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ABSTRACT

Functional mapping has emerged as a powerful tool for mapping quantitative trait loci (QTL) that
control developmental patterns of complex dynamic traits. Original functional mapping has been
constructed within the context of simple interval mapping, without consideration of separate multiple
linked QTL for a dynamic trait. In this article, we present a statistical framework for mapping QTL that
affect dynamic traits by capitalizing on the strengths of functional mapping and composite interval
mapping. Within this so-called composite functional-mapping framework, functional mapping models the
time-dependent genetic effects of a QTL tested within a marker interval using a biologically meaningful
parametric function, whereas composite interval mapping models the time-dependent genetic effects of
the markers outside the test interval to control the genome background using a flexible nonparametric
approach based on Legendre polynomials. Such a semiparametric framework was formulated by a
maximum-likelihood model and implemented with the EM algorithm, allowing for the estimation and the
test of the mathematical parameters that define the QTL effects and the regression coefficients of the
Legendre polynomials that describe the marker effects. Simulation studies were performed to investigate
the statistical behavior of composite functional mapping and compare its advantage in separating multiple
linked QTL as compared to functional mapping. We used the new mapping approach to analyze a genetic
mapping example in rice, leading to the identification of multiple QTL, some of which are linked on the
same chromosome, that control the developmental trajectory of leaf age.

EVERY biological trait experiences the process of
formation and development. For this reason, to

better understand the developmental and genetic ma-
chinery underlying trait formation, the trait should
be repeatedly observed at multiple time points during
development and the temporal pattern of genetic con-
trol should be compared across different stages of
development. Genetic mapping based on molecular
linkage maps has been proposed to locate and identify
quantitative trait loci (QTL) that affect a complex trait
observed at a fixed time point in development (Lander

and Botstein 1989). Many important subsequent
methodological developments for QTL mapping have
been available in the literature (e.g., Jansen and Stam

1994; Zeng 1994; Lynch and Walsh 1998; Kao et al.
1999; Sen and Churchill 2001; Wang et al. 2005).
Many of these methods have been instrumental for the
identification of QTL in a variety of plants and animals
and in humans (Frary et al. 2000; Mackay 2001; C. B.
Li et al. 2006; Weiss et al. 2006).

More recently, a series of statistical models, called func-
tional mapping, have been developed to map dynamic
QTL for a quantitative trait (Ma et al. 2002; Wu et al.
2003, 2004a,b,c; reviewed in Wu and Lin 2006). Func-
tional mapping integrates mathematical aspects of a
biological process into a QTL mapping framework con-
structed by mixture models. Its fundamental idea orig-
inates from the rationale that any biological development
follows a universal law that can be described by a math-
ematical function. For example, growth, i.e., the increase
of size, volume, or mass as a function of time, can be
described by a logistic curve that is derived from fun-
damental biophysical and physiological principles (West

et al. 2001). Aside from its biological relevance, func-
tional mapping is statistically sensible by capitalizing
on the information about the autocorrelation of errors
among different time points in development.

Although the merits of functional mapping have been
recognized in mapping development-related QTL for
several examples (Zhao et al. 2004b,c), its construction
within the context of simple interval mapping prevents
it from the separation of multiple linked QTL that
jointly affect developmental patterns. Composite in-
terval mapping, advocated independently by Jansen
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and Stam (1994) and Zeng (1994), overcomes the low-
resolution limitation of interval mapping. Composite
interval mapping integrates the interval test of a pu-
tative QTL within a given marker region and partial re-
gression analysis of the markers outside the test interval
as cofactors, and it has theoretically proved advanta-
geous for the detection and separation of linked QTL
on the same chromosome (Zeng 1993). Thus far, the
integration of functional mapping and composite inter-
val mapping to make use of their respective advantages
has not been fully explored.

In composite interval mapping, the genetic effects of
the markers that do not bracket the putative QTL are fit
individually by a partial regression analysis. Such an
analysis allows for the separation of linked QTL that are
located at a similar region and, thus, greatly increases
the precision of QTL mapping (Zeng 1993, 1994;
Jansen and Stam 1994). However, the simple use of a
mathematical function to model the time-dependent
marker effects is not possible because this will need to
solve nonlinear equations that define developmental
trajectories for all the genotypes at each marker. Gao

and Yang (2006) attempted to use a nonparametric
approach based on Legendre polynomials to simulta-
neously model QTL effects and marker effects on a
dynamic trait within the context of composite interval
mapping. However, this approach does not take advan-
tage of functional mapping to gain access to and
visualization of biological relevance through the de-
ployment of mathematical functions.

