x, we drew binomial
random variables with sample size n and success probability
x to obtain the sampled allele frequencies n. We then ana-
lyzed the test size and power, treating the sampled allele
frequencies n as the data.

As shown in Figure 4, when sample sizes are sufficiently
large (n = 500), the P-values produced by the ELRT and the
FIT remain accurate representations of the true type I error
probability. When the sample sizes become too small (n #

100), both tests become overly conservative; i.e., the P-values
produced by the ELRT and the FIT overestimate the proba-
bility of type I error (see Figure S3). Note that the LRT also
becomes overly conservative in this regime, even if the x2-
distribution or the distribution of the LRS under true N is used
(Figure S3). This in itself is not problematic and it simply
implies that the P-values from such tests should be viewed
as upper bounds on the actual probability of type I error. More
problematic is the associated decline in power of both tests as
samples size n decreases (Figure 5). The dependence of
power on the strength of selection in the presence of sampling
noise remains the same as in the absence of sampling noise,
with the power curves shifted downward (Figure 5).

Applications to empirical data

In this section, we apply our tests of selection to allele-
frequency time series from three previously published

experimental data sets, as well as some additional new
experimental data.

Bacteriophage evolved at high temperature: The first data set
is from an experiment described by Bollback and Huelsenbeck
(2007). Bollback and Huelsenbeck (2007) evolved three lines
of bacteriophage MS2, which infects Escherichia coli, at increas-
ingly high temperatures, from 39� to 43�. After 50 passages,
each corresponding to approximately three bursts, they identi-
fied mutations that were segregating in the populations and
determined the frequencies of these mutations at the previous
time points. From this data set we selected allele-frequency
trajectories that remained at intermediate frequencies between
0 and 1 for at least two consecutive time points and applied the
FIT, but not the ELRT (Table 3). We could not apply the ELRT
to these data for two reasons. First, some time series had only
two time points at which the mutant allele was at intermediate
frequencies. The maximum-likelihood approaches cannot esti-
mate both N and s in such cases (see Materials and Methods).
Second, the frequencies of the remaining alleles changed so
fast (e.g., from 30% to 90% in 10 passages) that the maximum-
likelihood (ML)-estimated population sizes under neutrality, Ň,
were very small (see Table 3), and so neutral simulations were
dominated by absorption events.

When we applied the FIT to these data, we found that
only one time series produced a significant P-value (muta-
tion C3224U in line 3), despite the fact that most of the
identified mutations are likely to be beneficial. The poor
performance of our tests on these data are expected for
two reasons. First, the sample sizes in these data set are very
small (n # 10), and we expect our tests to have very low
power. Second, even though all mutations are probably ben-
eficial, not all frequency trajectories are monotonically in-
creasing, and some of them are even decreasing (e.g.,
mutation C1549U/A in line 3), presumably due to clonal
interference (Gerrish and Lenski 1998), which further
reduces the power of our test.

Deep population sequencing of adapting yeast populations:
The second data set we analyzed is from an experiment in
which Lang et al. (2011) evolved 592 populations of the yeast
Saccharomyces cerevisiae in rich medium for 1000 genera-
tions. The original experiment tracked the appearance and
fate of sterile mutations that are known to be beneficial under
the chosen experimental conditions (Lang et al. 2011). Sub-
sequently, some of these populations were deep sequenced,
and many other adaptive mutations were identified (Lang
et al. 2013). From this large data set, we selected three al-
lele-frequency trajectories of mutations in genes STE11, IRA1,
and IRA2 that arose in three different populations (Figure 6,
Table S2). Applying the ELRT and the FIT to these time se-
ries, we found that our tests return best results when used on
subsets of each time series (Figure 6, Table S2). Based on
these truncated time series, both the ELRT and the FIT iden-
tified that the trajectories of the mutant STE11 and IRA1
alleles, but not that of the mutant IRA2 allele, were positively

