
Copyright � 2007 by the Genetics Society of America
DOI: 10.1534/genetics.107.081190

The Impact of Genetic Relationship Information on Genome-Assisted
Breeding Values

D. Habier,1 R. L. Fernando and J. C. M. Dekkers

Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University, Ames, Iowa 50011

Manuscript received August 28, 2007
Accepted for publication October 9, 2007

ABSTRACT

The success of genomic selection depends on the potential to predict genome-assisted breeding values
(GEBVs) with high accuracy over several generations without additional phenotyping after estimating
marker effects. Results from both simulations and practical applications have to be evaluated for this
potential, which requires linkage disequilibrium (LD) between markers and QTL. This study shows that
markers can capture genetic relationships among genotyped animals, thereby affecting accuracies of GEBVs.
Strategies to validate the accuracy of GEBVs due to LD are given. Simulations were used to show that ac-
curacies of GEBVs obtained by fixed regression–least squares (FR–LS), random regression–best linear
unbiased prediction (RR–BLUP), and Bayes-B are nonzero even without LD. When LD was present,
accuracies decrease rapidly in generations after estimation due to the decay of genetic relationships. How-
ever, there is a persistent accuracy due to LD, which can be estimated by modeling the decay of genetic rela-
tionships and the decay of LD. The impact of genetic relationships was greatest for RR–BLUP. The accuracy
of GEBVs can result entirely from genetic relationships captured by markers, and to validate the potential of
genomic selection, several generations have to be analyzed to estimate the accuracy due to LD. The method
of choice was Bayes-B; FR–LS should be investigated further, whereas RR–BLUP cannot be recommended.

DUE to advances in molecular genetics, genome-
wide dense marker data are becoming available

for livestock species. These can be used to estimate
genome-assisted breeding values (GEBVs) as proposed
by Meuwissen et al. (2001). First, marker effects are
estimated with a training data set containing individ-
uals with marker genotypes and trait phenotypes. Then,
GEBVs of any genotyped individual in the population
can be calculated using the estimated marker effects.
The greatest advantage of this approach is the potential
to predict GEBVs with high accuracy over several gen-
erations without repeated phenotyping, which results
in lower costs and shorter generation intervals. This ap-
proach requires linkage disequilibrium (LD) between
marker loci and quantitative trait loci (QTL), otherwise
the accuracy is expected to decline fast in the genera-
tions following the estimation of marker effects. In sim-
ulation studies, Meuwissen et al. (2001) and Solberg

et al. (2006) predicted the true breeding values of
offspring of individuals in the training data to validate
the potential advantage of GEBVs. In practical appli-
cations, cross-validation with individuals from the same
population is used, and either breeding values estimated
from trait phenotypes and pedigree data or progeny
means corrected for environmental effects and EBVs of
mates are used to validate the potential advantage of

GEBVs. Thus, both in simulation and in practical ap-
plications, individuals in the validation group are related
to individuals in the training data. However, markers
used in the statistical models to estimate marker effects
can also capture additive genetic relationships between
individuals (Fernando 1998), defined here as twice the
coefficient of coancestry given by Malécot (1948). This
will affect the accuracy of GEBVs and thus, even if mark-
ers are not in LD with QTL, the accuracy of GEBVs will
be nonzero. Furthermore, if markers are in LD with
QTL, the accuracy of GEBVs is expected to be higher
than accuracy due to LD alone. Legarra et al. (2007)
analyzed accuracies of GEBVs for individuals related to
the training data and those for individuals that were
unrelated in a mouse population. They concluded that
markers were able to recover family information to some
extent.

The objective of this study was to show how genetic
relationships between individuals are captured by mark-
ers in the statistical models used by Meuwissen et al.
(2001) to estimate marker effects for prediction of
GEBVs. Simulated data were used to analyze how this
affects the accuracy of GEBVs over generations. On the
basis of these results, strategies to validate the advantage of
GEBVs due to LD in practical applications were derived.

THEORY

Statistical models: Three statistical models were used
in this study to estimate genomewide SNP-marker ef-
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fects for use in computing GEBVs: fixed regression–
least squares (FR–LS), random regression–BLUP (RR–
BLUP), and Bayes-B as described by Meuwissen et al.
(2001). The basic model underlying these methods can
be written as

y ¼ 1m 1
X

k

xkbkdk 1 e; ð1Þ

where y is the vector of trait phenotypes, m is the overall
mean, xk is a column vector of marker genotypes at locus
k, bk is the marker effect, dk is a 0/1-indicator variable,
and e is the vector of random residual effects. In xk , the
marker genotype of an individual is coded as the
number of copies of one SNP allele it carries, i.e., 0, 1,
or 2; bk is treated as fixed in FR–LS and as random in
RR–BLUP and Bayes-B. The indicator variable dk¼ 1 for
all marker loci in RR–BLUP, whereas dk can be 0 or 1 in
FR–LS and Bayes-B.

