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ABSTRACT

Heterosis is a widespread phenomenon corresponding to the increase in fitness following crosses
between individuals from different populations or lines relative to their parents. Its genetic basis has been
a topic of controversy since the early 20th century. The masking of recessive deleterious mutations in
hybrids likely explains a substantial part of heterosis. The dynamics and consequences of these mutations
have thus been studied in depth. Recently, it was suggested that GC-biased gene conversion (gBGC) might
strongly affect the fate of deleterious mutations and may have significant fitness consequences. gBGC is a
recombination-associated process mimicking selection in favor of G and C alleles, which can interfere with
selection, for instance by increasing the frequency of GC deleterious mutations. I investigated how gBGC
could affect the amount and genetic structure of heterosis through an analysis of the interaction between
gBGC and selection in subdivided populations. To do so, I analyzed the infinite island model both by
numerical computations and by analytical approximations. I showed that gBGC might have little impact
on the total amount of heterosis but could greatly affect its genetic basis.

ROSSES between individuals from different pop-
ulations or lines often result in increased fitness
relative to the parental fitness. This process—referred
to as heterosis or hybrid vigor—has many practical and
fundamental implications. It has long been used by
plant and animal breeders to create high yield or high
performance varieties, especially in maize (Duvick
2001). More recently, the potential role of heterosis has
been emphasized and debated concerning conserva-
tion issues. Proposals included using heterosis gener-
ated by migration to reinforce populations, i.e., a form
of genetic rescue (RicHARDS 2000; WiLLI and FISCHER
2005; HoGG et al. 2006; WiLLl et al. 2007), or to
understand the success of hybrid invaders (FACON et al.
2005). Heterosis may also play a role in the evolution of
life-history traits, such as dispersal (GUILLAUME and
PERRIN 2006; RozE and RousseT 2009) or outcrossing
(RonNFORT and CouveT 1995; THEODOROU and COUVET
2002).

The consequences and uses of heterosis partly de-
pend on its genetic basis, which has long been debated
with respect to plant and animal breeding and in
evolutionary genetics. Initially, DAveENpPORT (1908) pro-
posed that the negative effects of inbreeding in humans
could be explained by the unmasking of recessive
deleterious alleles. On the contrary, East (1908) and
SuurL (1911) suggested overdominance could explain
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hybrid vigor in maize, and Shull proposed the term
“heterosis” as a descriptive term for hybrid vigor irre-
spective of the mechanism (SHuLL 1914). While the
masking of recessive deleterious alleles in outbred and
hybrid individuals is generally the main mechanism
explaining inbreeding depression and heterosis, over-
dominant loci have been found in several studies (e.g.,
Hua et al. 2003; SEMEL et al. 2006) . Epistatic interactions
between loci can also generate substantial heterosis
(e.g, YU et al. 1997).

Whatever the underlying genetic basis, heterosis is
possible only if parental lines or populations exhibit
different genetic compositions. For instance, during the
intentional creation of inbred parental lines, different
alleles become fixed in each line and are eventually
pooled in subsequent hybrids. Genetic drift is another
way to create variance in allele frequencies between
populations. Since migration between subpopulations
homogenizes the genetic composition, higher heterosis
is expected in small and highly subdivided populations,
and it is also expected that heterosis increases with
population differentiation (WHiTLOCK et al. 2000;
GLEMIN e al. 2003; Roze and RousseT 2004). These
theoretical predictions have been confirmed in various
species, including wild flowering plants (RICHARDS
2000; WiLrr and FiscHER 2005), freshwater snails
(EscoBAR et al. 2008), and crops (RE1r et al. 2003).

In small and highly subdivided populations, heterosis
is strongly associated with the so-called local “drift load,”
i.e., the load due to the local fixation of deleterious
alleles (WHITLOCK et al. 2000), and it has been suggested
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that heterosis could be used as a proxy for evaluating
the drift load in wild populations (GLEMIN et al. 2003).
Forces that affect the drift load might potentially affect
heterosis too. Recently, I showed that GC-biased gene
conversion (gBGC), which is a molecular process asso-
ciated with recombination, might substantially affect
inbreeding depression and the mutation load (GLEMIN
2010). gBGC is a kind of meiotic drive occurring on the
nucleotide scale during recombination. In heterozy-
gotes, heteroduplex strands generated during recom-
bination lead to DNA mismatches. In several species,
mismatch repair is biased toward G and C bases over
A and T bases, resulting in an excess of G and C gam-
etes (Marais 2003). This kind of gene conversion
process mimics selection in favor of G and C (NAGYLAKI
1983a,b). Initially, gBGC was put forward to explain
peculiar nucleotide landscapes, especially in mammals
and birds (DURET and GALTIER 2009). More recently,
it was shown to interfere with selection, potentially
leading to the fixation of weakly deleterious GC alleles
(GarTier and DuUrer 2007; GALTIER et al. 2009).
Theoretically, I showed that gBGC can induce “fixation
load” without drift; moreover, under certain conditions,
gBGC can make the dynamics of GC deleterious alleles
similar to those noted in overdominance (GLEMIN 2010).
It thus seems reasonable to suggest that gBGC could also
affect the amount and pattern of heterosis. However, the
interaction of gBGC and selection in subdivided popula-
tions has not yet been studied. The aim of this article is
thus to investigate how gBGC could affect heterosis
through an analysis of the interaction between gBGC
and selection in subdivided populations. To do so, I
analyzed the infinite island model, both by numerical
computations and by analytical approximations. First,
I added gBGC in the WHITLOCK et al. (2000) numerical
approach based on Wright’s equation (WRIGHT 1937).
Then, to geta better understanding of the process, I used
previous approaches that give approximate solutions for
selection in subdivided populations (GLEMIN et al. 2003;
Rozk and Rousser 2003, 2004). I focused on how gBGC
can affect the total amount and the genetic basis of
heterosis.