Figure 5 Power of the ELRT and the FIT to detect selection of different
strengths, under various sampling regimes. Parameter values were N =
104, T = 1000, D = 100, L = 10, and n0 = 0.5; the number of Wright–
Fisher simulations was 103.
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selected. Given the knowledge that the experimental popula-
tion sizes exceed 104 individuals and the fact that mutations
in genes STE11, IRA1, and IRA2 independently arose and
spread in several parallel lines, it is likely that all three muta-
tions are in fact beneficial (Lang et al. 2013). Our tests do not
take these two critical pieces of information into account, but
they are still able to identify the action of positive selection in
two of three cases, based solely on allele frequencies esti-
mated from samples of size n # 150.

Yeast populations evolved at different population sizes:
The third data set we analyzed is from an experiment
performed by one of us (S. Kryazhimskiy) and described in
Kryazhimskiy et al. (2012). In this experiment, 1008 popu-
lations of the yeast S. cerevisiae were evolved under condi-
tions similar to those in the experiment by Lang et al.
(2011), but under various population sizes and migration
regimes. After 500 generations of evolution, fitnesses of
these populations were measured in a competition experi-
ment. Fitness data for 976 of these populations were pre-
viously described in Kryazhimskiy et al. (2012). Here, we

analyzed the published competition assays from 736 well-
mixed (WM) populations, referred to as “No”, “Small WM”,
and “Large WM”, as well as unpublished data from an ad-
ditional 32 well-mixed populations of intermediate size re-
ferred to as “Medium WM”. All these populations were
evolved in exactly identical conditions, except for the serial
transfer bottleneck size. In particular, the bottleneck size
was �103 individuals in the No populations and 5, 10,
and 20 times larger than that in Small WM, Medium WM,
and Large WM, respectively. The fitnesses of all populations
were measured in competition assays with at least threefold
replication. As described in Kryazhimskiy et al. (2012), each
competition assay consists of measuring the frequency of the
evolved population relative to a fluorescently labeled refer-
ence strain at two time points. The raw flow cytometry
counts for all populations used here (including those pub-
lished previously) are reported in Table S4.

As mentioned in Materials and Methods, when the time
series contains only two time points, there is not enough
information to estimate the population size (or, equivalently,
the variance of the distribution of frequency increments).

Table 3 Mutant allele frequencies in bacteriophage data from Bollback et al. (2007) and the application of the ELRT and the FIT

Passagea ELRTb FIT

Line Mutation 0 10 15 20 25 30 40 50 Ň N̂ ŝ tFI d.f. P

1 C206U 0/10 0/10 NA 1/10 NA 3/10 10/10 10/10 NA NA NA 2.55 1 0.119
C1549U/A 0/10 0/10 NA 0/10 NA 6/10 5/10 9/10 56.5 9.7 0.20 0.59 1 0.330
G1551A 0/10 0/10 NA 0/10 NA 1/10 5/10 1/10 11.3 4.2 20.01 0.25 1 0.422

2 C206U 0/10 0/9 1/9 1/10 NA 3/10 9/10 9/10 19.7 99.2 0.16 1.51 3 0.114
C1549U/A 0/10 0/9 0/10 9/10 NA 6/9 10/10 8/10 NA NA NA 20.10 1 0.532
G1551A 0/10 0/9 0/10 1/10 NA 2/9 0/10 2/10 NA NA NA 20.14 1 0.545
U466C 0/10 2/9 3/9 10/10 NA 10/10 10/10 10/10 NA NA NA 1.29 1 0.210