Let X be a matrix containing the vectors xk and b be a
vector containing the elements bk for all marker loci for
which dk ¼ 1. Then, the expected value of y is 1m 1 Xb
for FR–LS and 1m for RR–BLUP and Bayes-B. Further-
more, the variance of y is Is2

e for FR-LS, XX9s2
b 1 Is2

e

for RR–BLUP (assuming equal variance for each SNP),
and X Diagfs2

bk
gX9 1 Is2

e for Bayes-B, i.e., allowing SNP-
specific variances. Note that the dimensions of X and b
can be different for the three methods.

In Bayes-B, the prior probability of s2
bk

to be nonzero
was defined by Meuwissen et al. (2001) as the expected
proportion of segregating QTL to the total number of
QTL on the genome. Note that when s2

bk
¼ 0 in an

iteration of the Bayes approach, then dk¼ 0 and marker
locus k is not included in the model in that iteration.

As in Meuwissen et al. (2001), FR–LS was imple-
mented as a two-step procedure. In the first step,
markers to be included in the model were selected,
and in the second step, effects of these markers were
estimated to predict GEBVs. In contrast to the study of
Meuwissen et al. (2001), FR–LS was implemented as a
forward stepwise regression as described in Kutner et al.
(2005). First, simple linear regressions were fitted and
t-statistics were calculated for all marker loci as

tk ¼
jbk j
sðbkÞ

;

where tk is the t-statistic for marker locus k and s(bk) is
the standard error of bk. Then, the marker locus with
the lowest P-value was included in the model, if its
P-value was lower than a predefined threshold a. If a
marker was included in the model in the first step, the
remaining marker loci were individually fitted together
with the previously included marker. Another marker
was added to the model, if its P-value was the lowest of
the remaining markers and was also lower than a. If the
model contained at least two marker loci, t-statistics for
markers included earlier were obtained and the marker

locus with the highest P-value greater than a was
dropped from the model. The algorithm proceeded
until no marker locus could be added to the model and
no marker locus in the model could be dropped.
Marker effects estimated from the final model were
used to predict GEBVs.

Another difference compared to Meuwissen et al.
(2001) is that s2

b used in RR–BLUP was
s2

a=2
P

k pkð1� pkÞ, where s2
a is the additive genetic

variance, and pk is the allele frequency at marker locus
k. The reason for doing so will be clear in the following
section. In Meuwissen et al. (2001), in contrast, s2

a=nk

was used, where nk is the number of marker loci.
Genetic relationships captured by markers: Denote

the ith row of X by x9i containing the marker genotypes
of individual i. Thus, element i, j of XX9 is calculated by
x9ixj , where j denotes another individual. Treating x9i
and xj as random, the expected value of x9ixj is

Eðx9ixjÞ ¼
X

k

EðxikxjkÞ

¼
X

k

Covðxik ; xjkÞ1 EðxikÞEðxjkÞ; ð2Þ

where k denotes marker locus k. The covariance term in
(2) is aij2pk(1 � pk), where aij is the genetic relationship
coefficient between individuals i and j. Also, the ex-
pected value of xik is 2pk. Consequently, Eðx9ixjÞ ¼
aij 2

P
k pkð1� pkÞ1 4

P
k p2

k and thus

EðXX9Þ ¼ A 2
X

k

pkð1� pkÞ
" #

1 1194
X

k

p2
k ; ð3Þ

which is proportional to A, apart from a constant. Note
that, as the number of independent marker loci goes to
infinity, XX9 converges to (3). Thus, the extent to which
XX9 approximates A depends on the number of loci.

To see how genetic relationships in XX9 enter into
RR–BLUP, consider the standard animal model

y ¼ 1m 1 Za 1 e; ð4Þ

where Z is an incidence matrix and a is the vector of
additive genetic effects of individuals with data in y. This
model used the same trait phenotypes as the other
models, and further information from genetic relation-
ships only, and is referred to as trait-pedigree–BLUP
(TP–BLUP). For this model, the variance of y is

VarðyÞ ¼ ZAZ9s2
a 1 Is2

e; ð5Þ

where s2
e is the residual variance.

Suppose we replace A in (5) by XX9=2
P

k pkð1� pkÞ.
Then, (5) is identical to the variance of y for RR–
BLUP, and TP–BLUP of a is identical to Xb̂ of RR–BLUP
(Fernando 1998; Vanraden 2007). Note that the
second term in (3) is constant for all individuals in the
population and therefore its square root will be cap-
tured by the mean in the statistical model. If the number
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of marker loci goes to infinity and given a fixed number
of trait phenotypes, RR–BLUP is equivalent to the
animal model in (4) that uses the well-known numera-
tor relationship matrix.