MODEL

Basic assumptions: Throughout the article, I consid-
ered heterosis only as being caused by the masking of
partially recessive deleterious alleles in hybrid individ-
uals. As in GLEMIN (2010), I considered a single biallelic
locus with weak (W= A or T) and strong (S = G or C)
alleles. If the S (resp. W) allele is deleterious, the relative
fitnesses of WW (resp. SS), WS, and SS (resp. WW)
genotypes are 1, 1 — hs, and 1 — s, respectively, where s
is the selection coefficient and % the dominance co-
efficient. The life cycle is as follows: N diploid adults
produce gametes after conversion followed by mutation
events. Heterozygote individuals produce S alleles with

probability 1/2(1 + b) and W alleles with probability
1/2(1 — b), where b is the gBGC coefficient (disparity
coefficient sensu NAGYLAKI 1983a). The W allele then
mutates at rate u to the § allele. The reverse mutation
occurs at rate v = Au. \ is the mutation bias from Sto W
alleles, which ranges from 2 to 4.5 in many different
organisms (LyNcH 2007). Fertilization occurs at random
and it is followed by selection, migration, and regulation
to N individuals [“soft selection” model (e.g., WHITLOCK
2002; Roze and RousseT 2003) ]. For clarity, hard selec-
tion is not investigated here but could be taken into ac-
count using Roze and RousseT’s (2003) or WHITLOCK's
(2002) framework (see also DISCUSSION). I assume that u
and v are much smaller than selection and conversion
coefficients (u, v < s, &s, and b). For simplicity, I also as-
sume that the gBGC intensity is constant. However, strong
gBGC events are thought to be associated with short-lived
recombination hotspots, at least in humans (McVEAN
et al. 2004; MYERS et al. 2005). I thus implicitly assume that
gBGC/selection dynamics are shorter than the recombi-
nation hotspot life span. The validity of this assumption is
discussed in GLEMIN (2010).

Heterosis can be defined as the increase in fitness of
individuals derived from crosses between populations
relative to individuals derived from crosses within a
population,

Wwithin

H=1-
Wbetween

, (1)
where Wimin is the average fitness of individuals pro-
duced by random mating within demes and Weween 18
the average fitness of individuals whose parents are
sampled from different demes. Other authors have also
defined Wicwween as the fitness of individuals whose
parents are sampled from the whole metapopulation
(WnrTLoCK 2002; RozE and RousseT 2004, 2009). The
first definition better matches experimental designs
while the second one is more mathematically conve-
nient. However, as the number of demes tends toward
infinity, the two definitions become equivalent.

Wright’s infinite island model with gBGC: In the
infinite island model, heterosis can be expressed as a
function of deleterious allele frequencies as

1 — 2hsE[x;] — s(1 — 2h)E[x?]

H=1-— 5
1 — 2hsx — s(1 — 2h)x®

(2)

(e.g., RozE and RousseT 2004, 2009), where x; is the
local frequency of the deleterious allele in deme ¢, E
denotes averaging over all demes, and x is the average
frequency over the whole metapopulation. We thus have
E[x;] = x and (2) reduces to

s(1 —20)V|x;]
1 — 2hsx — s(1 — 2h)x®

H— ~s(1—2)Vx], (3)

where V denotes the variance of allele frequencies over
all demes. The right-hand term is an approximated
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expression for weak selection and/or for deleterious
alleles maintained at low frequencies (e.g., GLEMIN et al.
2003; Roze and RousseT 2004, 2009). x; and V[x;] can
be computed using Wright’s distribution of allele fre-
quencies in the infinite island model (WricHT 1937),
which gives the distribution of allele frequencies within a
deme, assuming all demes are equivalent and migration
is symmetrical, as

K M
D(x;) = e U QV;”@ dx} (4)

with

Msy, = u(l — x;) — Nux; + bx; (1 — x;)
—sxi(1 — x;) (A + x;(1 — 2h)) + m(x — x;) + o(s, b, m, u)

if S is the deleterious allele,

Msy, =Nu(l — x;) — ux; — bx; (1 — x;)

— sx(1 = x)(h+ x;(1 — 2R)) + m(x — x;) + o(s, b, m, w)

if W is the deleterious allele, and

xi(l — xi) )