In this article, we purport to develop a semiparamet-
ric approach for composite functional mapping, in
which nonparametric smoothing with the Legendre
function models the marker effects, while the effect of
the tested QTL is modeled by a parametric function.
Such a combination of parametric modeling of the QTL
effects and nonparametric modeling of the marker
effects preserves the biological relevance of functional
mapping and, meanwhile, improves the power of QTL
detection and the flexibility of the model. We imple-
ment a stationary covariance model (Ma et al. 2002) to
characterize the structure of the covariance matrix
among growth measured at different time points. The
statistical behavior of this semiparametric model is
investigated through simulations studies. The utility of
the model is validated by an example from a rice
molecular genetic project.

METHODS

Regression model: Our model is derived for an F2

population containing n individuals, initiated with two
inbred lines. A quantitative trait is measured at multiple
time points, say T, for all the individuals. Suppose there
is a quantitative trait locus (QTL) with genotypes QQ
(2), Qq (1), and qq (0) that controls the temporal ex-
pression of the trait in development. A genetic linkage

map constructed with molecular markers is used to lo-
cate the QTL for the trait. Assume that composite inter-
val mapping is based on m markers. We use a pair of
markers to directly estimate and test the QTL and, mean-
while, the other m � 2 markers to serve as cofactors
for the test.

According to the principle of composite interval
mapping (Zeng 1993, 1994), the phenotypic value of
the trait for individual i measured at time t, yi(t), affected
by the putative QTL, is expressed by a linear model,

yiðtÞ ¼mðtÞ1 x*
i aðtÞ1 z*

i bðtÞ1
Xm�2

k¼1

xikakðtÞ

1
Xm�2

k¼1

zikdkðtÞ1 eiðtÞ; ð1Þ

where m(t), a(t), and b(t) are the population mean and
the additive and dominant effects for the QTL at time t,
respectively; x*

i and z*
i are the indicator variables for

individual i that specify the QTL genotypes related to the
additive and dominant effects, respectively, which are

x*
i ¼

1 for QQ
0 for Qq
�1 for qq

z*
i ¼

0 for QQ or qq
1 for Qq;

�8<
: ð2Þ

ak(t) and dk(t) are the time-dependent additive and
dominant effects associated with marker k (except for
the interval constructed by the two markers); xik and zik

are the indicator variables that specify the additive and
dominant effects of marker k for individual i, respec-
tively, with similar forms indicated by Equation 2; and
ei(t) is the time-dependent residual error, normally
distributed as N(0, s2(t)). The covariance between the
residual errors at different time points t1 and t2 is
denoted as s(t1, t2). All the variances and covariances
form a (T 3 T) covariance matrix S.

Modeling time-dependent genetic effects: Func-
tional mapping uses a biologically meaningful mathe-
matical function to approximate the genotypic means
for an assumed QTL at different time points. If a growth
trait is considered, the mathematical function used can
be a logistic curve, expressed as

gjðtÞ ¼
aj

1 1 bj e
�rj t

; ð3Þ

for QTL genotype j ( j ¼ 2, 1, 0), where the set of
parameters (aj, bj, rj) defines the shape of the genotypic
curve. Thus, by estimating the three curve parameters,
the differences in genotypic means over time can be
estimated and tested. The time-dependent additive
(a(t)) and dominant effects (b(t)) of the QTL shown
in Equation 1 can be estimated by

aðtÞ ¼ 1

2
ðg2ðtÞ � g0ðtÞÞ

bðtÞ ¼ g1ðtÞ �
1

2
ðg2ðtÞ1 g0ðtÞÞ: ð4Þ
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In composite interval mapping, the markers outside the
test interval are used as cofactors for partial regression
analysis. Like the QTL effects, the additive and domi-
nant effects of each of these markers can be theoreti-
cally fit by logistic curves. But this will be unrealistic
because a number of nonlinear functions need to be
solved. We utilize a nonparametric approach to approx-
imate the time-dependent marker effects. The advan-
tage of a nonparametric approach lies in its flexibility
and, more importantly, the existence of closed-form
solutions for the marker effects. Yang et al. (2006) and
Gao and Yang (2006) used a Legendre polynomial to
model time-dependent genetic effects of a QTL and
discussed the utility of this approach.

