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ABSTRACT

Eigenvalues and eigenvectors of covariance matrices are important statistics for multivariate problems
in many applications, including quantitative genetics. Estimates of these quantities are subject to different
types of bias. This article reviews and extends the existing theory on these biases, considering a balanced
one-way classification and restricted maximum-likelihood estimation. Biases are due to the spread of
sample roots and arise from ignoring selected principal components when imposing constraints on the
parameter space, to ensure positive semidefinite estimates or to estimate covariance matrices of chosen,
reduced rank. In addition, it is shown that reduced-rank estimators that consider only the leading
eigenvalues and -vectors of the ‘‘between-group’’ covariance matrix may be biased due to selecting the
wrong subset of principal components. In a genetic context, with groups representing families, this bias is
inverse proportional to the degree of genetic relationship among family members, but is independent of
sample size. Theoretical results are supplemented by a simulation study, demonstrating close agreement
between predicted and observed bias for large samples. It is emphasized that the rank of the genetic
covariance matrix should be chosen sufficiently large to accommodate all important genetic principal
components, even though, paradoxically, this may require including a number of components with
negligible eigenvalues. A strategy for rank selection in practical analyses is outlined.

TRAITS of interest in quantitative genetics are
seldom independent of each other. Hence, in

analyses of ‘‘complex’’ phenotypes it is desirable to
consider all components simultaneously, in particular
when considering the effects of selection and its impact
on evolution (Blows and Walsh 2008). However, ana-
lyses to estimate genetic parameters are often limited to
a few traits only. This can be attributed to the burden
imposed by multivariate estimation, due both to com-
putational requirements and limitations and to the need
for sufficiently large data sets to support accurate
estimation of the numerous parameters involved.

By and large, covariance matrices are considered to be
unstructured; i.e., for q traits of interest we have q(q 1 1)/2
distinct variance and covariance components among
them. In a genetic context, there are at least two co-
variance matrices to be determined, namely the covari-
ance matrix due to additive genetic effects and the
corresponding matrix due to residual effects. This yields
q(q 1 1) parameters to be estimated; i.e., the number of
parameters increases quadratically with the number of
traits considered. Recently, improvements in computing
facilities together with advances in the implementation of

modern inference procedures, such as residual or re-
stricted maximum likelihood (REML), have made routine
multivariate analyses involving numerous traits and large
data sets feasible. In addition, availability of corresponding
software, specialized toward quantitative genetic analyses
fitting the so-called ‘‘animal model,’’ has made analyses
conceptually straightforward, even for scenarios with
complex pedigrees, many fixed effects, additional random
effects, or arbitrary patterns of missing observations.

Yet, the ‘‘curse of dimensionality’’ remains. This has
kindled interest in estimation imposing a structure, in
particular for genetic covariance matrices; see Meyer

(2007a) for a recent review. Principal component (PC)
analysis is a widely used method to summarize multivar-
iate information, dating back as far as Hotelling

(1933) and Pearson (1901) (both reprinted in Bryant

and Atchley 1975). Moreover, PCs are invaluable in
reducing the dimension of analyses, i.e., the number of
variables to be considered. For a set of q variables, the
PCs are the q linear combinations of the variables that
are independent of each other and successively explain
a maximum amount of variation. Hence, if the m 1 1th
PC explains negligible variation, PCs m 1 1 to q convey
little information that is not already contained in PCs 1 to
m. We can then safely ignore PCs m 1 1 to q, reducing the
number of variables from q to m. In many applications, m
can be considerably smaller than q.
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The PCs for a set of variables are estimated from the
eigen decomposition of the corresponding covariance
matrix: The eigenvectors provide the linear functions of
the original variables while the corresponding eigenval-
ues give the amount of variance explained by each PC.
PCs are usually given in descending order of the
eigenvalues and the matrix of eigenvectors is scaled to
be orthonormal. The latter implies that the matrix of
eigenvectors (with q2 distinct elements) is described by
q(q – 1)/2 parameters, with the remaining q(q 1 1)/2
elements defined by the orthonormality constraints.
Ignoring PCs m 1 1 to q thus reduces the number of
parameters to describe the covariances among the q
traits to m(2q – m 1 1)/2, comprising m eigenvalues and
the m(2q – m – 1)/2 ‘‘free’’ elements of the first m ei-
genvectors. The resulting covariance matrix, of size q 3

q, has reduced rank m.
Closely related technically, but with a somewhat

different underlying concept is factor analysis (FA).
While PC analysis aims at identifying variables that
explain maximum variation, FA is primarily concerned
with finding the common ‘‘factors’’ that cause covarian-
ces between traits. Like PCs, the predictors of such
factors are independent, linear combinations of the
original traits. In addition, FA allows for specific effects
that are generally assumed to be uncorrelated. More
importantly, FA implies a latent variable model for the
original traits—modeling each as the sum of common
factors and specific effects—while PC analysis does not.
In the general case, specific variances for all q traits are
assumed to be nonzero and different from each other.
Considering a FA model with m factors, this yields a full
rank covariance matrix modeled by q 1 m(2q – m 1 1)/2
parameters. This quantity cannot exceed the number in
the unstructured case, q(q 1 1)/2, which limits the
maximum number of common factors that can be
fitted. If specific effects are assumed to have zero
variance, the FA model with m factors yields the same,
reduced-rank covariance structure as considering the
leading m PCs only.

Hence FA models are readily incorporated in the
linear mixed models commonly fitted for the estimation
of genetic parameters. This enables direct estimation of
the leading principal components (i.e., factors, assum-
ing no specific effects) only of genetic covariance
matrices, as proposed by Kirkpatrick and Meyer

(2004). Here ‘‘direct’’ refers to estimation directly from
the data instead of the more customary two-step pro-
cedure that involves estimation of the complete, un-
structured genetic covariance matrix before considering
its eigen decomposition. For highly correlated traits with
PCs that have eigenvalues close to zero, such reduced-
rank analyses avoid estimation of unnecessary parame-
ters. This not only makes more efficient use of the data,
but also can reduce computational requirements mark-
edly over those in a full rank analysis. Suitable REML
algorithms have been described by Thompson et al.

(2003), Meyer and Kirkpatrick (2005), and Meyer

(2008), and Bayesian estimation via Gibbs sampling has
been outlined by Los Campos and Gianola (2007).

Classic PC analysis considers a single covariance
matrix at a time. Due to their orthogonality, we can
alter the number of PCs fitted for a single matrix
successively; i.e., estimates of the ith PC are expected
to remain more or less the same when increasing or
reducing the number of PCs considered. For quantita-
tive genetic analyses, however, with at least two co-
variance matrices estimated simultaneously, this is not
necessarily the case. If genetic PCs with nonnegligible
eigenvalues are omitted while estimating a full rank
residual covariance matrix, genetic covariances can be
partitioned into the environmental components, lead-
ing to biased estimates. This article examines the
properties of estimates of genetic covariance matrices
and their eigenvalues and -vectors from reduced-rank
analyses, showing that up to three sources of bias may
affect estimates.

THEORETICAL CONSIDERATIONS

Here present a brief review of pertinent statistical
literature on multivariate estimation, focusing on prob-
lems associated with sampling variation and constrain-
ing estimates to the parameter space. Subsequently, we
examine the bias arising from estimating genetic co-
variance matrices of reduced rank.