3 C206U 0/10 0/10 NA 1/10 5/10 4/10 7/10 10/10 12.6 30.3 0.21 1.61 3 0.103
C1549U/A 0/10 0/10 NA 0/10 5/10 5/10 3/10 1/10 187.5 405.4 20.09 21.99 2 0.908
C3224U 0/10 0/10 NA 0/10 0/10 3/10 7/10 10/10 NA NA NA 7.00 1 0.045
C3220U 0/10 0/10 NA 0/10 0/10 3/10 8/10 10/10 NA NA NA 2.69 1 0.113
G1551A 0/10 0/10 NA 0/10 0/10 2/10 7/10 9/10 22.1 652.4 0.19 2.07 1 0.143
U466C 0/10 0/10 NA 4/10 5/10 9/10 10/10 10/10 28.2 39.2 0.33 2.13 2 0.083

a Estimated mutant allele frequencies at different time points (passages) are shown. Data points used for the ELRT and the FIT are in boldface type (if the last of these data
points was at frequency 0 or 1, it was not used for the ELRT).

b ML parameter values are shown. N̂ and ŝ maximize likelihood (9) and Ň maximizes likelihood (10) under the Gaussian approximation. Note that since all Ň are very small, the
ELRT P-values cannot be obtained due to frequent absorption events in neutral Wright–Fisher simulations.

Figure 6 Application of the ELRT and
the FIT to allele-frequency time series
from Lang et al. (2011, 2013). Each
panel shows the estimated frequency
of a mutant allele in the long-term evo-
lution lines described in Lang et al.
(2011, 2013): the left panel shows the
frequency of mutation D579Y in gene
STE11 in population RMB2-F01; the
center panel shows the frequency of
mutation Y822* in gene IRA1 in popu-
lation RMS1-D12; and the right panel
shows the frequency of mutation
A2698T in gene IRA2 in population
BYS2-D06. Shading highlights the data
points for which the FIT and the ELRT
identify selection.
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However, the FIT can be easily applied to frequency incre-
ments pooled across replicate fitness measurements. In par-
ticular, if nki is the frequency of the evolved population at
time point i (with t0 = 0 and t1 = 20) in replicate assay k
(with k = 1, . . . , K), then we define the frequency increment
in replicate k as

Yk ¼ nk1 2 nk0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nk0ð12 nk0Þðt1 2 t0Þ

p
and calculate the frequency increment statistic according to
Equation 12, with L replaced by the number of replicates K.

The results of the FIT applied to these data are reported
in Table S3 and summarized in Table 4. We find that the FIT
rejects the neutral null hypothesis at various stringency cut-
offs for all Medium WM and Large WM populations and for
the majority of Small WM populations. At the same time, the
FIT rejects neutrality for only �34% of the No populations at
the P-value cutoff of 0.05 and only �1% of the No popula-
tions at the P-value cutoff of 0.001. In both of these cases the
observed numbers of positives significantly exceed the num-
bers of false positives expected due to multiple testing.
These results demonstrate that the FIT reliably detects the
action of natural selection in data from microbial evolution
experiments. Moreover, since we do not know which popu-
lations truly adapted in this experiment, these results inform
us that, when the bottleneck size exceeds 5000 individuals,
nearly all populations undergo significant adaption during
500 generations of evolution, but when the bottleneck size is
1000, only �34% of populations do so. These results are
consistent with the expectation that larger populations
adapt faster and suffer less from the accumulation of dele-
terious mutations, compared to small populations.

Conclusions

We have shown that the standard x2-based test for selection
in time series of allele frequencies (Bollback et al. 2008) is
subject to a greatly elevated false discovery rate in the prac-
tical regime of relatively few sampled time points. As a result
of this bias, the x2-LRT is not a reliable test for selection in
many practical time series, because its P-value underesti-
mates the rate of false positives, especially when the allele
frequencies are measured accurately. We proposed two new
tests to address this problem, and we showed that both of
them accurately estimate the probability of type I error and

have power to detect selection in parameter regimes that are
reasonable for many evolution experiments and natural
populations.