In this study, Legendre polynomials are implemented
to model the genetic effects of individual markers. Let
Ls(t) ¼ (L0(t), L1(t), � � � , Ls(t)) be a Legendre poly-
nomial of order s, with a general form expressed as

LlðtÞ ¼
1

2l

Xl=2

r¼0

ð�1Þr ð2l � 2r Þ!
r !ðl � r Þ!ðl � 2r Þ! tl�2r ðl ¼ 0; 1; � � � ; sÞ;

where t ¼ �1 1 2ðt �minðtÞÞ=ðmaxðtÞ �minðtÞÞ with
min(t) and max(t) being the first and last time points,
respectively.

If the genetic effects of a QTL bracketed by a pair of
markers are fit by a parametric model and the genetic
effects of the remaining markers (k ¼ 1, � � � , m � 2) are
fit by Legendre polynomials of order s, the time-
dependent means at different QTL genotypes for in-
dividual i are approximated by

u2iðtÞ ¼ LsðtÞm9 1 aðtÞ1
Xm�2

k¼1

xikLsðtÞa9k 1
Xm�2

k¼1

zikLsðtÞd9k

u1iðtÞ ¼ LsðtÞm9 1 bðtÞ1
Xm�2

k¼1

xikLsðtÞa9k 1
Xm�2

k¼1

zikLsðtÞd9k

u0iðtÞ ¼ LsðtÞm9� aðtÞ �
Xm�2

k¼1

xikLsðtÞa9k 1
Xm�2

k¼1

zikLsðtÞd9k ;

ð5Þ

where m ¼ ðm0; m1; � � � ;msÞ; ak ¼ (ak0, ak1, � � � , aks), and
dk¼ (dk0, dk1, � � � , dks) are the base population mean and
the base additive and dominant effects for marker k as a
cofactor, respectively.

Combining the QTL and marker effects in composite
functional mapping, time-dependent genotypic means
for different QTL genotypes are modeled by Qu ¼
ðfaj ; bj ; rjg2

j¼0; m; fak ;dkgm�2
k¼1 ) if a logistic curve is con-

sidered. Any other curve parameters can be included in
Qu; depending on the nature of a mathematical function.

Modeling the covariance matrix: A number of ap-
proaches have been proposed to model the covariance
structure of serial measurements. A commonly used ap-
proach for structuring the covariance is the first-orderauto-
regressive ½AR(1)� model (Verbeke and Molenberghs

2000). One advantage of using the AR(1) model is that it
provides a general expression for calculating the de-
terminant and inverse of the matrix for any number of
time points measured. But it assumes variance statio-
narity and correlation stationarity; i.e., the residual vari-
ance at different time points is the same, expressed as s2,
and the correlation between two different time points
t1 and t2 decreases exponentially in r with time lag,
expressed as corr(t1; t2Þ ¼ rjt1�t2j: If the AR(1) model is
used, the parameters that model the structure of Si are
arrayed by Vv ¼ ðr; s2Þ: In practice, the AR(1) model
may be limited because its underlying two assumptions
are violated.

Two approaches can be used to overcome the
heteroscedastic problem of the residual variance for a
practical data set. First, the time-dependent residual
variance is directly modeled by a parametric function of
time (e.g., Pletcher and Geyer 1999). The disadvan-
tage of this approach is that it needs to implement
additional parameters for characterizing the time-de-
pendent change of the variance. Second, Carroll and
Ruppert’s (1984) transform-both-sides (TBS) model
can be embedded into the functional finite mixture
model (Wu et al. 2004b). This approach does not need
any more parameters. As indicated, by empirical anal-
yses with real examples and computer simulations, the
TBS-based model can increase the precision of param-
eter estimation and computational efficiency. Espe-
cially, the TBS model preserves original biological
means of the curve parameters and, thus, increases its
biological relevance, although statistical analyses are
based on transformed data.