Bias due to sampling variance

Spread of sample roots: Consider N sets of observa-
tions for q traits from a multivariate normal distribution
with population covariance matrix S. The sample
covariance matrix S, estimated from the sums of squares
and cross-products among observations, then has a
central Wishart distribution. It is well known that the
eigenvalues (latent roots) of such a sample covariance
matrix are spread farther than the population values.
This results in an upward bias of estimates of the largest
eigenvalues and a downward bias of estimates of the
smallest values while their mean is expected to be
unbiased. Let li denote the ith eigenvalue of S, and ‘i

the ith eigenvalue of S. For li distinct from all other
roots, Lawley (1956) gave an expected value for the
corresponding sample value of

E ‘i½ � ¼ li 1 1
1

N

Xq

j¼1
j 6¼i

lj

li � lj

0
B@

1
CA1 O

1

N 2

� �
ð1Þ

with O(1/N 2) a residual term proportional to 1/N 2.
Equation 1 shows that the bias decreases inversely
proportionally to the sample size, becoming small as
q/N becomes negligible. Furthermore, bias tends to be
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the more pronounced the closer together population
roots are. Lawley (1956) suggested that an estimate
of li less biased than ‘i might be obtained from Equa-
tion 1, substituting sample for population values, as
l̂i ¼ ‘ið1� ð

Pq
j 6¼i ‘j=ð‘i � ‘jÞÞ=N Þ.

An obvious alternative to improve estimates of co-
variance matrices for small samples or of high dimen-
sions is to squeeze the sample eigenvalues together. A
number of improved estimators have been proposed,
based on minimizing a loss or risk function. These differ
in the functions utilized and resulting properties, e.g.,
whether the original order of eigenvalues is maintained
or whether the resulting estimates are guaranteed to be
nonnegative; see Muirhead (1987) for a review of early
work and Srivastava and Kubokawa (1999) for more
recent references. Minimizing the squared error loss to
determine an optimal amount of shrinkage, Ledoit and
Wolf (2004) derived an estimator that regresses sample
eigenvalues toward their mean and yields a weighted
combination of the sample covariance matrix and an
identity matrix. While this has seen diverse applications,
including the analysis of high-dimensional genomic
data (Schäfer and Strimmer 2005), Daniels and Kass

(2001) reported overshrinkage of the smallest roots
when eigenvalues were spread far apart and suggested
shrinking the log sample eigenvalues toward their
posterior mean as an alternative.

Corresponding work has considered the properties of
the simultaneous distribution of the roots of two sample
covariance matrices, S1 and S2, in particular for the prod-
uct S1S�1

2 or S1(S1 1 S2)�1 (e.g., Chang 1970; Krishnaiah

and Chang 1971; Venables 1973; Muirhead and
Verathaworn 1985; Bilodeau and Srivastava 1992).
These matrices and their eigenvalues play an important
role in the multivariate analysis of variance (MANOVA)
and hypothesis testing. However, asymptotic distribu-
tions and expansions given are by and large complicated
and cumbersome to evaluate, or derivations are limited
to special cases. As in the single sample case, a number of
estimators have been suggested that involve some form of
shrinkage or truncation and minimize the quadratic or
entropy loss (e.g., Dey 1988; Loh 1991; Srivastava and
Kubokawa 1999).

Analysis of variance: The simplest scenario for a
MANOVA is the balanced one-way classification, and
estimation for this case has received substantial atten-
tion in the statistical literature. A particular problem is
that the standard quadratic, unbiased estimator of the
between-groups covariance matrix is not guaranteed to
be positive semidefinite (p.s.d.), i.e., to have eigenvalues
that are nonnegative. Let SB and SW denote the
population matrices of the between- and within-group
covariances in a one-way classification, with s groups and
n observations per group. Further, let W and B be the
corresponding matrices of mean squares and cross-
products (MSCP) within and between groups with
expected values E W½ � ¼ SW and E B½ � ¼ SW 1 nSB. Es-

timates of SB and SW are then obtained by equating
B and W to their expectations, ŜW ¼ W and ŜB ¼
B�Wð Þ=n.

In a quantitative genetic context, groups are families
with a degree of genetic relationship of r (e.g., r ¼ 0.25
for half-sib and r ¼ 0.50 for full-sib families), and es-
timates of the genetic ðSGÞ, environmental ðSEÞ, and
phenotypic ðSPÞ covariance matrices are obtained as
ŜG ¼ r�1ŜB, ŜE ¼ ŜW � ð1� rÞŜG, and ŜP ¼ ŜG 1

ŜE ¼ ŜB 1 ŜW, respectively. An extensive simulation
study by Hill and Thompson (1978) demonstrated that
the probability of obtaining nonpositive definite esti-
mates of SB and thus SG is high, increasing with the
number of traits considered and decreasing sample size,
in particular number of groups. Bhargava and Disch

(1982) reported similar results, presenting an analytical
method to determine this probability. In addition, Hill

and Thompson (1978) showed that this probability does
not depend on the individual elements of SB and SW,
but is determined entirely by the eigenvalues of the
product S�1

W SB.
Hayes and Hill (1981) considered the use of the es-

timated covariance matrices to derive weights in a genetic
selection index. This involves the product Ŝ

�1

P ŜG. The
authors thus proposed to shrink the roots of this product
toward their mean to reduce the effect of sampling errors
and showed in a simulation study that this could improve
the achieved response to selection. Rather than manip-
ulating the roots of Ŝ

�1

P ŜG directly, Hayes and Hill

(1981) modified W�1B, using that for gi a root of W�1B,
r�1(gi – 1)/(gi – 1 1 n) is a root of Ŝ

�1

P ŜG. This was
referred to as ‘‘bending’’ the matrix of between-groups
MSCP toward the matrix of within-groups MSCP. In
particular, the authors suggested to choose the shrink-
age or bending factor so that the smallest, modified root
of ŜG was zero or equal to a small positive value. Sim-
ilarly, if li is a root of Ŝ

�1

W ŜB, then 1 1 nli is a root
of W�1B and r�1li/(li 1 1) is a root of Ŝ

�1

P ŜG;
i.e., Hayes and Hill’s (1981) procedure is also equiva-
lent to squeezing the roots of Ŝ

�1

W ŜB together. Note
that bending, as proposed originally, relates to two
matrices. However, it is often used to describe the cor-
responding modification of the eigenvalues of a sin-
gle matrix, a procedure more appropriately termed
‘‘squeezing’’ by Kirkpatrick and Lofsvold (1992,
Appendix B).

Earlier, Klotz and Putter (1969) derived maximum-
likelihood (ML) and REML estimators of SB for the
balanced one-way classification, which were constrained
to be p.s.d. Anderson et al. (1986) extended this to a
p.s.d. ML estimator for SB of maximum rank, while
Amemiya (1985) simply considered how to modify the
matrix of between components when estimates were not
positive definite. In essence, all these again considered
W�1B and its latent roots. Rather than applying shrink-
age, however, any eigenvalues less than unity were fixed
at unity, yielding a p.s.d. estimator of SB of rank equal
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to the number of eigenvalues greater than unity. This is
equivalent to setting any negative eigenvalues of Ŝ

�1

W ŜB

to zero, i.e., results in the nearest symmetric p.s.d. matrix
in the Frobenius norm (Higham 1988). For ML the
divisor used to obtain B from the sums of squares and
cross-products of group means is s, rather than s – 1 as in
the MANOVA.

In the balanced case, REML estimators without
restrictions on the parameter space have closed form
and are identical to their counterparts from (M)ANOVA
(e.g., Corbeil and Searle 1976; Lee and Kapadia

1984). For normally distributed data, restricting the
eigenvalues of W�1B in the one-way classification to a
minimum of unity in fact is equivalent to REML
estimation of SB and SW constrained to the parameter
space (Amemiya 1985, Appendix). Note, however, that
in a genetic context where we estimate SE as
ŜW � ðr�1 � 1ÞŜB, this does not guarantee that ŜE is
positive definite (except for clones; i.e., r ¼ 1). In
contrast, animal model REML analyses estimate SE

directly, constraining ŜE to have positive eigenvalues,
both for full-rank multivariate analyses and reduced-
rank estimation imposing a FA structure on SG (Meyer

and Kirkpatrick 2005). While yielding the same
estimates if ŜW � ðr�1 � 1ÞŜB is positive definite, the
two approaches are thus not strictly equivalent.