The above derivation did not require LD. Genetic
relationships can enter into the analysis regardless of
the amount of LD between markers and QTL. Thus, the
accuracy of GEBVs is nonzero even without LD. This is
also true for FR–LS and Bayes-B, which are related to
RR–BLUP through modification of the marker varian-
ces. In addition, the number of markers fitted can be
different for these methods. When markers are the QTL
or are in LD with QTL, however, XX9=2

P
k pkð1� pkÞ

provides more information about the covariance be-
tween relatives than the numerator relationships matrix
A in (5), because variation in relationships, e.g., between
full sibs, is taken into account (Nejati-Javaremi et al.
1997; Vanraden and Tooker 2007).

SIMULATION

Two main scenarios were considered in this study. The
first was to demonstrate that the accuracy of GEBVs can
be nonzero even without LD between markers and QTL,
and the second was to analyze a more realistic situation
in which markers are in LD with QTL. These two
scenarios were (1) no LD between markers and QTL
and (2) a population with LD based on mutation–drift
equilibrium. The first scenario can also be considered as
the worst case for genomic selection. The following
description applies generally to both scenarios.

All simulations started with a base population of 100
individuals. Biallelic QTL effects were sampled from a
standard normal distribution and alleles were sampled
from a Bernoulli distribution with frequency 0.5. This
differs from similar simulations conducted by, e.g.,
Meuwissen et al. (2001) who started with a population
that was fixed for all loci and simulated multiallelic QTL
with effects sampled from a gamma distribution. Start-
ing with a segregating population, however, allowed
mutation–drift equilibrium to be reached after 1000
compared to 100,000 generations of random mating.
This was checked deterministically and by Monte Carlo
simulation. Although the gamma distribution has
slightly thicker tails than the normal distribution, use
of the normal distribution for QTL effects was shown
not to affect results. A mutation rate of 2.5 3 10�5 per
generation was applied in the following generations,
where mutations switched the allele state from 1 to 2 or
from 2 to 1. Recombinations on a chromosome were
modeled according to a binomial map function, where
the maximum number of uniformly and independently
distributed crossovers on a chromosome of 1 M was
4 (Karlin 1984), i.e., assuming interference. After a
period of random mating, which was different for the
two scenarios considered, the population was divided
into two lines (Figure 1).

Then, each line was increased in size over five
generations to obtain a population size of 500 males
and 500 females. In the following generations, pedigree
data were recorded and 50 sires were randomly selected
and mated to 500 dams in each generation, which are
discrete. Each female had one male and one female off-
spring and thus each sire had 10 sons and 10 daughters.
Line 1 provided the phenotypic training data to develop
models to estimate GEBVs, whereas line 2 was used only
to validate the accuracy of GEBVs independent of
the impact of genetic relationships, i.e., accuracy due
to LD.

Heritability of the quantitative trait was set to 0.5 by
rescaling QTL effects in the generation in which pedi-
gree recording was initiated. Phenotypes were calcu-
lated as the sum of the QTL-genotype effects of an
individual plus a residual effect sampled from a stan-
dard normal distribution. The composition of training
and validation data sets as well as the methods used to
estimate marker effects are described separately for
each scenario in the following two sections. The crite-
rion to compare methods was the correlation between
true and estimated breeding values, also referred to as
the accuracy of estimated breeding values.

To evaluate the effect of genetic relationships cap-
tured by markers, TP–BLUP in (4) was used to estimate
accuracies of EBVs. The additive genetic variance and
the residual variance were assumed known in both TP–
BLUP and RR–BLUP.

Genetic relationships captured by markers: To show
that the accuracy of GEBVs is nonzero even if there is no
LD in the population, 100, 1000, and 2000 markers in
linkage equilibrium (LE) with 10 QTL were simulated.
To ensure linkage equilibrium between markers and
QTL, each locus (markers and QTL) was located on a
different chromosome. Thus, the recombination rate
between any pair of loci was 0.5. Pedigree and marker
data were recorded for five generations, but only the 500
males in generation 4 had trait phenotypes and thus
were included in the training data. The validation data

Figure 1.—Simulated population.
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contained individuals from all 5 pedigree generations
in line 1. LE markers were used to estimate GEBVs as
if they were LD markers.

FR–LS, RR–BLUP, and Bayes-B were used to estimate
marker effects. In FR–LS, a threshold of a ¼ 0.2 was
used. In Bayes-B, the prior probability of s2

bk
to be non-

zero was set to the number of QTL divided by the num-
ber of LE markers.