Likelihood and computational algorithm: The likeli-
hood function of the observed data including the
phenotypic trait, yi ¼ (yi(1), � � � , yi(T)), and markers, M,
is expressed, within the context of a mixture model, as

Lðv; Qu; Qv j y; MÞ ¼
Yn
i¼1

X2

j¼0

vj ji fjðyi ; Qu; QvÞ
" #

; ð6Þ

where the unknown parameters include two parts, v ¼
(vjji) and ðQu; QvÞ: In statistics, the parameters vjji
determine the proportions of different mixture nor-
mals and actually reflect the segregation of the QTL in
the population, which can be inferred in terms of the
recombination fractions among the markers and QTL.
For an F2 mapping population, n progeny can be
classified into nine different groups on the basis of
known genotypes of a pair of markers. Thus, in each of
such marker–genotype groups, the mixture proportion
or frequency of a joint QTL genotype is progeny specific
and can be expressed as the conditional probability of
QTL genotype j for progeny i given its marker genotype
(Lynch and Walsh 1998; Wu et al. 2007), symbolized
by vjji. The parameters ðQu; QvÞ determine the QTL
genotype-specific distribution density fjðyi ; Qu; QvÞ
that is assumed to be multivariate normal, expressed as
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fjðyi ; Qu; QvÞ

¼ 1

ð2pÞT=2 jSi j 1=2
exp �1

2
ðyi � ujiÞ9S�1

i ðyi � ujiÞ
� �

;

ð7Þ

where the mean vector uji ¼ (uji(1), � � � , uji(T)) and
covariance matrix Si for individual i are modeled by Qu

and Qv ; respectively. The mean vector and covariance
matrix are considered to be individual specific, because
different individuals may receive different patterns of
measurement, e.g., different time points and unevenly
spaced time intervals.

The EM algorithm is implemented to obtain the
maximum-likelihood estimates (MLEs) of unknown
parameters, ðQu; QvÞ; for the likelihood expressed by
Equation 6. In the E step, the posterior probabilities of
each QTL genotype for individual i are calculated by

Vj ji ¼
vj ji fjðyi ; Qu; QvÞP2

j9¼0 vj9ji fj9ðyi ; Qu; QvÞ
:

In the M step, the log-likelihood equations are derived
in terms of Vjji to estimate the parameters associated
with the QTL and marker effects and the covariance
matrix. It is possible to derive the closed forms for the
base population means and base additive and dominant
effects for h ¼ m � 2 markers as cofactors, which are
expressed as

m

a1

d1

..

.

ah

dh

2
6666666664

3
7777777775
¼

Pn
i¼1 L9sS

�1
i Ls

Pn
i¼1 xi1L9sS

�1
i Ls

Pn
i¼1 zi1L9sS

�1
i LsPn

i¼1 xi1L9sS
�1
i Ls

Pn
i¼1 x2

i1L9sS
�1
i Ls 0Pn

i¼1 zi1L9sS
�1
i Ls 0

Pn
i¼1 z2

i1L9sS
�1
i Ls

..

. ..
. ..

.

Pn
i¼1 xihL9sS

�1
i Ls

Pn
i¼1 xi1xihL9sS

�1
i Ls

Pn
i¼1 zi1xihL9sS

�1
i LsPn

i¼1 zihL9sS
�1
i Ls

Pn
i¼1 xi1zihL9sS

�1
i Ls

Pn
i¼1 zi1zihL9sS

�1
i Ls

2
666666666664

� � �
Pn

i¼1 xihL9sS
�1
i Ls

Pn
i¼1 zihL9sS

�1
i Ls

� � �
Pn

i¼1 xi1xihL9sS
�1
i Ls

Pn
i¼1 xi1zihL9sS

�1
i Ls

� � �
Pn

i¼1 zi1xihL9sS
�1
i Ls

Pn
i¼1 zi1zihL9sS

�1
i Ls

1 ..
. ..

.

� � �
Pn

i¼1 x2
ihL9sS

�1
i Ls 0

� � � 0
Pn

i¼1 z2
ihL9sS

�1
i Ls

3
77777777775

3

Pn
i¼1 xi1L9sS

�1
i yiPn

i¼1 xi1L9sS
�1
i ½yi � ðV2ji �V0jiÞLsa�V1jiLsb�Pn

i¼1 zi1L9sS
�1
i ½yi � ðV2ji �V0jiÞLsa�V1jiLsb�

..