Corresponding arguments apply for more compli-
cated scenarios. For instance, extensions to nested
two-way classifications have been examined by Hill

and Thompson (1978), Amemiya (1985), and Das

(1996). Similarly, Calvin and Dykstra (1991, 1992)
considered constrained ML and REML estimation for
the class of MANOVA models in which restrictions can
be formulated as nonnegativity of matrices of MSCP and
of pairwise differences between matrices of expected
MSCP. This class includes all nested and two-factor
models. This suggests that the same mechanisms are
operational in analyses utilizing several types of cova-
riances between groups simultaneously, such as animal
model REML analyses to estimate genetic variances for
complex pedigrees.

Bias due to reduced-rank estimation

Reduced-rank estimators of covariance matrices yield
estimates with eigenvalues that are zero, so that their
rank is less than their dimension. Amemiya (1985)
proposed to constrain estimated covariance matrices
between groups to be p.s.d. by discarding any PCs with
negative eigenvalues. More recently, generalized reduced-
rank estimators have been suggested to reduce the
number of parameters to be estimated (Kirkpatrick

and Meyer 2004; Meyer and Kirkpatrick 2005). This
section examines the bias in reduced-rank estimators
for a balanced one-way classification. After reviewing the
canonical transformation on which estimators are
based, we describe the estimators themselves and show
that they are subject to two sources of bias.

Canonical transformation: As outlined above, esti-
mates of the genetic covariance matrix are obtained by
estimating the between-group covariance matrix,
ŜB ¼ B�Wð Þ=n. Examination of the relationship be-
tween the two matrices involved, B and W, is made easier
by applying a transformation so that

ŜB ¼
1

n
ðB�WÞ ¼ 1

n
TðLQ � IÞT9 ð2Þ

with LQ ¼ Diag lQi

� �
the matrix of eigenvalues of

W�1B.
This is the so-called canonical decomposition or

transformation: For any two symmetric (real) matrices,
W and B, of size q 3 q with W positive definite and B
p.s.d. there exists a matrix T such that TT9 ¼ W and
TDT9 ¼ B, with D diagonal (Anderson 1984). The
canonical transformation has been used to simplify
various multivariate problems in quantitative genetics,
such as examination of selection indexes (Hayes and
Hill 1980), and to reduce computational requirements
in genetic evaluation (Ducrocq and Chapuis 1997) or
estimation of genetic parameters (Meyer 1985). In
addition, it has been instrumental in the derivation of
constrained REML or ML estimators of covariance
matrices, reviewed above. A detailed description of the
computational steps involved can be found in Seal

(1964) or Amemiya (1985).
The transformation matrix T is given by

T ¼ W1=2EQ ð3Þ

with W1/2 a matrix square root of W and EQ the matrix of
eigenvectors of

Q ¼ W�1=2 B ðW�1=2Þ9 ¼ EQ LQ E9Q : ð4Þ

Let W ¼ EWLWE9W and B ¼ EBLBE9B represent the eigen-
decompositions of W and B. Matrix square roots are not
uniquely defined. Suitable forms are W1=2 ¼ EWL1=2

W or,
as EW is orthonormal, W1=2 ¼ EWL1=2

W E9W, or the Cholesky
factor of W. For W1=2 ¼ EWL1=2

W , Q becomes

Q ¼ L
�1=2
W E9WEBLBE9BEWL

�1=2
W : ð5Þ

Reduced-rank estimators: From Equation 2 it follows
directly that ŜB has negative eigenvalues if Q has any
eigenvalues lQi

less than unity. Amemiya (1985) pro-
posed an estimator that is constrained to be p.s.d. that
utilizes this relationship.

Constrained estimator: Assume that Q has m0 eigenval-
ues lQi

greater than or equal to unity, with the remaining
q – m0 eigenvalues less than unity. We can then think of
nŜB in Equation 2 as the sum of a p.s.d. matrix M and a
negative definite matrix D,

nŜB ¼ M 1 D ¼ TðLw
Q � IÞT9 1 TðLQ �Lw

Q ÞT9

¼
Xm0

i¼1

ðlQi
� 1Þtit9i 1

Xq

i¼m011

ðlQi
� 1Þtit9i ; ð6Þ
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where Lw

Q is LQ with eigenvalues m0 1 1 to q replaced
by unity, and ti denotes the ith column of T. A natural
interpretation is then to consider M as an estimator of
nSB and D as an estimator of SW; i.e., an estimator of SB

constrained to be p.s.d. is obtained by omitting D
(Amemiya 1985). This gives an estimator that has rank
m, with m # m0 the number of roots of Q that are .1:

Ŝ
w

B ¼
1

n
M ¼

1

n

Xm0

i¼1

ðlQi
� 1Þtit9i for m0 . 0

0 for m0 ¼ 0:

8<
: ð7Þ

The corresponding estimator for SW is the combination
of W and the portion of B not used to estimate SB, each
weighted by the appropriate degrees of freedom:

Ŝ
w

W ¼ ðsðn � 1ÞW 1 ðs � 1ÞðB� nŜ
w

B ÞÞ=ðsn � 1Þ: ð8Þ

It is readily shown that ðs � 1ÞŜ
w

B 1 ðsn � 1ÞŜ
w

W ¼
ðs � 1ÞB 1 sðn � 1ÞW, i.e., that the new estimators com-
prise the total sums of squares and cross-products.

General reduced-rank estimators: Amemiya (1985) con-
sidered m and m0 to be determined by the sample. In
some circumstances, however, we may wish to select a
specific value of m for a particular analysis (Kirkpatrick

and Meyer 2004). Such a general reduced-rank estima-
tor of SB is obtained by substituting m for m0 in Equation
7. Note that, for simplicity of argument, we assume here
that m # m0. In practice, we may have less than m values
lQi

$ 1; i.e., strictly speaking, we can choose only an
estimator of SB that is p.s.d. and has at most a rank of m.

Bias due to rank reduction: It is well known, though
often ignored, that constraining REML estimates of
(co)variance components to the parameter space gives
biased results. For instance, if the population value for a
variance is zero, constraining estimates to be nonnega-
tive yields estimates with expectation greater than zero.
Similarly, estimates of covariance matrices forced to be
p.s.d. are biased. From Equations 7 and 8, expected
values of estimators are

E Ŝ
w

B

h i
¼ SB �

1

n
E D½ � and E Ŝ

w

W

h i
¼ SW 1

s � 1

sn � 1
E D½ �; ð9Þ

i.e., are biased proportional to D. Amount and sign of
this bias depend on how the eigenvalues of Q used to
obtain Ŝ

w

B are determined.
For the constrained estimator (Amemiya 1985), D is

negative definite, as lQi
, 1 for all i . m0. Thus, from

Equation 9, the diagonal elements of Ŝ
w

B are biased
upward, and those of Ŝ

w

W are correspondingly biased
downward. For the general, reduced-rank estimator,
depending on the choice of m, we may ignore principal
components with nonnegligible eigenvalues. In the
simplest scenario, m0 ¼ q; i.e., all lQi

are greater than
or equal to unity. Consequently, for m , m0, diagonal
elements of Ŝ

w

B and thus trðŜ
w

B Þ are biased downward,
while trðŜ

w

WÞ is biased upward [with tr(�) denoting the

trace operator, i.e., the sum of the diagonal elements of a
matrix]. As the trace of a matrix is equal to the sum of its
eigenvalues, this implies that the estimated eigenvalues
are biased.