Accuracy of GEBVs due to linkage disequilibrium:
To analyze the accuracy of GEBVs due to LD, the
population was randomly mated for 1000 generations
to reach mutation–drift equilibrium before it was in-
creased in size as described above (Figure 1). To find
enough segregating markers and QTL after 1000 gen-
erations, 10,000 loci on each of 10 chromosomes, where
every 100th locus was a QTL, were simulated. Loci were
equally spaced and each chromosome had a length of
1 M. Marker loci were selected after 1000 generations by
first dividing each chromosome in 100 bins of 1 cM and
then choosing the marker with frequency closest to 0.5
in each bin. Thus, 1000 SNP markers were used in the
estimations. The average marker spacing was 1 cM and
thus the average distance between flanking markers and
QTL was 0.5 cM. After 1000 generations,�50 QTL were
segregating and these were randomly distributed on the
genome. The frequency distribution of the minor allele
of the selected markers was almost uniform from 0 to 0.5
with mean 0.27.

Pedigree and marker data were recorded for 20
generations in both lines, but only the 500 males and
500 females in generation 10 of line 1 had trait phe-
notypes and thus were included in the training data.
The validation data consisted of individuals in lines
1 and 2 from generation 1 to 20 (Figure 1).

FR–LS with a ¼ 0.2, RR–BLUP, and Bayes-B with two
different prior probabilities for s2

bk
to be nonzero

were used in this analysis. Bayes-B1 had a prior proba-
bility of 0.05, which corresponds to the expected pro-
portion of segregating QTL after 1000 generations,
whereas Bayes-B2 had a much smaller prior probability
of 0.005. Following Meuwissen et al. (2001), 10,000
MCMC cycles were conducted for Bayes-B, where the
first 1000 were discarded as burn in.

RESULTS

Genetic relationships captured by markers: Figure 2
shows the accuracy of GEBVs for 100, 1000, and 2000 LE
markers, for all males, for the 50 males in each gen-
eration that were used as parents (male parents), and
for all females. These results are based on 96 replicates.

The accuracy of GEBVs obtained with LE markers was
always positive in the five generations considered. The
maximum accuracy was obtained for fathers of individ-
uals in the training data (generation 3), because each
sire had 10 sons with trait phenotypes in the training
data. As expected, the accuracy of the offspring of

individuals in the training data (generation 5) is lower
than that for individuals in the training data, because
these individuals have no phenotypes. Furthermore, the
accuracy increased and approached TP–BLUP with an
increasing number of LE markers. RR–BLUP was always
the closest to TP–BLUP, followed by Bayes-B, whereas
FR–LS had considerably lower accuracies. The differ-
ence between Bayes-B and RR–BLUP increased with the
number of LE markers, whereas the difference between
Bayes-B and FR–LS decreased.

All this was observed most clearly for male parents
(Figure 2, male parents). For example, the accuracy of
GEBVs obtained with RR–BLUP for the fathers of
individuals in the training data was 0.5 with 100 LE
markers and 0.78 with 2000 LE markers. The latter was
only marginally smaller than the accuracy of EBVs from
TP–BLUP, which was 0.79. Even the accuracy of GEBVs
from RR–BLUP for grandfathers was close to the
accuracy of breeding values estimated with TP–BLUP
(0.57 vs. 0.61). The accuracy of GEBVs for the offspring
of individuals in the training data (generation 5) was
only 0.1 using 100 LE markers, but increased to up to 0.4
using 2000 LE markers and RR–BLUP.

As the number of LE markers was increased to 2000,
the accuracies of GEBVs for all males and for females
also approached the accuracies of TP–BLUP, but to a
lesser degree than in male parents (Figure 2). For all
males, TP–BLUP had 0.07, 0.18, and 0.28% higher ac-
curacy than RR–BLUP, Bayes-B, and FR–LS, respectively.

Accuracy of GEBVs due to linkage disequilibrium:
Figure 3 shows the accuracy of GEBVs for lines 1 and 2
using 1000 individuals in generation 10 of line 1 each
with a trait phenotype and 1000 SNP markers. Further-
more, Table 1 depicts the accuracy of EBVs for individ-
uals in the training data, for their fathers and offspring,
and for generation 20. These results are based on 160
replicates.

The fathers of individuals in the training data (Figure
3, male parents, generation 9, line 1) generally had the
highest accuracy among all pedigree individuals. The
method that obtained the highest accuracy for these
individuals was Bayes-B1 with 0.88 (Table 1). The
individuals with the next highest accuracy were those
in the training data, where RR–BLUP and Bayes-B1
resulted in the highest accuracy, which was 0.78.

The decline in accuracy between generations 10 (the
generation with trait data) and 11 of line 1 for RR–BLUP
was almost parallel to the decline for TP–BLUP, whereas
the accuracy of GEBVs obtained with FR–LS and both
Bayes-B methods decreased less. Starting in generation
11 (the offspring generation), Bayes-B1 outperformed
RR–BLUP (0.69 vs. 0.64) and starting in generation 12,
FR–LS outperformed RR–BLUP (Figure 3). The accu-
racy declined further in the following generations, but
of a decreasing rate in each generation, in particular for
the marker-based methods. RR–BLUP and FR–LS de-
creased faster in the first generations after training than
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the two Bayes-B methods, but finally the accuracies of
GEBVs of all marker-based methods decreased at almost
the same rate as the accuracy of GEBVs in line 2. Going
backward in time from the father’s generation to earlier
generations, the decline of accuracy was similar to going
forward in time.