Vo =79y

This leads to

1= 2N (—brbhsH(1=20) %)

Nu+4Nmx— N, Nl 1—x)—
q)(xl) _ Kx;_h\u*—%\mx 1(1 _ xi)4?\A1:+4A\7rL(l x)

(5a)
if S is the deleterious allele and

D(x;) = Kx?‘“‘“”””‘”’l (1- xi)4Nu+4A’\"m(l—x)—l o~ 2N (bHhsH(1=21)5x,)

(5b)
if Wis the deleterious allele. Ms, is obtained by as-
suming that selection, gBGC, migration, and mutation
are weak enough to neglect interaction terms between
these elementary processes (without migration, see Equa-
tions ba and 5b in GLEMIN 2010) K is an integration
constant, ensuring that J"O (x;)dx; = 1, and x can be
computed numerically by an iteration procedure until
x = jo x;®(x;)dx; (BARTON and RouHaNt 1993) and
using the KIMURA et al. (1963) quadrature method
(for adaptation to gBGC and selection see GLEMIN

2010). This was done using a Mathematica script
(WOLBRAM 1996) avallable onrequest. V[x] is then given
by V[x fo ;)dx; — x*. This approach is the same
as in WHITLOCK et al. (2000), including gBGC in
addition to selection. There is no general explicit ana-
Iytical solution for (ba) and (5b); however, approxima-
tions can be obtained as developed below.

Analytical approximations: Weak selection: When se-
lection is weak and migration not too small, we can use
the approach developed by Roze and Rousser (2003,

2004). They showed that heterosis can also be expressed
as

H = s(1 —2h)Fx(1 — x) + o(s) (6)

(Roze and Rousser 2004, 2009), where I7is the pro-
bability of coalescence within the same deme of two
genes sampled with replacement from the same deme,
and it is equivalent to Fgr in the infinite neutral island
model. x can then be computed using diffusion approx-
imations according to Roze and RousseT (2003). Using
the direct fitness method (RousseT and BILLIARD
2000), the infinitesimal expected change in allele
frequency in the whole metapopulation is given by

M, = S1x(1 — x) + Sox®(1 — x) + b(1 — r9)x(1 — x)
+u(l — x) — Nux
(7a)
(APPENDIX A) if Sis the deleterious allele and by

Ms, = S1x(1 — x) + Sox?(1 — x) — b(1 — rg)x(1 — )
+hu(l — x) — ux

(7b)
if W is the deleterious allele, with Sy = —2Nm
(1 +4Nmh)s/((1 +2Nm)(1 +4Nm)), So = —8(1 —2h)

(Nm)?s/((1 4+ 2Nm)(1 + 4Nm)), and ry = 1/(1 + 4Nm).
As I consider only the special case of the infinite
island model, V5, = 0, and x can be simply obtained
by solving M5, = 0.

Strong selection: When selection is strong and/or
migration low, the previous method is not very accurate.
When ~Nhs > 5, the method developed by GLEMIN et al.
(2003), adapted from Otha and Kimura’s moment
method (OHTA and KiMURA 1969, 1971), can then be
used instead. The aim is to obtain an analytical ex-
pression for V[x;] to incorporate in Equation 3. Basi-
cally, the rationale is to obtain a set of linear equations as
functions of moments of the distribution, ®. Let M5,, be
the infinitesimal expected change of allele frequency in
deme i, V5, be its variance, and Caxlg,? be the covariance
of the change between demes ¢ and j. For any function
fxr, ..., x,...), OaTA and KimMura (1969, 1971)
showed that

f—I<|:Z/\/I§,,61 + - ZVE”” +222C5nayaxax:|

(8a)
which reduces to

ZM + Zva% 1 (8b)

because Cs.s,, = 0 for i # j (GLEMIN et al. 2003).
At equilibrium, dE[ f]/di = 0. By choosing appropri-
ate f functions, expressions can be obtained for each
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moment of ®. However, this method leads to an infinite
system of equations. To be solved, the system of re-
currence equations must be closed, which can be done
by linearizing Ms, (GLEMIN et al. 2003) or by arbitrarily
assuming that moments vanish beyond a given order
(GLEMIN 2005; THEODOROU and CouveT 2006). Here, I
used the linearization method (see APPENDIX B). This
assumes that selection is strong enough to maintain the
average allele frequency at its deterministic equilibrium
(as predicted by GLEMIN 2010). While this approxima-
tion for xis very rough, this leads to quite good approxi-
mations for the variance, V[ x], i.e., the main determinant
of heterosis (GLEMIN et al. 2003).