The general, reduced-rank estimator is inconsistent if
the chosen rank m is less than the true rank of SB

(Remadi and Amemiya 1994), i.e., does not converge to
its true value as sample size increases. This is perhaps not
surprising, since it is the nature the reduced-rank es-
timator that it discards part of the quantity that it seeks to
estimate. A heuristic argument for this inconsistency is as
follows. From Equation 9, the bias in Ŝ

w

B is

1

n
E D½ � ¼ 1

n
E

Xq

i¼m11

ðlQi
� 1Þtit9i

" #
¼
Xq

i¼m11

E litit9i½ � ð10Þ

(using that lQi
¼ 1 1 nli). One can show that expected

values of li and ti are independent of sample size. Our
conclusion is therefore that, for fixed m, the bias in Ŝ

w

B

does not decline as the sample size increases. In
contrast, the constrained estimator of Amemiya (1985)
does not have this problem of inconsistency, as m is not
fixed but rather converges on q as n / ‘ and s / ‘,
causing D to vanish.

For genetic analyses and Dw ¼
Pq

i¼m11 E litit9i½ �,

E Ŝ
w

G

h i
¼SG � r�1Dw E Ŝ

w

E

h i
¼ SE 1 r�1 � n � 1

sn � 1

� �
Dw

and E Ŝ
w

P

h i
¼ SP �

n � 1

sn � 1
Dw: ð11Þ

Hence, the bias in both Ŝ
w

G and Ŝ
w

E is inverse pro-
portional to the degree of relationship among family
members. For Ŝ

w

E this is tempered by a downward bias
proportional to the group size, which results in a slight
downward bias in the estimate of the phenotypic co-
variance matrix.

Bias due to subset selection: In addition, reduced-
rank estimators of SB can suffer from another source of
bias, introduced when the estimation procedure retains—
or ‘‘picks up’’—one or more of the PCs of SB belonging
to the subset that should have been discarded, on the
basis of the size of the corresponding eigenvalues.

To gain further insight, consider the scenario where
genetic and environmental eigenvectors are collinear. Let
SG ¼ ELGE9 with E the matrix of eigenvectors and LG ¼
DiagflGi

g the diagonal matrix of genetic eigenvalues, in
descending order. Further, let SE ¼ ELEE9, with LE ¼
DiagflEi

g the matrix of environmental eigenvalues, in
appropriate order. Assume an infinitely large sample, so
that W and B are equal to their population values; i.e.,
W ¼ EðLE 1 ð1� rÞLGÞE9 and B ¼ EðLE 1 ð1 1 rðn�
1ÞÞLGÞE9. Consequently, Q (Equation 4) is a diagonal
matrix with elements lQi

¼ (lEi
1 (1 1 (n – 1)r)lGi

)/(lEi

1 (1 – r)lGi
). These are the eigenvalues of Q and the

corresponding matrix of eigenvectors is an identity
matrix. However, unless the diagonal elements of Q
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are in strictly descending order, the sequence of both
eigenvalues and eigenvectors is changed when arrang-
ing lQi

in descending order of magnitude. This results
in EQ being equal to an identity matrix with permuted
columns. Only if EQ is equal to a nonpermuted identity
matrix are the leading PCs—eigenvalues and corre-
sponding eigenvectors—of SG estimated correctly, re-
gardless of the order of fit, and only then is the bias
in ŜG proportional to the smallest eigenvalues lGm11

to
lGq

. When increasing the rank of ŜG by one, this re-
sults in an increase in trðŜGÞ equal to the estimate of the
last genetic eigenvalue fitted. In all other scenarios, the
permutations will cause us to pick up the wrong PC in at
least some reduced-rank analyses. Generalizations are
difficult, but in essence, we estimate the first k # m PCs
correctly from an analysis of rank m, if the subset of m
PCs considered comprises all PCs from 1 to k, i.e., if the
first m columns of EQ include all k elementary vectors ej

for j ¼ 1, k (with ej a vector of length q with a single
nonzero element of unity in position j).

Example: For illustration, say we have q¼ 3 and Q with
diagonal elements lQ1

, lQ2
, lQ3

. Rearranging eigen-
values and -vectors in descending magnitude of the lQi

then gives LQ with elements lQ3
in position (1, 1), lQ2

in
position (2, 2), and lQ1

in position (3, 3), while the
columns of EQ are equal to the corresponding elemen-
tary vectors; i.e., EQ has nonzero elements of unity in
positions (1, 3), (2, 2), and (3, 1). Let ei denote the ith
column of E. With T ¼ EL1=2

W LQ , for m ¼ 1 this gives
(from Equation 7)

E Ŝ
w

B

h i
¼ 1

n
ð e1 e2 e3 Þ

ffiffiffiffiffiffiffiffi
lW1

p
0 0

0
ffiffiffiffiffiffiffiffi
lW2

p
0

0 0
ffiffiffiffiffiffiffiffi
lW3

p

0
BBB@

1
CCCA

3

0 0 1

0 1 0

1 0 0

0
BBB@

1
CCCA

lQ3 � 1 0 0

0 0 0

0 0 0

0
BBB@

1
CCCA

3

0 0 1

0 1 0

1 0 0

0
BBB@

1
CCCA

ffiffiffiffiffiffiffiffi
lW1

p
0 0

0
ffiffiffiffiffiffiffiffi
lW2

p
0

0 0
ffiffiffiffiffiffiffiffi
lW3

p

0
BBB@

1
CCCA

e91

e92

e93

0
BBB@

1
CCCA

¼ rlG3 e3 e93 ;

i.e., we would obtain an estimate of lG1
equal to the true

value for lG3
, with the corresponding estimated eigen-

vector at an angle of 90� to the true first eigenvector. In
other words, our estimate of the first PC would be equal
to the third PC. Similarly, for m¼ 2 estimates l̂G1

and l̂G2

would be equal to lG2
and lG3

, respectively, with both

estimated eigenvectors orthogonal to the true vectors.
The sum of estimated genetic eigenvalues would in-
crease from trðŜGÞ ¼ lG3

for m ¼ 1 to trðŜGÞ ¼
lG2

1 lG3
for m ¼ 2. Only for m ¼ 3 would we estimate

lG1
correctly. Hence, we would severely underestimate

SG in both reduced-rank analyses and would be likely to
conclude that all q PCs were required to model SG

adequately. Paradoxically, this would be independent of
the size of lQ3

, i.e., holding even if the last genetic
eigenvalue were close to zero and thus explained
negligible variation.

In a more general scenario, genetic and environmen-
tal eigenvectors are not the same, EG 6¼ EE, and the
effect of permutations is reduced. To investigate this
situation, it is convenient to describe the orientation of a
set of eigenvectors in terms of the angles by which they
deviate from the axes [the so-called ‘‘Givens angles,’’
(e.g., Pinheiro and Bates 1996)]. It is easy to see that
for q ¼ 2 a single angle describes the orientation of the
first eigenvector relative to the x-axis and, simulta-
neously, the orientation of the second eigenvector rela-
tive to the y-axis. For an arbitrary number of dimensions,
q(q – 1)/2 angles are required to describe the orienta-
tion of all the eigenvectors. Any orthonormal matrix,
such as a matrix of eigenvectors, can be written in terms
of these angles,

E ¼
Yq

i¼1

Yq

j¼i11

RðaijÞ;

where aij is the angle of rotation in the plane defined by
the ith and jth axes, and R is the corresponding rotation
matrix. R(aij) has diagonal elements rii ¼ rjj ¼ cos(aij)
and rkk ¼ 1 for all k 6¼ i, j, off-diagonal elements rij ¼
–sin(aij) and rji ¼ sin(aij), and all other elements are
zero. When all angles aij are 0, the eigenvectors coincide
with the axes and all traits are uncorrelated. A useful
property of the rotation matrices is that R(aij)9R(bij) ¼
R(aij – bij)9. This means that the product of E9WEB in
Equation 5 depends only on the difference in the
corresponding angles between the matrices EW and EB.