The difference in accuracies between Bayes-B1 and
Bayes-B2 was greatest in generations 9 and 10, but
reduced in the following generations. In generation
20, the accuracies of both Bayes-B methods were not
significantly different (Table 1).

The accuracies in generations 2 and 20 in line 1 were
affected by genetic relationships to a very small extent
and thus these accuracies can be used for comparisons
with accuracies in line 2, in which the accuracies were
only due to LD. The accuracies of both these gener-
ations were lower in line 2 than in line 1, but the
difference was greater in generation 20 than in gener-
ation 2. The latter can be explained as follows. The LD
pattern of individuals in generation 10 of line 1 was
utilized to estimate marker effects. This LD pattern,

however, changed due to recombinations between
markers and QTL over generations. Thus, the longer
lines 1 and 2 were separated, the more different was the
LD pattern in comparison to that in the training data.

In line 2, Bayes-B1 and Bayes-B2 were not significantly
different and both resulted in a higher accuracy than
FR–LS and especially RR–BLUP. The accuracies of FR–
LS and RR–BLUP were 0.04 and 0.13%, respectively,
lower than those of the Bayes-B methods.

The decline in the accuracy over generations in line
2 for FR–LS, RR–BLUP, Bayes-B1, and Bayes-B2 was
0.0031, 0.0042, 0.0037, and 0.0034 units, respectively,
per generation. Because this decline is expected to
be proportional to the recombination frequency be-
tween markers and QTL, this indicates that the average
recombination frequency between markers used in
these methods was lower than the recombination rate
of 0.00498, which corresponds to the average distance of
0.5 cM between QTL and the flanking markers. For
example, the accuracies of GEBVs in line 2 from Bayes-
B1 resulted from markers that were on average 0.37 cM

Figure 2.—Accuracies of GEBVs obtained by fixed regression–least squares (FR–LS), random regression–BLUP (RR–BLUP),
and Bayes-B using 100 (top), 1000 (center), and 2000 (bottom) LE markers in comparison to the accuracies for trait-pedigree–
BLUP (TP–BLUP). Five hundred trait phenotypes in generation 4 were used as the training data for all methods (96 replicates).
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from the QTL. The explanation is that the number of
trait phenotypes in the training data was not sufficient
to utilize LD between markers and QTL that were on
average .0.37 cM apart. When the number of trait
phenotypes was increased, markers on average .0.37
cM from the QTL also contributed to accuracy (results
not shown).

The average LD between markers used and QTL can
be derived approximately using the formula given by
Sved (1969), being r 2 ¼ 1=4Neu 1 1, where r2 is the
measure of LD, Ne is the effective population size, and
u is the recombination frequency. Assuming Ne ¼ 100
and using the decay shown above as average recombina-
tion frequencies, r2 ranges between 0.37 and 0.44.

DISCUSSION

Genetic relationships captured by markers: The
differences in accuracy of GEBVs between FR–LS, RR–

BLUP, and Bayes-B (Figure 2) can be explained mainly
by the number of LE markers fitted in the model as
shown in Table 2. FR–LS fitted the smallest number of
LE markers and thus captured genetic relationships the
least. RR–BLUP, on the other hand, fitted all LE
markers and thus captured more genetic relationships
than FR–LS and Bayes-B. In Bayes-B, the number of
markers fitted in each round of the MCMC approach
depends on the prior probability of s2

bk
to be nonzero,

which was decreased as the number of LE markers
increased. Thus, the number of markers fitted in Bayes-
B increased only slightly (Table 2). Despite this, the
accuracy of Bayes-B increased with the number of LE
markers, because in each round of the MCMC approach
different markers can be fitted in the model. The dif-
ferences between models are expected to reduce when
the number of LE markers is increased.

The reason why the accuracies of GEBVs were closer
to those of TP–BLUP for male parents than for female
parents is that the accuracy of GEBV for a parent
depends on the genetic relationships captured by mark-
ers averaged over the relatives in the training data. The
deviation of this averaged genetic relationship from the

Figure 3.—Accuracies of GEBVs
obtained by fixed regression–least
squares (FR–LS), random regres-
sion–BLUP (RR–BLUP), Bayes-B1,
andBayes-B2inlines1and2incom-
parison to the accuracies of EBVs
obtained by trait-pedigree–BLUP
(TP–BLUP) using 1000 individuals
in generation 10 each with a trait
phenotype and 1000 SNP markers
(160 replicates).