Multilocus predictions: To assess the quantitative
effect of gBGC, multilocus heterosis can be computed
under the assumption of the multiplicative contribution
to heterosis of all L loci throughout the genome.
Assuming a fraction p of these loci are affected by
gBGC, and a given distribution of fitness effects of
mutations (DFEM), {, we have

How—1-T[ (1- 1) f‘[(l - i)(9) ~ 1

=1 =1

~xp(L [ (1= )+ 0 a1 as).
)

where H” and H’ denote heterosis without and with
gBGC, respectively. Assuming half of deleterious muta-
tions are S and the other half are W, H,.q = (Hs+ Hy)/2.
I tested various more or less heterogenous gBGC dis-
tributions. Indeed, recombination and conversion are
not distributed similarly in all organisms. For instance,
recombination is probably not localized in hotspots
in Caenorhabditis elegans (ROCKMAN and KRUGLYAK
2009). I considered gBGC occurred in hotspots span-
ning p = 3% of the genome with » = 0.0002 on average
[according to estimates in humans (SPENCER et al. 2006) |
or p = 5% and b= 0.0005. I also considered gBGC was
homogeneously distributed over the whole genome
(p = 100%) with b = 6.10"° (that is, 3% X 0.0002) or
restricted to very hot hotspots with b = 0.002 in
frequency p = 0.3%. I assumed the DFEM was gamma
distributed with mean s, and shape parameter o,

e*(x(s/so) & 1 Saa

W) = et (10)

where I' is the gamma function (ABRAMOWITZ and
STEGUN 1970). I used sp = 0.0325 and a = 0.23
[according to estimates in humans (EYRE-WALKER
et al. 2006)]. Since heterosis strongly depends on
dominance levels of mutations, which are poorly known,
I explored different dominance levels. Equation 9
cannot be directly integrated using routine functions

A

heterosis
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FiGure 1.—Heterosis as a function of s with and without
gBGC. Circles were obtained by numerical integration of
Equations 5: open circles, without gBGC; solid circles, with
gBGC, b = 0.0002. Other parameters: N = 100, m = 0.01, u =
10°° N = 2, and /& = 0.2. Solid lines show weak selection ap-
proximation, exact solutions of Equations 7. Dashed lines
show strong selection approximations, Equations 12, 14,
and 16. (A) W — S mutations; (B) § — Wmutations.

such as NIntegrate in Mathematica (WoOLFRAM 1996)
because the iteration procedure is needed for each s
(see above). The gamma distribution (Equation 10) was
thus discretized into 100 categories, according to YANG
(1994).

RESULTS

Single-locus results and approximate solutions: For
weak selection and not too small migration, very good
approximations are obtained by solving Equations 7a
and 7b (see Figures 1-3). However, the analytical ex-
pressions are complicated and not given here. We can
thus get more useful approximations in different
conditions.

The case of W deleterious alleles is straightforward
because selection and gBGC act in the same direction
against Walleles. The deleterious allele is maintained
at a lower frequency than under mutation/selection
equilibrium, and the variance and heterosis are also
reduced. For weak selection, neglecting back mutation
and terms in &’ and more in (7a), and assuming u < s, b
leads to
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heterosis
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Ficure 2.—Heterosis as a function of gBGC intensity ().
Solid circles were obtained by numerical integration of Equa-
tions 5 and compared to exact solutions of Equations 7. Solid
line, s = 0.001; dashed line, s = 0.01; dotted line, s = 0.05.
Other parameters: N = 100, m = 0.01, u = 107°, A = 2, and
h=0.2.

Au(l —2h)s(1 + 2Nm)
HW ~
2Nm(s(1 + 4Nhm) + 2b(1 + 2Nm))

(11)

(see APPENDIX A). For strong selection (see APPENDIX B),

Nu(1 —2h)s
b+ hs)(1 + ANb + 4Nm + 4Nhs)

Hy =~ ( (12)
As expected, gBGC slightly reduces heterosis. When
the S allele is deleterious, GLEMIN (2010) showed that
the interaction between selection and gBGC leads to
three selection regimes. If gBGC is weak relative to
selection (b < hs), the deleterious S allele is maintained
at low frequency, but slightly higher than at mutation/
selection equilibrium, which leads to the same equa-
tions as (11) and (12), while replacing b by —b and Au
by u. On the contrary, if gBGC is strong (b > (1 — h)s),
the deleterious allele is close to fixation. For weak
selection, linearizing (7b) in xaround 1 and neglecting
direct mutation leads to

N Nu(l —2h)s(1 + 2Nm)
T ONm(2b(1 + 2Nm) — s(1 + 4(1 — k)Nm)))

(13)

Hg

(see APPENDIX A). For strong selection (see APPENDIX B),
Nu(l —2h)s
(b—(1—h)s)(1+4Nb+4Nm —4N(1 — h)s)
(14)

HSCQ‘J

Finally, if gBGC and selection are of similar intensity
(hs < b < (1 — h)s), the two forces can maintain the
deleterious allele at intermediate frequency. For weak
selection, neglecting mutations and solving (7b) gives

(s(1 + 4Nm(1 — h)) — 26(1 + 2Nm))(26(1 + 2Nm) — s(1 + 4Nmh))
Hg~ p
s(1 — 2h)(1 + 4Nm)(4Nm)?
(15)

(see APPENDIX A). For strong selection (see APPENDIX B),

heterosis
10453
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1073 1074 0.001 0.01 0.1

FIGURE 3.—Heterosis as a function of migration rate (m)
with and without gBGC. Solid circles were obtained by numer-
ical integration of Equations 5 and compared to exact solu-
tions of Equations 7. Thick solid line, b = 0; solid line, b =
0.00005; long-dashed line, b = 0.0002; short-dashed line, b =
0.0004; dotted line, b = 0.0005. Other parameters: N = 100,
u=10"° N=2, h=0, and s = 0.001.