This can be used to examine how a disparity in the
orientation of the genetic and environmental eigenvec-
tors affects reduced-rank estimation for the case of q¼ 2.
Let aW and aB denote the single angles describing the
orientation of EW and EB, respectively, and let d¼ 2(aW –
aB). For lWi

and lBi
the eigenvalues of W and B, this gives

Q ¼ 1

2

ðlB1 1 lB2 1 cosðdÞðlB1 � lB2 ÞÞ=lW1 sinðdÞðlB1 � lB2 Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lW1 lW2

p
sinðdÞðlB1 � lB2 Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lW1 lW2

p
ðlB1 1 lB2 � cosðdÞðlB1 � lB2 ÞÞ=lW2

 !
:

As discussed above, for equal angles (aB ¼ aW), Q is a
diagonal matrix with elements lBi

/lWi
, and any bias is

determined by the relative magnitude of these ratios.
Similarly, Q is diagonal for equal roots of B, lB1

¼ lB2
.

Any difference in angles then does affect the estimate of
lG1

from a reduced-rank (m ¼ 1) analysis, although the

1158 K. Meyer and M. Kirkpatrick



estimated direction of the corresponding eigenvector
may be distorted if lW1

6¼ lW2
.

For practical analyses, the effects of sampling variation
may modify the bias observed or yield biased estimates
when population values would not predict so. This is
illustrated in Figure 1, which shows the distribution of
estimates of lG1

and the angle (u1) between the corre-
sponding true and estimated eigenvectors for two traits
with equal phenotypic variances (of s2

p ¼ 100) and
heritabilities (of h2 ¼ 0.4). Due to the equality of s2

p and
h2, the first eigenvector of both SG and SE (or, equiva-
lently, SB and SW) is characterized by an angle of 45�; i.e.,
aB ¼ aW, which is independent from the level of
correlations. Assuming a genetic correlation of rG ¼ 0.6,
population values for the genetic roots are lG1

¼
s2

ph2(1 1 rG) ¼ 64 and lG2
¼ s2

ph2(1 – rG) ¼ 16. For an
environmental correlation of rE ¼ 0.58 this gives lQ1

¼
1.672 and lQ2

¼ 1.645. For such population values (lQ1
.

lQ2
) we expect to estimate the first PC correctly in a

reduced-rank analysis fitting this component only (m¼ 1).
However, with considerable sampling variation, we pick
up the wrong PC in a substantial number of cases. This
results in a bimodal frequency distribution for l̂G1

, with
modes close to true population values for lG1

and lG2
.

MATERIALS AND METHODS

Simulation: A simulation study was conducted to examine
the joint effects of sampling variation, constraints on the

parameter space, and bias due to reduced-rank estimation on
estimates of genetic PCs, contrasting sample results with values
predicted from the population parameters.

Samples: The simulation assumed data with a paternal half-
sib structure, comprising s sire families of size n. Simulations
were carried out by sampling matrices of between- and within-
family MSCP, B and W, from central Wishart distributions
with respective degrees of freedom of s – 1 and s(n – 1), as
described by Odell and Feiveson (1966). Combinations
considered were s ¼ 5000 with n ¼ 40 (referred to as
S5000N40) for a very large sample, s ¼ 1000 with n ¼ 20 or
n ¼ 6 (S1000N20 or S1000N6) for (moderately) large
samples, s ¼ 200 with n ¼ 20 or n ¼ 6 (S200N20 or S200N6)
for moderately small samples, and s¼ 100 with n¼ 20 or n¼ 6
(S100N20 or S100N6) for a small sample size. A total of
10,000 replicates were carried out for each combination of
population values and sample size.

Population values: The number of traits considered was q ¼
6 throughout. Population values for genetic and environ-
mental covariance matrices were parameterized in terms of
their eigenvalues and Givens angles (aG and aE) to de-
termine the corresponding eigenvectors. Six different sce-
narios were considered, chosen to represent different
spreads of eigenvalues and thus rates of decline in genetic
roots, and ratios of genetic to environmental roots, with the
absolute values not important. Genetic eigenvalues for case A
were 53, 52, 51, 49, 48, and 47, i.e., represented a scenario
with very similar eigenvalues. For case B, population roots
were moderately spread, with values for lGi

of 100, 75, 50, 35,
25, and 15. Cases C, E, and F assumed values of 175, 50, 35, 20,
15, and 5, i.e., a fairly wide spread, and case D, with values of
220, 45, 15, 10, 7, and 3, mimicked an even more extreme
spread.

This yielded SG of true rank mw ¼ q and the same
trðSGÞ ¼ 300 and average eigenvalue of 50 for all scenarios.
For cases A–D, eigenvalues of SE were simulated as twice the
value of their genetic counterparts, which yielded equal lQi

(i¼ 1, q). For cases E and F, lEi
¼ 2lGi

– 5 and lEi
¼ 5lGi

– 5 were
used. This was aimed at creating constellations where pop-
ulation values for lQi

were different and in an order that was
likely to cause reduced-rank estimates to pick up the wrong
subset of principal components, while still allowing sampling
variation to have an effect. Again, the choice of actual values
was somewhat arbitrary and was made after considering a
range of possibilities. In addition, a scenario where SG had
a true rank of mw ¼ q/2 ¼ 3 was simulated for all six
constellations, by setting lGi

¼ 0 for i ¼ 4, 6.
Motivated by the analytic results, we also examined the

effects of the orientation of the eigenvectors of SG and SE. As
noted earlier, with q variables q(q – 1)/2 angles are needed to
describe the orientation of a set of eigenvectors. For simplicity,
we assumed all these angles were equal to aG for the genetic
eigenvectors. For cases A–D we set aG¼ 0�, which is equivalent
to all genetic correlations being zero. For cases E and F, we
took aG ¼ 45�, meaning that the genetic principal compo-
nents point in directions that lie between the axes. All angles
for the environmental eigenvectors were also assumed equal.
These were expressed as differences relative to the genetic
eigenvectors; thus aE ¼ 0� means that the environmental and
genetic eigenvectors coincide. Values ranging from aE ¼ �45
to aE ¼ 90� were used to parameterize SE.

Analyses: Estimation: For each replicate, REML estimates of
SG and SE were obtained for ŜG of rank m¼ 1, q and ŜE of rank
q, using Amemiya’s (1985) procedure to obtain estimates of
SB and SW (see Equations 7 and 8 above) and derive ŜG ¼ 4Ŝ

w

B

and ŜE ¼ Ŝ
w

W � 3Ŝ
w

B . If this yielded an estimate of SE that
was not positive definite, a derivative-free search strategy was
employed to maximize the REML log likelihood,

Figure 1.—Estimates of the first genetic eigenvalue (lG1
)

and angle (u1) between the corresponding estimated and true
eigenvectors, from a reduced-rank analysis fitting the first
principal component only, together with respective frequency
distributions. (Shown are estimates for 2000 replicates, simu-
lating data for 1000 sires with six progeny each for two traits;
shaded vertical lines indicate the population eigenvalues.)
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logL ¼ const:� 1

2
ððs � 1Þðlog j ŜE 1 ðn � 1ÞrŜG j Þ

1 trððŜE 1 ðn � 1ÞrŜGÞ�1BÞ
1 sðn � 1Þðlog jŜE 1 ð1� rÞŜGj

1 trððŜE 1ð1� rÞŜGÞ�1WÞÞÞ;
ð12Þ

constraining ŜE to have full rank and ŜG to have rank no larger
than m. While computationally more demanding than a
maximization procedure using derivatives of logL, this was
chosen for its ease of implementation.

Summary statistics: Bias in estimates of SG was quantified by
considering the estimated PCs, i.e., both eigenvalues and
eigenvectors. Rather than examining the m(2q – m – 1)/2
individual elements or Givens angles of the eigenvectors of ŜG,
differences between estimates and population values were
summarized by considering the m angles between estimated
and corresponding population vectors. For ei the ith eigen-
vector and êi its estimate, the angle (in degrees) is

ui ¼ ð180=pÞarccos je9i êij :

Taking the absolute value of the inner product e9i êi projects all
angles to the first quadrant; i.e., ui has a value between 0� and 90�.