TABLE 1

Accuracy of GEBVs (±SE, based on 160 replicates) obtained
by TP–BLUP, FR–LS, RR–BLUP, Bayes-B1, and Bayes-B2 for
individuals in the training data (generation 10), their fathers
(generation 9), and their offspring (generation 11) and for

generation 20 (based on 1000 SNP markers and 1000
trait phenotypes in generation 10)

Generation

Method 9 10 11 20

TP–BLUP 0.85 6 0.003 0.75 6 0.004 0.53 6 0.007 0.02 6 0.010
FR–LS 0.79 6 0.005 0.68 6 0.005 0.61 6 0.007 0.49 6 0.009
RR–BLUP 0.87 6 0.003 0.78 6 0.002 0.64 6 0.004 0.42 6 0.007
Bayes-B1 0.88 6 0.003 0.78 6 0.003 0.69 6 0.005 0.55 6 0.009
Bayes-B2 0.83 6 0.004 0.73 6 0.004 0.66 6 0.006 0.54 6 0.009

TABLE 2

Average number of LE markers fitted (±SE, based on
96 replicates) in FR–LS, RR–BLUP, and Bayes-B using

100, 1000, and 2000 LE markers

No. of LE markers used

Method 100 1000 2000

FR–LS 1.9 6 1.0 7.4 6 2.8 11.0 6 3.0
RR–BLUP 100 1000 2000
Bayes-Ba 12.6 6 2.0 20.3 6 3.1 21.4 6 2.3

a Different loci can be fitted in each MCMC round.
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relationship in A is inversely related to the number of
markers and the number of relatives in the training
data. Thus, the GEBV accuracy for fathers, which had 10
times as many offspring in the training data as mothers,
was closer to the accuracy of TP–BLUP.

Accuracy of GEBVs due to linkage disequilibrium:
Results of this study confirm previous simulation studies
that show that genomic selection can result in sizeable
accuracies of GEBVs. Simulation parameters used and
the results found in the scenario with LD are compara-
ble to those in the study of Solberg et al. (2006). They
simulated 1000 phenotypes with a heritability of 0.5 to
estimate 1010 SNP effects on 10 chromosomes using
Bayes-B1. The accuracy of GEBVs for the offspring of
individuals in the training data was 0.66 in their study,
which is close to the value of 0.69 found here. Meuwissen

et al. (2001), in contrast, used 1000 microsatellite markers
and estimated �50,000 haplotype effects with 1000 trait
phenotypes. They found a higher accuracy for Bayes-B1
of 0.79 as well as a higher difference between Bayes-B1
and RR–BLUP of�0.13%. Solberg et al. (2006) showed
that microsatellites result in a higher accuracy than SNPs
for a given marker density, which explains the higher
accuracies found by Meuwissen et al. (2001) in compar-
ison to this study. The greater difference between Bayes-
B1 and RR–BLUP in their study, in which they estimated
50,000 haplotype effects, is likely due to the higher
number of effects estimated.

The accuracies of GEBVs from FR–LS found here
were considerably higher than those in Meuwissen et al.
(2001). Using the simulation design explained in the
previous section, they found an accuracy of 0.204 for
FR–LS in the offspring of individuals in the training
data, which is 0.58% lower than their accuracy for Bayes-
B1. Here, however, the accuracy for FR–LS was 0.61,
which is only 0.08% lower than the accuracy for Bayes-
B1 (Table 1). The differences in both studies for FR–LS
might be due to the different thresholds used to include
markers in the model. Meuwissen et al. (2001) used a
more stringent threshold than we used in this study. We
observed that the accuracies of GEBVs for FR–LS were
lower and more comparable to the results of Meuwissen

et al. (2001), when we used a more stringent threshold of
a ¼ 0.1 (results not shown here). This is in agreement
with a study by Piyasatian et al. (2006), in which higher
thresholds resulted in higher breeding progress.

Scenarios with and without LD were used to demon-
strate that markers capture not only effects of QTL that
are in LD with markers, but also genetic relationships,
and that the accuracy of GEBVs is nonzero even without
LD. In reality, of course, markers on the same chromo-
some are not independent and thus the effect of genetic
relationships on the accuracy of GEBVs is expected to
be lower than that seen here with a large number of
independent LE markers. Nevertheless, this effect was
also demonstrated under more realistic situations using
LD based on a population in mutation–drift equilib-
rium. Thus, the methods to estimate marker effects
utilize both information from genetic relationships
among individuals as well as information from LD.
However, FR–LS, RR–BLUP, and Bayes-B utilize both
types of information differently. Genetic relationships,
on the one hand, affect the results of RR–BLUP more
than those of FR–LS and Bayes-B, because in FR–LS and
Bayes-B only a small proportion of the total number of
markers is fitted (Table 3).

Bayes-B, on the other hand, utilizes information from
LD better than FR–LS as implemented here and better
than RR–BLUP. Furthermore, the ranking of these meth-
ods can change over generations, because especially the
contribution of genetic relationships to the prediction
of GEBVs is different in each generation. This contri-
bution can be high for the parents of individuals in the
training data, but for descendant generations the in-
formation from genetic relationships is halved each
generation. LD information, in contrast, is more persis-
tent, which makes it of particular importance.