Our tests were initially developed under the assumption
that sampling noise is negligible and that the estimated
allele frequencies can be treated as exact. In many situa-
tions, such as microbial laboratory experiments, this as-
sumption is not restrictive. Indeed, when allele frequencies
are measured with high-throughput methods such as flow
cytometry (Lang et al. 2011; Kryazhimskiy et al. 2012) or
deep population sequencing (Smith et al. 2011; Lang et al.
2013), the sample sizes often exceeds the population size.
On the other hand, when samples are derived from natural
populations, this assumption is likely to be violated. In this
case, our tests remain conservative, but lose power to detect
selection, especially when selection is weak. This is expected
because when sampling noise dominates demographic sto-
chasticity, the information about the population size that is
contained in allele-frequency fluctuations is lost. In princi-
ple, the population size can be inferred even in the presence
of high sampling noise, if the time series is long enough.
Indeed, if large frequency fluctuations are caused by small
population size, time to absorption will be short, but if they
are caused by sampling noise, time to absorption will be
long. Moreover, incorporating time to absorption into tests
of selection in time-series data would alleviate the ascertain-
ment bias that arises when, for example, only those alleles
are analyzed that reach sufficiently high frequencies in the
population.

The methods proposed here, just as the earlier x2-based
test, are limited to the regime in which the frequencies of
alleles observed at a locus are not influenced by mutations
that may arise elsewhere in the genome during the time of
observation. Thus, our tests are perhaps most readily appli-
cable to selection scans in full-genome time-series data like
those now actively generated in evolution experiments in
Drosophila (Burke et al. 2010; Orozco-terWengel et al.
2012). They will also be applicable to asexual organisms
when clonal interference is absent or weak, for example in
competitive fitness assays (Lenski et al. 1991; Gallet et al.
2012; Kryazhimskiy et al. 2012) or in tracking known poly-
morphisms in natural populations for a relatively short time
(Barrett et al. 2008; Winters et al. 2012; Pennings et al.
2013). By contrast, inferring selection coefficients when al-
lele dynamics are influenced by multiple linked sites is

Table 4 Application of the FIT to yeast data from Kryazhimskiy et al. (2012)

a = 0.05 a = 0.01 a = 0.001

Treatment Bottleneck size No. populations Obsa Expb Obsa Expb Obsa Expb

No 103 639 218 32.0 74 6.4 7 0.64
Small WM 5 3 103 64 61 3.2 53 0.6 34 0.06
Medium WM 104 32 32 1.6 32 0.3 32 0.03
Large WM 2 3 104 32 32 1.6 32 0.3 32 0.03
a Number of populations for which the FIT rejects the neutral null hypothesis at the given P-value threshold a.
b Expected number of false positives at the given P-value threshold a.
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a substantially more difficult problem, which has begun to
be addressed elsewhere (Illingworth and Mustonen 2011;
Illingworth et al. 2012), although not within the same rig-
orous population-genetic framework that treats all geno-
typic dynamics stochastically.
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Appendix

Gaussian Approximation to the Moran Process

We approximate the continuous-time Moran processes with
a combination of a deterministic process and a Gaussian
noise process. We follow here the procedure outlined by
Pollett (1990), which is based on the results by Kurtz (1970,
1971). The Gaussian approximation used here is slightly
different from that described by Nagylaki (1990) in that it
(a) does not assume that selection is weak and (b) allows for
the values of the original and limiting processes at the initial
time point to be different.

Moran’s stochastic process describes the number n(N)(t)
of mutants in a population of constant size N at time t. This
number can increase by one from i to i + 1 with rate

rðNÞði; i þ 1Þ ¼ mmi
lwðN 2 iÞ

lwðN 2 iÞ þ lmi

and decrease by one with rate

rðNÞði; i21Þ ¼ mwðN 2 iÞ lmi
lwðN 2 iÞ þ lmi

:

Here, mw and lw are the birth and death rates of the wild
type, and mm and lm are the birth and death rates of the
mutant type, respectively. We assume lw = lm, mw = 1, and
let mm = (1 + s)mw = 1 + s. Then

rðNÞði; i þ 1Þ ¼ Nfþ1

�
i
N

�
; rðNÞði; i2 1Þ ¼ Nf21

�
i
N

�
(A1)

with

fþ1ðxÞ ¼ ð1 þ sÞxð12 xÞ; f21ðxÞ ¼ xð12 xÞ:

Define

FðxÞ ¼
X

d2f21;þ1g
dfdðxÞ ¼ sxð12 xÞ

GðxÞ ¼
X

d2f21;þ1g
d2fdðxÞ ¼ ð2 þ sÞxð12 xÞ:

Let X(N)(t) = n(N)(t)/N be the frequency of the mutant in the
population at time t. The limit of X(N), g(t, x0) =
limN/NX(N)(t), is a deterministic function that, under cer-
tain regularity conditions, satisfies Equations 1 and 2 with
x0 = limN/NX(N)(0) and the solution given by (3).

Now let

ZðtÞ ¼ lim
N/N

ffiffiffiffi
N

p �
XðNÞðtÞ2 gðt; x0Þ

�
(A2)

be the asymptotic process that describes the noise around
the deterministic trajectory. If we knew the distribution of Z(t),
we could approximate the frequency X(N) at a finite N by

XðNÞðtÞ � gðt; x0Þ þ 1ffiffiffiffi
N

p ZðtÞ: (A3)

The asymptotic noise process is in general a diffusion
process, but, as long as it remains far from absorbing
boundaries, it can be approximated by a Gaussian process
with the corresponding first two moments. The advantage of
this approach is that the first two moments of the diffusion
process can be computed analytically, resulting in an
expression for the probability distribution of the allele
frequency at time t.

If z0 ¼ limN/N

ffiffiffiffi
N

p ðXðNÞð0Þ2 x0Þ is the initial value of the
limiting noise process, then the mean and variance of the
noise process at time t $ 0 are EZ(t) = M(t, x0)z0 and Var
Z(t) = s2(t, x0) respectively, where M(t, x0) satisfies the
equations

dM
dt

¼ F9ðgðt; x0ÞÞM ¼ s
ð12 x0Þe2st 2 x0

ð12 x0Þe2st þ x0
M (A4)

Mð0; x0Þ ¼ 1 (A5)
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and s2(t, x0) satisfies the equations

ds2

dt ¼ 2F9ðgðt; x0ÞÞs2 þ Gðgðt; x0ÞÞ
¼ ð12 x0Þe2st 2 x0

ð12 x0Þe2stþx0
2ss2 þ ð2þsÞx0ð12 x0Þe2st

ðð12x0Þe2stþx0Þ22

(A6)

s2ð0; x0Þ ¼ 0: (A7)

The solution to Equations A4 and A5 is given by

Mðt; x0Þ ¼ exp
	Z t

0
F9ðgðt; x0ÞÞdt



;

which, after substituting F9 and g, yields

Mðt; x0Þ ¼ e2st�x0 þ ð12x0Þe2st�22
:

The solution to Equations A6 and A7 is given by

s2ðt; x0Þ ¼ M2ðt; x0Þ
Z t

0
M22ðt; x0ÞGðgðt; x0ÞÞdt;

which, after substituting G and g, yields

s2ðt; x0Þ ¼ M2ðt; x0Þð2 þ sÞx0ð12 x0Þs21

3
h
2x0ð12 x0Þst þ x2

0est 2 ð12x0Þ2e2st

þð12x0Þ2 2 x2
0

i
:

If the true state of the stochastic process X(N) is known to be
X(N)(0) at time point 0, we can approximate the initial value
of the limiting noise process as z0 � ffiffiffiffi

N
p ðXðNÞð0Þ2 x0Þ: Then

from (A3) we have

EXðNÞðtÞ � gðt; x0Þ þ Mðt; x0Þ
�

XðNÞð0Þ2 x0

�
;

Var  XðNÞðtÞ � 1
N

s2ðt; x0Þ:

Analogously, if the value of the process X(N) is known to be
X(N)(t9) at a later time t9 $ x0, then at time t $ t9 we have

Et9XðNÞðtÞ � gðt; x0Þ þ MðDt; gðt9; x0ÞÞ
�

XðNÞðt9Þ2 gðt9; x0Þ
�
;

(A8)

Vart9  XðNÞðtÞ � 1
N

s2ðDt; gðt9; x0ÞÞ; (A9)

where Dt = t 2 t9, and Et9 and Vart9 denote conditional
expectation and variance given the state of the process at
time t9. Thus, the conditional distribution of the allele fre-
quency X(N) at time t given its value at time t9 # t can be
approximated by a Gaussian distribution with mean given by
(A8) and variance given by (A9). We apply this approxima-
tion to every observation interval (ti21, ti), i = 1, . . . , L. As
noted above, the initial value of the deterministic process,
x0, is a free parameter that can be fitted along with N and s.
However, we set x0 to be equal to the observed allele fre-
quency n0 at time 0 to reduce the number of fitted
parameters.

Note that the approximations described here work for the
Moran process that is density dependent as can be seen from
Equations A1. The Wright–Fisher process is not density de-
pendent and, strictly speaking, the approximations described
here are not valid, although in practice they work well.

522 A. F. Feder, S. Kryazhimskiy, and J. B. Plotkin



GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.158220/-/DC1

Identifying Signatures of Selection in Genetic
Time Series

Alison F. Feder, Sergey Kryazhimskiy, and Joshua B. Plotkin

Copyright © 2014 by the Genetics Society of America
DOI: 10.1534/genetics.113.158220



2 SI A. F. Feder, S. A. Kryazhimskiy, and J. B. Plotkin 
 

 

 

Figure S1   Comparison of the true LRS distribution to the ᵪ2 distribution with 1 df. Panels show comparisons for different values 
of the population size N and the number of sampled time points L, as indicated on the left and on top. Notations are as in Figure 
1. Parameter values: T = 100, Δ = 20, ν0 = 0.5; the number of Wright-Fisher simulations was 106. 
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Figure S2   Bias in the maximum-likelihood estimate of population size under neutrality. The figure shows the ratio of the most-
likely population size under neutrality, Ň, to the true population size, N, as a function of the number of sampled points L (left 
panel) and as a function of the length of the observed time series T (right panel). Whiskers indicate quartiles of the distribution 
of Ň/N. In the right panel, curves for different population sizes are slightly shifted along the x-axis for clarity. Bias in Ň decreases 
as the number of sampled time points increases. The bias is nearly independent of N and of the length of the sampling period. 
The number of Wright-Fisher simulations was 105. 
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Figure S3   Distributions of various test statistics under the neutral null hypothesis, when allele frequencies are sampled with 
noise. Top row, n = 50. Bottom row, n = 100. Notations as in Figure 1. Parameter values: N = 103, T = 10, Δ = 2, L = 5, ν0 = 0.5; the 
number of Wright-Fisher simulations was 105. 
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Table S1   Deviation of the distribution of LRS from the χ2 distribution for different initial allele frequencies 