The effect of sampling and bias on the estimates of
covariance matrices was summarized by considering the

Frobenius norm of the matrix difference, kŜX � SX kF (X ¼
G, E) [for a matrix M with elements mij the Frobenius norm is

kMkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

P
j m2

ij

q
(Golub and Van Loan 1996)]. For all

statistics, means and sampling deviation across replicates were
calculated. In addition, mean square errors (MSE) were
obtained as the average (over replicates) of squared deviations
of individual parameter estimates from the corresponding
population values.

Predicted values for estimates of lGi
and corresponding ui

were obtained from the eigen-decomposition of Ŝ
w

G (Equation
11), evaluated for the population values and given rank m.

Rank tests: For each sample, the rank of ŜG, i.e., the number
of eigenvalues significantly different from zero, was deter-
mined using several procedures. Where applicable, an error
probability of 5% was used. On the basis of Equation 12,
likelihood-ratio tests (LRT) were carried out, comparing
minus twice the difference in logL for m ¼ 2, q and logL for
m – 1 against a x2-criterion with q – m 1 1 d.f. In addition, the
LRT described by Anderson et al. (1986) to test the hypothesis
that the estimate of SB from the balanced one-way classifica-
tion had rank of at most m vs. the alternative that it had rank
greater than m, was applied. Quantiles of the distribution of
the test statistic, which does not follow a x2-distribution, have
been tabulated by Amemiya et al. (1990) and Kuriki (1993).
Let qw denote the number of eigenvalues of W�1B, lQi

, greater
than unity. The test criterion is then

Y ¼ðsn � 1Þ
Xqw

i¼m11

logððs � 1ÞlQi 1 sðn � 1ÞÞ

� ðs � 1Þ
Xqw

i¼m11

logðlQi Þ � ðqw � mÞlogðsn � 1Þ

(from Amemiya et al. 1990). If Y exceeds the tabulated value
for a probability of 0.95 and rank difference q – m, the
alternative hypothesis is accepted, with an error probability
of 5%; see Hine and Blows (2006) for a detailed description.

Further, the Akaike information criterion (AIC), adjusted
for small sample size, and Bayesian information criterion
(BIC) for each analysis were obtained as

AIC ¼ �2 logL1 2p 1 1
p 1 1

qsn � p � 1

� �

and

BIC ¼ �2 logL1 p logðqðsn � 1ÞÞ

(Wolfinger 1996; Burnham and Anderson 2004) with p ¼
mð2q � m 1 1Þ1 qðq 1 1Þð Þ=2 the number of parameters for

an analysis estimating SG of rank m. For q ¼ 6 and m ¼ 1, 6,
values were p¼ 27, 32, 36, 39, 41, and 42, respectively. The rank

of ŜG was then chosen as the value of m with the smallest value
of the information criterion.

RESULTS

This section describes results of the simulation study.
To begin with, we examine the bias in reduced-rank
estimates, showing that, in practice, reduced-rank esti-
mates of SG are subject to bias from up to three sources,
namely due to the spread of sample roots, due to
constraints imposed to ensure that estimates are within
the parameter space, and due to picking up the wrong
PC. We then demonstrate that the latter can dominate
MSE, so that omitting PCs with negligible eigenvalues is
not always as advantageous as we might hope. Finally, we
examine the scope for likelihood-based tests to de-
termine the rank of ŜG correctly.

Bias: Figure 2 summarizes mean estimates of genetic
eigenvalues from full-rank analyses, for cases A and B with
aE ¼ aG ¼ 0, and a number of sample sizes. Such angles
yield population covariance matrices that are diagonal.
However, as emphasized by Hill and Thompson (1978),
this can be thought of as representing a variety of
nondiagonal constellations that have the same eigenval-
ues. For the case of equal roots, the authors presented a
number of combinations of genetic and phenotypic
correlations and heritabilities that resulted in the same
eigenvalues as diagonal population values (Table 3 in
Hill and Thompson 1978). Results clearly show the
upward bias of the largest and corresponding downward

Figure 2.—Estimates of genetic eigenvalues (li, i ¼ 1, 6)
from full-rank analyses for low (case A) and moderate (case
B) spread of true values (d) and different sample sizes (;,
S5000N40; :, S1000N20; n, S200N20; ¤, S100N6).
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bias of the smallest sample roots. This effect is more
pronounced the more similar the population roots are
and, for case A, increases dramatically with decreasing
sample size. Estimates of the corresponding eigenvalues
of ŜE exhibited an analogous pattern (not shown).

Mean estimates of the first genetic eigenvalue and the
direction of the corresponding eigenvector are con-
trasted in Figure 3 to their predicted values, for analyses
restricting ŜG to rank m ¼ 1 and allowing it to have full
rank (m ¼ 6) for cases A–D. Graphs do not include
expected values for aE ¼ 0 as for these cases all
population roots lQi

are the same, which makes the
order in which PCs are picked up arbitrary. Inspecting
the (log) profile likelihood (at population values) for
individual lGi

, this is exemplified by a horizontal portion
of the curve; i.e., there is no clear maximum. For case A,
the predicted, downward bias in l̂G1

due to reduced-
rank estimation (m ¼ 1) is small, for all values of aE.
Mean estimates, however, are consistently higher than
predicted and higher than the population values, even
for a relatively large sample involving 1000 sires with 20
progeny each. There is little difference between re-
duced- and full-rank estimates; i.e., this reflects the bias
due to the spread in sampling roots that, as demon-
strated above, is largest when the true eigenvalues are
close together. Even at full rank, estimates of the

direction of the first genetic eigenvector differ markedly
from the population direction, indicating that the
wrong PC is picked up in a substantial number of
replicates. Due to the closeness of the population roots,
however, this has little effect on the corresponding
estimates of eigenvalues. For cases B and C, there is
good agreement between predicted and observed bias
for the larger sample size. For the small sample in case B,
there is again a marked upward bias in l̂G1

due to the
spread in sample roots.

For case C, however, estimates for the small sample
are less than expected, increasingly so as the population
values for aE increase. This can be attributed to
constraining the estimate of SE to be positive definite.
This causes genetic variation to be partitioned into the
environmental components, counteracting the upward
bias in l̂G1

due to dispersion in sample roots. For this
scenario (case C, S200N6), the proportion of samples in
which such constraints were required increased from
3% for aE¼ 10� to 48% for aE¼ 90�. A similar pattern is
evident for case D, with even higher proportions of
samples needing ŜE to be constrained, so that a down-
ward bias for l̂G1

was notable for m ¼ 1 at higher values
of aE, even for the large sample size.

Corresponding results for case E and various orders
of fit are shown in Figure 4. For this constellation of

Figure 3.—Mean esti-
mates of the first genetic ei-
genvalue (left, given as
percentage of deviation
from population value)
and direction of the corre-
sponding eigenvector (right,
given as deviation in degrees
from population vector) to-
gether with corresponding
values predicted from popu-
lation parameters, from
analyses fitting one (Fit 1)
or six (Fit 6) principal com-
ponents and different envi-
ronmental angles aE (——,
predicted values; :, mean
estimates for S1000N20; ¤,
mean estimates for S200N6;
the horizontal shaded line
marks the population eigen-
value).
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population values, we expect a complete reversal in the
order of lQi

at equal genetic and environmental angles
(aE ¼ 0). Hence, for orders of fit of m ¼ 1, 2, 4, and 5,
predicted values of l̂G1

are lG6
¼ 5, lG5

¼ 15, lG3
¼ 35,

and lG2
¼ 50, respectively. Correspondingly, we expect

to find an angle between the true and the estimated
eigenvector of 90� for all reduced-rank analyses. As the
graphs show, predicted bias decreases rapidly with
increasing difference of angle aE from aG. Due to
sampling variation, the probability of having equal
angles in a sample is exceedingly small, and mean
estimates for the first PC at aE ¼ 0 are thus much less
biased than expected, in particular for the direction of
the first eigenvector. Moreover, the deviation from
predicted values for similar genetic and environmental
eigenvectors appears to increase with the number of
genetic PCs fitted. As above, simulation results are again
modulated by the effects of constraining ŜE to the
parameter space, in particular for S200N6 and large
differences between aE and aG.