1
4N+ (1+4Nm)(1/(b— hs) +1/((1 = h)s— b))
(16)

Hsy

Note that the conditions for maintenance of the
deleterious allele at intermediate frequency, and thus
(15) being positive, are a bit more restrictive than in
an unstructured population, s(1 + 4Nmh)/(2(1 + 2Nm))
<b<s(1+4Nm(1—h))/(2(1 +2Nm)), which vanish
to the single-population conditions, zs < b < (1 — h)s,
when Nm > 1. This parallels the effect of inbreeding in
single populations (GLEMIN 2010). Analytical approx-
imations and numerical results (Figures 1 and 2) show
that gBGC can strongly increase heterosis, mainly under
the overdominant-like regime. Equations 15 and 16 also
show that under the overdominant-like regime hetero-
sis is mainly independent of mutation rates, contrary to
the other regimes (Equations 11-14). At the genome
scale, this means that if there are numerous such loci,
heterosis can be high, even with low mutation rate. For
other loci the total genomic mutation rate, not the
number of loci, matters (i.e., few loci with high mutation
rates are roughly equivalent to many loci with low
mutation rates).

For both weak and strong selection, an analysis of
Equations 15 and 16 shows that heterosis is maximal
for b = s/2, that is, the gBGC value maximizing the
load and inbreeding depression as well (GLEMIN 2010).
For this parameter range, heterosis can be increased by
a factor of ~hs/4u compared with the case without
gBGC (see APPENDIXES A and B). This can be very high
if the mutation rate is low, i.e., ~10-1000. However,
when gBGC is much higher than the selection, it
reduces heterosis because it drives S deleterious al-
leles to fixation on the metapopulation scale (Figure
2). Conversely, for a given gBGC level, mutations
maximizing heterosis are § mutations with effect
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TABLE 1

Total quantitative effects of gBGC on heterosis and contribution of W — § mutations under the “overdominant-like” regime

NogBGC p=1;6=610°" p=003;b=0.0002 p=0.050b=00005 p=0003b=0.002
h=01 Nm=05 0703 0.703¢ 0.708 0.726 0.711
11/2.4" 7/0.2 26/0.3 8/0.03
Nm =1 0.576 0.575 0.581 0.604 0.585
9/2.4 6/0.2 26/0.3 8/0.03
Nm=5 0.277 0.277 0.281 0.298 0.284
5/2.4 5/0.2 22/0.3 7/0.03
h=02 Nm=05 0520 0.519 0.523 0.54 0.526
9/1.4 5/0.1 20/0.2 6,/0.02
Nm =1 0.378 0.377 0.382 0.4 0.385
7/1.4 5/0.1 21/0.2 6,/0.02
Nm=5 0.137 0.137 0.139 0.149 0.141
5/1.4 4/0.1 19/0.2 6,/0.02
h=03 Nm=05  0.336 0.335 0.338 0.349 0.34
8/0.8 4/0.06 14/0.1 4/0.01
Nm =1 0.221 0.22 0.223 0.233 0.224
7/0.8 4/0.06 16/0.1 4/0.01
Nm=5 0.068 0.067 0.068 0.072 0.069
6/0.8 4/0.06 17/0.1 4/0.01

“Total amount of heterosis: numerical integration of Equation 9 with u = 10"°, A =2, L = 10°, and N = 100. Parameters of the

DFEM are given in the main text.

’Shilled entries show percentage of heterosis due to W — S mutations for which 4/(1 — h) < s < b/hand percentage of such

mutations in the whole mutation spectrum.

s % 20(1 + 2Nm)/\/1+ 4Nm + (4Nm)*h(1 — ), that is,
mutations with effects between 2band 2b/y/A(1 — k), or
min(2bv/Nm, 1) for fully recessive mutations (APPENDIXES
A and B). Mutations maximizing heterosis are thus mainly
independent of the number of migrants, Nm, contrary to
what was observed without gBGC (WHITLOCK et al. 2000).

Another surprising consequence of the interaction of
gBGC and selection is that heterosis can reach a local
maximum for intermediate migrant numbers, espe-
cially for highly recessive W — S mutations. In the case
of fully recessive alleles, this local maximum is reached
for Nm =~ s/2b+ b/8s — 1 (Figure 3 and APPENDIX A).
This can be explained because on one hand sub-
division increases local drift, which increases heterosis,
and on the other hand, subdivision increases local
homozygosity, which reduces gBGC and thus heterosis.
Because of these two opposing forces, maximum het-
erosis can thus be reached for intermediate levels of
subdivision.