To validate the potential advantage of GEBVs, it is
necessary to estimate the contribution from LD to the
accuracy of GEBVs. The accuracy of GEBVs due to LD
in generation 11 of line 1 (offspring of individuals in
the training data) was estimated using the accuracy of
GEBVs in generation 20 of line 1 and the rate of decline
in line 2. The accuracy of GEBVs in generation 20 of line
1 is expected to be mostly due to LD (Table 1). Further,
the rate of decline in accuracy in line 2 is entirely due to
the decay of LD as depicted in Table 4. The accuracy due
to LD in generation 11 was predicted as the accuracy of
GEBVs in generation 20, plus nine times the decay of
accuracy due to LD (Table 4).

The difference between the accuracy of GEBVs (Table
1) and the accuracy of GEBVs due to LD (Table 4) in

TABLE 3

Average number of markers fitted (±SE, based on 160
replicates) in FR–LS, RR–BLUP, Bayes-B1, and Bayes-B2

using 1000 SNP markers in LD with QTL

FR–LS RR–BLUP Bayes-B1a Bayes-B2a

15.6 6 3.8 1000 52.3 6 7.1 18.2 6 4.4

a Different loci can be fitted in each MCMC round.

TABLE 4

Accuracy of GEBVs due to LD in generation 11 of line 1 (r̂LD)
for FR–LS, RR–BLUP, Bayes-B1, and Bayes-B2 estimated by
the decay of accuracy per generation in line 2 (b) 3 9, plus the

accuracy of GEBVs of generation 20 in line 1

FR–LS RR–BLUP Bayes-B1 Bayes-B2

b 0.0031 0.0042 0.0037 0.0034
r̂LD 0.518 0.457 0.583 0.570
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generation 11 of line 1 was 0.09% for FR–LS and Bayes-B2,
0.11% for Bayes-B1, and 0.18% for RR–BLUP. Thus, this
shows again that the impact of genetic relationships was
greatest for RR–BLUP and that RR–BLUP was less able
to use LD between markers and QTL than the other
methods. These results, however, should be specific to
this simulation study, because heritability, population
structure, LD, and the number of individuals in the
training data affect the information from LD and from
genetic relationships used to predict GEBVs. The accu-
racy due to LD cannot be derived from a single gener-
ation, especially not by taking the difference between
the accuracy of GEBVs and the accuracy obtained by
TP–BLUP. For example, in generation 11 the accuracy
for Bayes-B1 was 0.69 and that for TP–BLUP was 0.53,
giving a difference in accuracy of 0.16.

As seen in Figure 3, the decline of accuracies in line 1
is steep, which is due to the decay of genetic relation-
ships. In line 2, on the other hand, the decline in
accuracy is gradual, because it does not capture genetic
relationship information, but only persisting LD in-
formation. Thus even without information from line 2,
modeling the decay of both causes would enable pre-
diction of the accuracy of GEBVs due to LD for any
generation in line 1. The linear model

ri ¼ x1idj 1 x2ir
LD
j 1 ei ð6Þ

was used to estimate the accuracy due to LD for
generation j, rLD

j , and the difference between the accu-
racy of GEBVs and the accuracy due to LD in gen-
eration j, dj, where ri is the accuracy of GEBVs for
generation i and x1i is the accuracy from TP–BLUP
in generation i divided by the accuracy from TP–BLUP
for generation j. Thus, in doing so, x1i models the slope
of accuracies from TP–BLUP from generation j to
generation i as seen in Figure 3. x2i is ð1� uÞni , where
u is the average recombination frequency between
markers and QTL (here 0.005) and ni is the number
of generations between generations i and j. Thus, x2i

models the decay in accuracy due to recombinations
from generation j to generation i. Note that this decay
occurs not only in generations following the generation
of training, but also in earlier generations, because the
LD pattern of individuals in the training data is used to
estimate marker effects. Finally, ei is the residual term.
Generation j can be any generation for which the
accuracy of GEBVs and the accuracy of TP–BLUP were
observed.

To demonstrate the regression model in (6), x1i and
x2i are given in Table 5 for generations 6–10 of line 1.
The accuracies of GEBVs from Bayes-B1 were first used
to estimate both the accuracy due to LD for generation
10, rLD

10 , and the difference between the accuracy of
GEBVs and the accuracy due to LD, d10. These estimates
were used to predict accuracies of GEBVs, accuracies
due to LD, and the difference between both for gen-
erations 6–9 (Table 5). The R2-value of the fitted model
was .0.99.

The same regression model was also applied to FR–
LS, RR–BLUP, and Bayes-B2. The estimated accuracy
due to LD in generation 10 (generation with trait data)
was then multiplied by 1 � u ¼ 0.995 to predict the ac-
curacy due to LD in the offspring generation (Table 6).