Mean square error: Figure 5 illustrates the combined
effects of bias and sampling variation on estimates of lG1

and SG, for SG with true rank of mw ¼ 3. Shown are the
MSE for l̂G1

and the mean error, i.e., the average of

kŜG � SGkF over replicates, for SG. As demonstrated
above, bias in l̂G1

is largest for aG ¼ aE and large
samples, when SG is estimated at less than true rank (m ,

mw). Observed MSEs for case E follow a similar pattern,
indicating that the bias dominates over any reduction in
sampling variances due to a reduction in the number of
parameters estimated. Overall there appears to be
relatively little increase in MSE when attempting to fit
more PCs for SG than the true rank.

Results may, to some extent at least, reflect that
population values considered implied moderate to
moderately high heritabilities. Additional simulations
(not presented here) demonstrated some advantages of
estimating SG with rank m , mw or bigger penalties for
fitting too many PCs at low levels of heritabilities. For
case F and a small sample size we do observe a reduction
in MSE of l̂G1

for analyses fitting less than three genetic
PCs. Case F differs from case E only by much higher
environmental covariances. A similar pattern, in partic-
ular a notable reduction in MSE for reduced-rank
analyses when SW was considerably larger than SB, has
been reported by Remadi and Amemiya (1994).

Rank: An important question in conjunction with
reduced-rank estimation is whether we can reliably

Figure 4.—Mean estimates of
the first genetic principal compo-
nent (top row, eigenvalue, given
as percentage of deviation from
population value; bottom row, di-
rection of eigenvector, given as de-
viation in degrees from population
vector) together with correspond-
ing values predicted from popula-
tion parameters, for reduced-rank
analyses fitting m ¼ 1, 2, 4, 5 (Fit
m) principal components, for case
E and different environmental an-
gles aE (——, predicted values; :,
mean estimates for S1000N20; ¤,
mean estimates for S200N6; the
horizontal shaded line marks pop-
ulation eigenvalues).

Figure 5.—Square root of mean square error,
for estimates of first genetic eigenvalue (top row),
and mean error in estimates of the genetic covari-
ance matrix ðSG, bottom row), for cases E and F
with true rank of SG of 3 and different environ-
mental angles aE. (:, aE¼�35�; d, aE¼ 0�; and
¤, aE ¼ 35�).
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identify the number of PCs that need to be fitted. Figure
6 summarizes the proportion of replicates with different
numbers of sample roots lQi

greater than unity together
with the rank determined on the basis of LRTs and
information criteria. As expected, due to the sample
spread in the roots of Q (see Hill and Thompson 1978),
sampling SG at full rank yielded a substantial number of
replicates with less than q eigenvalues of Q greater than
unity. For case C, this occurred even for a large sample
size and increasingly as genetic and environmental
eigenvectors deviated in direction. Conversely, for pop-
ulation values of SG with rank mw ¼ 3, more than three
roots of Q exceeded unity in most samples. Similarly,
Remadi and Amemiya (1994) found a much greater
frequency of samples with more eigenvalues lQi

. 1 than
the true rank of SB, when SB did not have full rank.

Rank tests performed reasonably well at the larger
sample size, except for case C and larger values of aE.
The standard LRT used ignores the fact that hypotheses
tested involved parameter values at the boundary of the
parameter space and are thus expected to be too
conservative (Self and Liang 1987), while the test of
Anderson et al. (1986) should account for the resulting,
nonstandard conditions. However, for both LRTs, the
proportion of samples classified at a rank other than
that simulated frequently exceeded the nominal error
rate of 5%. For a small sample, rank tests underesti-
mated the true rank of SG in a substantial number of
cases. In particular, BIC proved very stringent and
seldom provided a correct estimate, while AIC and LRTs
yielded comparable results. Corresponding results
were obtained for the other cases (not shown). For a
simulation with similarly small samples, Hine and
Blows (2006) also reported a substantial frequency of
underestimates of the rank of SG, based on the Y
criterion. Tests applied rely on asymptotic large sample
properties. Not surprisingly this appears not to hold all
that well for the smaller samples.

DISCUSSION

Principal components are an important tool for
multivariate statistical analyses. Their utility, however,
comes at a price, as estimates of both eigenvalues and
eigenvectors are subject to bias. It is well known that
sampling variation causes the leading eigenvalues to be
overestimated and the smallest eigenvalues to be under-
estimated. One consequence is that estimated genetic
covariance matrices can lie outside the parameter space
(Hill and Thompson 1978). Reduced-rank estimators
have been proposed initially to constrain estimates to be
p.s.d. (Amemiya 1985), but can be generalized to
estimators of given maximum rank m. Both are biased,
with magnitude and sign of the bias depending on the
choice of rank and the PCs of ŜG that have been
discarded.

Importance of bias: Our results have shown that the
bias in reduced-rank estimates of genetic PCs can be
large. It has to be emphasized, however, that by
considering the first genetic eigenvalue and reduced-
rank analyses estimating SG at well below its true rank,
we have concentrated—for the purpose of illustration—
on the worst possible scenario. In practice, we are often
interested in the first two to three genetic PCs; as
shown, bias in the leading genetic PCs declines rapidly
as the number of PCs fitted increases. Examining a
number of multivariate estimates from the literature,
Kirkpatrick (2008) postulated that the ‘‘effective
number of dimensions’’ of SG is generally less than
two and showed that the ratio of lG1

to lG2
is often in the

vicinity of 5:1. This is synonymous with a large pro-
portion of the genetic variance explained by the leading
PCs and a fairly wide spread of eigenvalues. Hence, we
might expect a substantial proportion of applications to
fall somewhere in the range spanned by cases C and D
considered in the simulation study. Simulation results
further showed that the effects of sampling variation on

Figure 6.—Proportion of
replicates (3100) for which
the estimated genetic co-
variance matrix is found to
have rank m, based on dif-
ferent test criteria (Q, num-
ber of eigenvalues of Q .1;
AI, lowest AIC value; L, like-
lihood-ratio test; Y, Y-score
test; and BI, lowest BIC
value), for population co-
variance matrices of ranks
6 and 3, respectively.
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the spread of eigenvalues can be pronounced, especially
for small samples, and that this can counteract the bias
due to estimating SG of rank m , mw. The bias due to
reduced-rank estimation we are likely to encounter in
practice could thus be substantially less than demon-
strated here.

As shown, biases are affected not only by the spread of
sample roots, but also by the relative orientation of the
genetic and environmental eigenvectors. This issue has
not been examined for practical data sets. Cheverud

(1988) reported that genetic and phenotypic correla-
tions are often similar, which implies similarity of
genetic and environmental correlations. Common ei-
genvectors for two matrices generate the same correla-
tion structure if the corresponding eigenvalues are
proportional. For cases with similar genetic and envi-
ronmental correlations, this suggests that genetic and
environmental eigenvectors may have directions that
are also similar, i.e., that differences in aG and aE are
small. If so, this will tend to exacerbate the problems of
bias due to reduced-rank estimation.