Quantitative patterns: Single-locus analyses clearly
showed that gBGC can affect the heterosis pattern, es-
pecially the contribution of different classes of mutations
to heterosis. With gBGC, mutations contributing to het-
erosis are mainly restricted to those between b/(1 — h)
and b/ h, while the distribution is more homogeneous
without gBGC and depends on the population size and
migration (Figure 1). Moreover, assuming the DFEM
follows a gamma distribution, W — § mutations of in-
termediate effect also contribute more than others,
although they are not the most frequent. These muta-

tions can contribute from a few to 10% of the total
amount of heterosis while they represent only <1% of
the total arising new mutations (Table 1). On the contrary,
without gBGC, mutations with a very weak effect con-
tribute the most to heterosis, simply because they are
the most frequent.

However, the total amount of heterosis is only slightly
affected by gBGC, because it has opposite effects for
different kinds of mutations. While it increases heter-
osis for rather strong S mutations (s > 6/(1 — h)), it
decreases it for weak ones (s < b/(1 — h)) and for all W
mutations. Low gBGC, but widespread throughout the
genome, has almost no effect. Only a rather high level of
gBGC can significantly increase heterosis, mostly when
deleterious mutations are highly recessive (Table 1).

DISCUSSION

Biased gene conversion can greatly affect the fate of
selected alleles (Gutz and LesLiE 1976; LamB and
Hrrmr 1982; Nacyrakr 1983a,b; BENGTssoN 1990). In
several organisms, gBGC is a genome-wide biased gene
conversion mechanism that can have quantitative fit-
ness consequences. Recently, I showed that gBGC may
strongly affect the mutation load, both qualitatively and
quantitatively (GLEMIN 2010). Even rather weak gBGC
restricted to a few genomic regions can create a sub-
stantial load by driving GC deleterious alleles to high
frequency and fixation. I also showed that the interac-
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tion between selection and gBGC can generate an
overdominantlike regime, maintaining recessive dele-
terious mutations at intermediate frequency for long
periods of time, thus generating inbreeding depres-
sion. Here I investigated how gBGC could affect the fate
of deleterious alleles in subdivided populations and
thus another aspect of fitness, i.e,, heterosis, which
measures the increase in fitness due to crosses between
demes relative to crosses within demes.

Contrary to its effect on the load, gBGC has only a
very weak quantitative impact on heterosis, at least for
levels in the range of what have been observed in a few
species (Table 1). First, while heterosis is expected to be
higher when local demes are small and isolated, gBGC
intensity is reduced under these conditions because
homozygosity is higher. Second, gBGC has an opposite
effect on Wand S deleterious mutations. However, its
effect on S deleterious mutations is much stronger
than its effect on W ones; on average, gBGC thus
strongly increases the frequency of deleterious muta-
tions and hence the load. However, heterosis depends
on segregating mutations. Provided that b > #&s, all
weakly deleterious mutations affected by gBGC con-
tribute to the load, while only those maintained at
intermediate frequencies of ~b/(1 — h) < s < b/h
significantly increase heterosis. Weakly deleterious
mutations fixed by gBGC increase the load but do not
contribute to heterosis. The quantitative impact of
gBGC is thus strongly dependent on the distribution
of fitness and dominance effects of mutations. Numer-
ical values explored in Table 1 suggest that in various
contexts the quantitative effect of gBGC should be weak.
However, a better characterization of these parameters
is needed to evaluate the proportion of mutations
submitted to the overdominant-like regime.

While gBGC should have a weak quantitative effect
on heterosis, it may strongly affect its genetic basis. First,
for a given gBGC level, S deleterious mutations corre-
sponding to the overdominantlike regime contribute
disproportionally to heterosis. For instance, using selec-
tion parameters from human data and several domi-
nance levels, such mutations can cause a few to 10% of
heterosis while representing only <1% of the whole
spectrum of mutations (see Table 1 for several numer-
ical examples). Interestingly, these mutations cause both
heterosis and inbreeding depression (GLEMIN 2010).
On the contrary, without gBGC, these two phenomena
are expected to have a different basis, with heterosis
being mainly caused by weakly deleterious mutations
while inbreeding depression is mainly caused by strongly
deleterious ones (WHITLOCK et al. 2000; GLEMIN et al.
2003). This variation in the genetic basis of heterosis
may also depend on the degree of population structure,
as gBGC may have a maximum effect for intermediate
migrant numbers, Nm (Figure 3), and the range of mu-
tations belonging to the overdominantlike regime de-
pends on Nm (see Equation 15).