The predicted accuracies due to LD are only slightly
lower than the accuracies due to LD obtained earlier
(Table 4). A part of the difference might be caused by
genetic relationships, which are still present to a small
extent in generation 20 of line 1. A better approxima-
tion can be achieved by using more ancestor genera-
tions in the model (results not shown here).

The accuracies of GEBVs due to LD in both Tables 4
and 6 can be used to validate methods to predict GEBVs.
Clearly, Bayes-B outperformed FR–LS and especially
RR–BLUP. FR–LS was implemented here as a simple
forward stepwise selection. Optimization of the model
selection in FR–LS may further improve the accuracy of
this method.

To show how genetic relationships affect accuracies of
GEBVs and to derive the accuracy due to LD, no selec-
tion on GEBVs was applied here. In reality, however,

TABLE 5

Predicted accuracy of GEBVs (r̂), predicted accuracy due to
LD (r̂LD), and predicted difference (d̂) between accuracy of
GEBVs and accuracy due to LD in generations 6–10 using
the accuracies of generations 6–10 from Bayes-B1 (r), the
accuracies obtained by TP–BLUP divided by the accuracy

of TP–BLUP in generation 10 (x1), and the decay of
LD at a recombination rate of 0.005 (x2)

Generation r̂ r x1 x2 d̂ r̂LD

6 0.603 0.610 0.232 0.980 0.049 0.553
7 0.627 0.625 0.330 0.985 0.071 0.556
8 0.657 0.653 0.458 0.990 0.098 0.559
9 0.692 0.688 0.611 0.995 0.131 0.561
10 0.779 0.782 1.000 1.000 0.214 0.564

TABLE 6

Predicted accuracy of GEBVs (r̂), predicted accuracy due to
LD (r̂LD), and predicted difference (d̂) between accuracy of

GEBVs and accuracy due to LD in generation 11 of line
1 for FR–LS, RR–BLUP, Bayes-B1, and Bayes-B2 using

the accuracies of generations 6–10, the accuracies
obtained by TP–BLUP divided by the accuracy of
TP–BLUP in generation 10, and the decay of LD

at a recombination rate of 0.005

FR–LS RR–BLUP Bayes-B1 Bayes-B2

r̂ 0.624 0.657 0.711 0.675
d̂ 0.121 0.254 0.149 0.120
r̂LD 0.503 0.403 0.561 0.556
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GEBVs will be used for selection and thus accuracies in
generations following the training generation will be
different from those shown here. The effect of selection
on the accuracy of GEBVs will be analyzed in further
studies.

In practical applications, an offspring generation
might not be available when marker effects are esti-
mated. Thus, either genotyped individuals from pre-
vious generations or cross-validation will be used. As
shown in the results, individuals that are most distant
to individuals in the training data best approximate the
accuracy due to LD. Furthermore, when using cross-
validation, one has to be aware that GEBVs of individ-
uals with progeny in the training data can have a high
accuracy only due to genetic relationships. In contrast,
the accuracies for individuals without direct descend-
ants in the training data or with a small number of
progeny in the training data are much less affected by
genetic relationships when the number of markers is
not sufficient to approximate genetic relationships
accurately. In the future, however, more markers will
be fitted and thus the genetic relationships of those
individuals might be approximated better. As seen with
Bayes-B2, it is possible to obtain a better estimate of the
accuracy due to LD by decreasing the probability of a
nonzero variance. Another possibility is to fit a poly-
genic effect, which will be analyzed in further studies.

In poultry and swine breeding, lines may be available
that originate from the same population only a few
generations ago. In such cases, it is possible to estimate
marker effects in one line and to validate the accuracy of
GEBVs due to LD in another line. This accuracy is a
lower limit of the accuracy in the line used to estimate
marker effects, because the LD patterns are expected to
differ between both lines due to recombinations that
occurred since the separation. However, the accuracy
of GEBVs can also be reduced due to gene-by-gene
interactions and genotype–environment interactions.

Conclusions: The accuracy of GEBVs can result in a
large part from genetic relationships captured by
markers. In general, this is true for all methods that
estimate marker effects for prediction of GEBVs. How-
ever, the impact of genetic relationships on the accuracy
of GEBVs was greatest for RR–BLUP. As a result, to
validate the potential to predict GEBVs with high
accuracy for several generations following marker esti-

mation, it is not sufficient to analyze the accuracy from
only a single generation. Accuracies of GEBVs and of
TP–BLUP from several generations can be used to esti-
mate the accuracy of GEBVs due to LD as shown in the
discussion.

From the accuracies due to LD, we can conclude that
Bayes-B is the method of choice to estimate marker
effects, whereas RR–BLUP cannot be recommended.
FR–LS might be an alternative to Bayes-B and should
be analyzed further.
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