This study has been motivated by results from large-
scale, reduced-rank multivariate animal model REML
analyses of data from beef cattle, where estimated
genetic eigenvalues changed dramatically with the
number of genetic PCs fitted (Meyer 2005, 2007b). In
particular, it was observed that the eigenvalue for the last
PC fitted tended to be underestimated. Our findings
clearly demonstrate that this was due to the inherent
bias in estimates when imposing rank constraints.
Moreover, they explain the paradox that some PCs with
apparently negligible eigenvalues needed to be fitted to
obtain reduced-rank estimates of the genetic covariance
matrix that adequately described the dispersion struc-
ture in the data. With most relationships in the data
due to paternal half-sibs, substituting estimates from a
full-rank analysis for population values, Meyer and
Kirkpatrick (2007) showed that Equation 11 provided
a good prediction of estimates of genetic PCs obtained
from the practical, reduced-rank analyses.

Implications for reduced-rank estimation: Biases
have been examined for the case of a balanced one-
way classification, under the surmise that similar mech-
anisms affect REML estimates of the genetic covariance
matrix with reduced rank in more general cases. The
surprising result has been that the bias in reduced-rank
estimates of SG can be markedly higher than expected
from simply ignoring PCs m 1 1 to mw. As outlined above,
the underlying mechanism for this additional bias is that
the REML estimator picks up the wrong subset of PCs,
with some rotations of estimates determined by the
differences in orientation of genetic and environmental
eigenvectors and the spread in genetic eigenvalues. This
‘‘extra’’ bias then tends to dominate the MSE, so that
even for small samples, MSEs are often not reduced for
analyses fitting less than mw PCs. Comparing conver-
gence rates for reduced-rank analyses, Meyer (2008)

found that severe underfitting of the rank of SG tended
to increase total computational requirements of REML
analyses, in spite of markedly reduced requirements for
individual iterates. This suggests that biases may also affect
the topography of the likelihood surface, making stan-
dard numerical maximization techniques less effective.

The idea of fitting only as many genetic PCs or,
equivalently, parameters to be estimated, as can be
supported by the data (Kirkpatrick and Meyer 2004;
Blows 2007) is appealing, in particular for small data
sets. However, without further qualifications it is appli-
cable only in specific cases and thus needs to be utilized
cautiously. A ‘‘safer’’ recommendation is to ensure that
we do not underfit SG, i.e., to fit sufficient genetic PCs to
capture all important genetic PCs. If this does comprise
PCs with negligible eigenvalues, we may omit these in
subsequent applications, e.g., when obtaining breeding
values based on the estimated genetic covariance
matrix. In other words, the optimal number of genetic
PCs considered for genetic evaluation may differ from
that for variance component estimation.

Selecting the rank of SG: As computational require-
ments of REML analyses decrease with the number of
genetic PCs fitted, Kirkpatrick and Meyer (2004)
proposed a scheme that increased the rank of ŜG

successively, until no further nonneglible eigenvalues
were found. However, results from this study suggest
that this may be misleading. For instance, we may fit m
genetic PCs and find that the estimate of the mth
eigenvalue is close to zero. As we may, in fact, have
picked up one of the subsequent PCs, this estimate may
increase substantially when increasing the number of
PCs considered to m 1 1. Hence, a ‘‘step-down’’ pro-
cedure to determine the rank of SG to be fitted may be
preferable for practical applications. If the estimate of
lGm

from an analysis fitting m genetic PCs is markedly
less than the corresponding estimate from an analysis
fitting m 1 1 PCs, we may suspect that we have picked up
one of the subsequent PCs, i.e., one of PC m 1 1–q
instead of PC m, and that reducing the number of PCs
further would be futile.

An additional criterion to monitor is the sum of
estimated genetic eigenvalues, i.e., trðŜGÞ. This may drop
slightly, in particular for small samples, as we successively
ignore PCs with negligible eigenvalues, due to the small
eigenvalues omitted and a somewhat reduced spread in
the sample roots. Ignoring PC m 1 1 with eigenvalue
lGm11

should yield a reduction in trðŜGÞ, from an analysis
fitting m 1 1 genetic PCs to an analysis fitting m PCs, of
that amount (i.e., lGm11

). A larger difference then again
indicates that we have encountered an analysis in which
we do not estimate the correct subset of PCs, i.e., that we
should fit no less than m 1 1 genetic PCs, even if l̂Gm11

is
close to zero. This should be accompanied by a signifi-
cant decrease in the likelihood. For higher-dimensional
multivariate analyses it is good practice to carry out a
series of preliminary, bivariate analyses, pooling results to
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obtain starting values of SG and SE for REML analyses
considering all traits. Even if we have a more complicated
pedigree structure than that in a one-way classification,
substituting these for population values in Equation 11
may then give an indication at what order of fit for SG

problems might occur. In addition, such calculations may
provide more appropriate starting values for analyses
with reduced rank.

Identification of the effective dimension of the genetic
covariance matrix, i.e., the number of PCs with eigenval-
ues greater than zero, is of considerable interest to quan-
titative geneticists. These include animal breeders who
would like to know which is the simplest, reduced-rank
model that is appropriate and evolutionary biologists for
whom matrices of less than full rank indicate constraints
by nature on response to selection (Kirkpatrick and
Lofsvold 1992; Mezey and Houle 2005; Hine and
Blows 2006; Blows and Walsh 2008; Kirkpatrick

2008). A number of tests for matrix rank are commonly
used. Disconcertingly, simulation studies available gen-
erally show somewhat inconsistent results, both between
different tests and in the ability to find the correct
dimension ( Jackson 1993; Ferré 1995; Peres-Neto

et al. 2005; Dray 2007). Similarly, identification of the
correct rank in our study, based on the log likelihood
and information criteria, has only been moderately
successful, with substantial underestimates of the true
rank for smaller samples. On the one hand, LRTs are
known to favor the most detailed model. On the other
hand, there has been some concern that use of AIC and
BIC in a random-effects model violates some of the
underlying assumptions (Ripley 2004). However, LRTs
and AIC yielded, by and large comparable, results, while
BIC appeared to be far too stringent. Reliable identifi-
cation of the dimension of SG hence remains on open
challenge.

Conclusions: Reduced-rank estimation of genetic
covariance matrices is appealing and readily accommo-
dated in standard, mixed-model-based estimation proce-
dures such as REML. However, reduced-rank estimation
can yield estimates biased by picking up the wrong subset
of genetic principal components. It is thus important to
choose the rank judiciously, i.e., sufficiently large to avoid
such problems even if this does comprise a number of
components with small eigenvalues.

This work was supported by Meat and Livestock Australia under
grant BFGEN. 100B (K.M.) and by National Science Foundation grant
EF-0328598 (M.K.).
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Schäfer, J., and K. Strimmer, 2005 A shrinkage approach to large-
scale covariance matrix estimation and implications for func-
tional genomics. Stat. Appl. Genet. Mol. Biol. 4: 32.

Seal, H. L., 1964 Multivariate Statistical Analysis for Biologists.
Methuen, London.

Self, S. G., and K. Y. Liang, 1987 Asymptotic properties of the
maximum likelihood estimators and likelihood ratio tests under
nonstandard conditions. J. Am. Stat. Assoc. 82: 605–610.

Srivastava, M. S., and T. Kubokawa, 1999 Improved non-negative
estimation of multivariate components of variance. Ann. Stat. 27:
2008–2032.

Thompson, R., B. R. Cullis, A. B. Smith and A. R. Gilmour, 2003 A
sparse implementation of the average information algorithm for
factor analytic and reduced rank variance models. Aust. N. Z. J.
Stat. 45: 445–459.

Venables, W. N., 1973 Computation of the null distribution of the
largest or smallest latent roots of a beta matrix. J. Multivar. Anal.
3: 125–131.

Wolfinger, R. D., 1996 Heterogeneous variance-covariance struc-
tures for repeated measures data. J. Agric. Biol. Environ. Stat.
1: 205–230.

Communicating editor: J. B. Walsh

1166 K. Meyer and M. Kirkpatrick