The genetic basis of heterosis has been debated for
more than a century. These theoretical results suggest
that gBGC should be taken into account as a poten-
tial additional factor, especially in species for which
gBGC can be strong. This is typically the case for maize,
probably the plant most studied for heterosis, and it
belongs to the grass family in which gBGC is supposed
to be strong (GLEMIN et al. 2006; HAUDRY et al. 2008;
EscoBaR et al. 2010). Massive genomic data on maize
are now available to study heterosis at the molecular
level, both through crossing experiments (SWANSON-
WAGNER et al. 2009) and through population genetics
approaches (GORE et al. 2009). The results presented
here lead to several predictions, which should now be
testable on the basis of these new data. First, genes
belonging to highly recombining regions should con-
tribute disproportionally to heterosis compared to
those in other genomic regions. This prediction is
robust because such regions may have a higher local
effective population size (GORDO and CHARLESWORTH
2001) and thus contribute less to heterosis if gBGC is
inactive. Second, W/S polymorphism should be in-
volved more frequently than expected and the two
alleles should segregate at intermediate frequencies,
especially under the “overdominantlike” selection re-
gime. However, it is worth noting that, contrary to their
overdominant population behavior, such alleles should
give clear dominance/recessive signatures when heter-
osis is estimated through cross-designs.

Here, I investigated only the case of soft selection.
However, the conclusions should be very similar under
hard selection. Using the hard selection model given by
Roze and RousseT (2003), i.e., there is no local regulation
before migration contrary to the life cycle studied here,
the results are expected to be very close to those obtained
under soft selection, except when deme sizes are very
small, as shown by Roze and Rousser (2003, 2004).
WaitLock (2002) initially proposed another model of
hard selection where the contribution of each deme to the
next generation is proportional to the mean relative
fitness of the deme. Under this model, selection occurs
between unrelated individuals (at the metapopulation
scale) and it is thus stronger than under soft selection,
where related individuals compete locally. Heterosis is
thus expected to be lower; however, the effect of gBGC is
similar. Indeed, this model is equivalent to a single
inbreeding population, replacing Fs by Fsr (WHITLOCK
2002), so that single-population results given in GLEMIN
(2010) can be directly used (results not shown).

In summary, gBGC is likely a negligible process
affecting the overall magnitude of heterosis in natural
or breeding populations. However, these results strongly
suggest that it should be taken into account when
dissecting its genetic basis. To do so, quantification of
the magnitude and distribution of gBGC throughout
genomes in various organisms will be a critical issue for
future studies.
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APPENDIX A: APPROXIMATION FOR WEAK SELECTION

Derivation of Equations 7: In the limit of weak selection and weak gBGC, the gBGC and selection model is
equivalent to changing parameters as follows:

s —2b if S isthe deleterious allele
S uiv: n . . .
cquivalent s+ 2b if Wisthe deleterious allele

(A1)
hs _2]; if S is the deleterious allele
s —
hequivalem =
hs+0b . . .
if Wis the deleterious allele
s+2b

(GLEMIN 2010). We can thus directly use these expressions in Equation 23 in Roze and Rousser (2003) to get
Equations 7a and 7b. We can also derive Equations 7a and 7b by considering additively the effect of selection
(Equation 23 in Roze and RousseT 2003) and gBGC as a form of genic selection (Equation 23 with A= and s =
2bin Roze and RousseT 2003).

Finally, a more complete derivation can also be obtained by modification of the equation of RozE and ROUSSET
(2003) by the addition of gBGC. Here I present the case of S deleterious alleles. Consider the Wright island model
with n demes of size N. The infinitesimal expected change in the deleterious allele frequency on the whole
metapopulation, x, can be expressed as

ij1Xij1 + Wijixije )
D) I ) (42

=1 j=1

where W, (k= 1, 2) is the fitness function defined at the gene lineage level, that is, the expected number of gene
copies left by gene lineage k in individual j in population i Similarly, x;;, is the frequency of the deleterious al-
lele in gene lineage k in individual j in population i. x;;; = 0 or 1 and x;; = 0, 1, or 1. Note that according to
this definition the total fitness of the population sums up to 2. One can write W, as the product of a selection
component, Fj;(s) (equivalent to W;;in Roze and RousseT 2003), and a gBGC component, B;j;:

Wik = Fij(s)Bija(b) with  Bijj = xij5(1+2b(xij0 — xij))-

Taylor’s expansion of (A2) in sand b gives

o QnN ZZ

=1 j=1

n N
+b 1 xi,j,k 5‘BUk
=0 2N S 2 0

+ o(s, b). (A3)
=0

The first term, in s, is the same as thatin Equation 13 in Roze and RousseT (2003) and leads to their Equation 23. The
second term, in b, is expressed as

2nN i Z Z xl,]k(xw k= x,]) = b(x — X ) (A4)

i—1 j=1 k=12

The right-hand term is 1s based on the fact that x7,, = x;; and x;; = (x;;1 + x;2)/2. RozE and RousseT (2003) showed
that (Equation 16) x7, = x* + rox(1 — x) + 0(1/n), where 1, is the probability of coalescence of two genes sampled
with replacement from the same individual in a metapopulation with an infinite number of demes. Under panmixia,
ro = 1/(1 + 4Nm). Equation A4 thus becomes (1 — ro)x(1 — x), which is equivalent to the expected change in allele
frequency under genic selection. These computations lead to Equations 7a and 7b.
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Analysis of Equations 7: For W deleterious mutations, linearizing (7a) in x near 0 and neglecting back mutation
gives

Au(l + 2Nm)(1 + 4Nm)

A Ab
W o Nm(s(1 + ANhm) + 26(1 + 2Nm))’ (A5)
which leads to (11).
For S deleterious mutations with b < ks, linearizing (7b) in x near 0 and neglecting back mutation gives
1+2Nm)(1+ 4N
ML) AN) "
2Nm(s(1 + 4Nhm) — 2b(1 + 2Nm))
which leads to Equation 11 with the appropriate change of b by —b and Au by w.
For b > (1 — R)s, linearizing (7b) in x near 1 and neglecting direct mutations gives
Nu(1 + 2Nm)(1 + 4N
1 ull > 2N AN (a7)

"~ 9Nm(2b(1 + 2Nm) — s(1 + 4(1 — h)Nm)))’
which leads to (13).