Simulation 
parameters 

Sampling parameters                                   α 

ν0 N T L ∆ 
Absorption 
probability 

Ň/N 0.05 0.01 0.001 0.0001 

0.1 

104 10 10 1 8 × 10–5 1.3 1.4 1.8 2.3 3.7 

104 100 10 10 2.5 × 10–4 1.3 1.6 2.2 3.6 5.9 

104 1000 10 100 0.067 1.5 2.2 4.4 14.3 51.8 

103 100 10 10 0.123 1.5 1.9 3.2 7.9 20.9 

104 1000 10 100 0.067 1.5 2.2 4.4 14.3 51.8 

105 10000 10 1000 6.6 × 10–4 1.2 0.2 0.4 0.9 1.9 

104 100 5 20 2.3 × 10–4 1.7 2.2 3.4 6.3 11.5 

104 100 10 10 2.5 × 10–4 1.3 1.6 2.2 3.6 5.9 

104 100 100 1 2.4 × 10–4 1.1 1.2 1.6 2.5 4.9 

0.2 

104 10 10 1 9.8 × 10–5 1.3 1.4 1.7 2.4 3.4 

104 100 10 10 3.4 × 10–4 1.3 1.5 1.9 2.7 3.8 

104 1000 10 100 6.9 × 10–3 1.4 2.2 4.0 11.4 35.7 

103 100 10 10 0.014 1.4 2.2 4.0 10.5 29.8 

104 1000 10 100 6.9 × 10–3 1.4 2.2 4.0 11.4 35.7 

105 10000 10 1000 1.3 × 10–3 1.3 0.5 0.7 1.6 3.5 

104 100 5 20 3.2 × 10–4 1.7 2.0 3.1 5.5 9.5 

104 100 10 10 3.4 × 10–4 1.3 1.5 1.9 2.7 3.8 

104 100 100 1 3.5 × 10–4 1.0 1.1 1.2 1.6 1.8 

0.3 

104 10 10 1 1.0 × 10–4 1.3 1.4 1.7 2.3 3.2 

104 100 10 10 4.3 × 10–4 1.3 1.4 1.8 2.5 3.5 

104 1000 10 100 1.6 × 10–3 1.3 1.9 3.1 7.0 17.4 

103 100 10 10 1.3 × 10–3 1.3 2.0 3.2 7.5 18.7 

104 1000 10 100 1.6 × 10–3 1.3 1.9 3.1 7.0 17.4 

105 10000 10 1000 0.012 1.3 1.3 1.7 2.7 4.5 

104 100 5 20 3.5 × 10–4 1.7 2.0 3.0 5.2 8.6 

104 100 10 10 4.3 × 10–4 1.3 1.4 1.8 2.5 3.5 

104 100 100 1 3.7 × 10–4 1.0 1.1 1.1 1.2 1.5 

0.4 

104 10 10 1 1.1 × 10–4 1.3 1.4 1.7 2.4 3.1 

104 100 10 10 4.1 × 10–4 1.3 1.4 1.8 2.3 3.0 

104 1000 10 100 1.3 × 10–3 1.3 1.7 2.5 4.9 9.8 

103 100 10 10 2.6 × 10–4 1.3 1.8 2.6 5.2 10.0 

104 1000 10 100 1.3 × 10–3 1.3 1.7 2.5 4.9 9.8 

105 10000 10 1000 0.013 1.3 1.2 1.6 2.4 3.9 

104 100 5 20 6.2 × 10–4 1.7 2.0 3.0 5.3 8.5 

104 100 10 10 4.1 × 10–4 1.3 1.4 1.8 2.3 3.0 

104 100 100 1 4.1 × 10–4 1.0 1.1 1.1 1.1 1.2 

0.5 

104 10 10 1 2.6 × 10–3 1.3 1.4 1.7 2.3 3.3 

104 100 10 10 7.9 × 10–4 1.3 1.4 1.7 2.3 2.9 

104 1000 10 100 1.2 × 10–3 1.3 1.6 2.4 4.3 8.1 

103 100 10 10 2.2 × 10–3 1.3 1.7 2.5 4.5 8.3 

104 1000 10 100 1.2 × 10–3 1.3 1.6 2.4 4.3 8.1 

105 10000 10 1000 1.3 × 10–2 1.3 1.2 1.5 2.3 3.6 

104 100 5 20 7.7 × 10–4 1.7 2.0 2.9 5.2 8.5 

104 100 10 10 7.9 × 10–4 1.3 1.4 1.7 2.3 2.9 

104 100 100 1 8.0 × 10–4 1.0 1.1 1.1 1.2 1.4 

 