Finally, for the overdominant-like regime, is < b < (1 — h)s, neglecting both direct and back mutations leads to

_2b(1 +2Nm) — s(1 + 4Nhm)
5 s(1 —2h)4Nm '

(A8)

which leads to (15).

Solving 0H /b = 0 in b (for xs given by Equation 15) shows that heterosis is maximal for b = s/2, for which
Hg=s(1—2h)/(4(1 + 4Nm)), while for b = 0, heterosis is only u(1 —2h)(1 + 2Nm)/(2Nm(1 + 4Nhm)). Under this
condition, we thus have Hg ~ (hs/4u)H (b = 0).

Solving 0H s/9s = 0 (for xs given by Equation 15) in s shows that mutations maximizing heterosis are S mutations

with s ~ 25(1 + 2Nm)/\/l + 4Nm + (4Nm)*h(1 — h). Finally, we can also show that heterosis can reach a local maximum
for an intermediate number of migrants by solving 0Hs/ONm = 0 in Nm, using Equation 15 for Hg, that is, considering
only the overdominant-like selection regime. The full result is very substantial and not given here. Simple approximations
can be obtained for fully recessive alleles. Noting 3 = 4/s, Taylor expansion of the solution in 3 simply gives

s b
Nm~—+— —1
" op T s

APPENDIX B: APPROXIMATION FOR STRONG SELECTION

Using Equation 8b with appropriate f functions, one can get a set of equations of the moments of ¢. To solve
this system, Ms, must be linear in x; (see GLEMIN et al. 2003). For W deleterious mutations, linearizing M;,, in x;
around 0 and neglecting back mutation give

My, ~ Au— (Nu+ hs+ b+ m)x; + mx. (B1)

Using / = x; and / = x? in (8b) leads to

Au— (Au+ hs+ b+ m)E[x;] + mx =0 B9
20\ u+ 2 )E[x;] — 2(\u + hs + b+ m + %) E[xF] + 2mxE[x;]. (B2)
Recalling that E[x;] = x, the solution of (B2) is
Au 2
x =05+ 0(u) (
. B . B3)
{E[’Cﬂ = s+ o)1 +4Z\)/\m+4Nhs+4Nb) + 0(u?).

Since x is in O(w?), V]x;| =~ E[xﬂ , which can be inserted in (3) and gives (12).
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Similarly, for S deleterious alleles, for gBGC weaker than selection, b < hs, linearizing Ms, in x; around 0,
neglecting back mutations, using the same f functions, and solving the system with the same approximations gives

u
hs — b

~
~

(B4a)

and
u

(hs — b)(1 + 4Nm + 4Nhs — 4Nb)’

which leads to (12) with the appropriate change of b by —band Au by w.
For gBGC stronger than selection, b6 > (1 — A)s, linearizing Ms,, in x; around 1, neglecting direct mutations,
using the same f functions, and solving the system leads to

Au

T =7 + 0(u?) (B5a)

x=1

and

. 14+ 8Nm —8N(1 — h)s+ 8Nb
E[2] =1 - hu - SNm = BN(L = b)s +
(b— (1 — hs))(1+ 4Nm — AN(1 — h)s + 4Nb)

1

+ O(u?), (B5b)

which leads to

A\u

Vsla » (06— (1= h)s)(1 +4Nb+4Nm — 4N(1 — h)s)

(B5c)

and to Equation 14.

Finally, for the overdominant-like regime, hs < b < (1 — h)s, one can linearize Mjs,, in x; around the deterministic
equilibrium, xge, = (6 — hs)/s(1 — 2h) (GLEMIN 2010), and neglect both direct and back mutations. Using the same f
functions and solving the system leads to

b— hs

TS = 2n) (BG2)
and
E[x] = !
[xi] = s2(1 = 2R)%(s(1 — 2h) + 4N (b(s — b) + s(m(1 — 2h) — (1 — h)s)))

X ((b— hs)((1 —2h)(1 — 2h(1 + 4Nm)))s*>

+ 4N(1 — h)h?s® + 4Nsb(m(1 — 2h) + (h — 2) hs) + 4Nsb*(1 + h) — 4Nb®), (B6b)
which leads to

Vix] = ! (B6c)

(1 — 2h)s(4N + (1 + 4Nm)(1/(b — hs) + 1/((1 — h)s — b))

and to Equation 16.