.Pn
i¼1 xihL9sS

�1
i ½yi � ðV2ji �V0jiÞLsa�V1jiLsb�Pn

i¼1 zihL9sS
�1
i ½yi � ðV2ji �V0jiÞLsa�V1jiLsb�

2
6666666664

3
7777777775

with Ls ¼ (L9s(1), � � � , L9s(T)), a ¼ (a(1), � � � , a(T)), and
b ¼ (b(1), � � � , b(T)).

It is difficult to derive the closed forms for the
parameters that are used to model the time-dependent
QTL effects and covariance matrix. These parameters
can be estimated by implementing the simplex or
Newton–Raphson algorithm in the estimation process
with the EM algorithm (Zhao et al. 2004a; H. Y. Li et al.
2006). Modeled by the AR(1) (Ma et al. 2002), the closed
forms for estimating the determinant and inverse of the
covariance matrix can be derived, which will increase
the computational efficiency of functional mapping.

Hypothesis tests: One of the most significant advan-
tages of functional mapping is that it can ask and address
biologically meaningful questions at the interplay be-
tween gene actions and trait dynamics by formulating a
series of hypothesis tests. Wu et al. (2004a); described sev-
eral general hypothesis tests for different purposes. Al-
though all these general tests can be directly used in this
study, we here propose the test about the existence of a
QTL that affects the process and shape of a dynamic
trait.

Testing whether a specific QTL is associated with
a dynamic trait is a first step toward the understanding
of the genetic architecture of the trait. The genetic
control over the entire dynamic process of a trait can be
tested by formulating the following hypotheses:

H0: ða2; b2; r2Þ ¼ ða1; b1; r1Þ ¼ ða0; b0; r0Þ[ ða; b; r Þ
H1: at least one of the above equalities does not hold:

ð8Þ

H0 states that there are no QTL affecting growth curves
(the reduced model), whereas H1 proposes that such
QTL do exist (the full model). The test statistic for
testing the hypotheses (8) is calculated as the log-
likelihood ratio of the reduced to the full model,

LR ¼ �2½ln LðQ̃u; Q̃v j y; M�2Þ
� ln LðQ̂u; Q̂v ; v̂ j y; MÞ�; ð9Þ

where the tildes and circumflexes denote the MLEs of
the unknown parameters under H0 and H1, respectively,
and M�2 is the marker information excluding the two
tested markers. The critical value of the likelihood-ratio
(LR) test statistic can be determined by estimating its
behavior under the null hypothesis for a whole genome.
An empirical approach based on permutation tests by
destroying the relationships between the phenotypic
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values and tested marker-interval genotypes (Doerge

and Churchill 1996; Zou et al. 2004; Jin et al. 2007) is
usually used to determine the critical threshold of the
LR for interval mapping. But this approach cannot be
directly used for composite interval mapping in which
additional markers (excluding the two tested markers)
serve as cofactors to be associated with the phenotypic
values. Zeng (1994) proposed a simulation approach to
examine the distribution of the LR values under the null
hypothesis. The phenotypic values simulated under the
null hypothesis should reflect the effects of the markers
as cofactors. This can be done by assuming that the time-
dependent phenotypic values follow a multivariate nor-
mal distribution with mean vector

LsðtÞm̂9 1
Xm�2

k¼1

xikLsðtÞâk9 1
Xm�2

k¼1

zikLsðtÞd̂k9

and the covariance matrix with the AR(1) structure. The
threshold for the tested interval is estimated as the 5%
percentile of the LR values from 1000 simulation
replicates. A genomewide critical threshold is deter-
mined by scanning through the entire linkage map,
although this process is computationally extensive.

MONTE CARLO SIMULATION

We carried out simulation studies to investigate the
statistical properties of functional mapping integrated
with the idea of composite interval mapping. An F2

population with 150 individuals was simulated for a
chromosome segment of length 120 cM covered by 13
evenly spaced markers (10 cM per interval). Four QTL
were placed at positions 15 (1), 36 (2), 62 (3), and 104
cM (4) from the left end of the chromosome. Three
genotypes at a QTL, Q rQ r, Q r qr, and qrqr (r ¼ 1, � � � , 4),
were assumed to follow a logistic growth curve, as
described by Equation 5, with different sets of given
growth parameters, from which the time-dependent
additive and dominance effects of the QTL are calcu-
lated with Equation 6. By defining an overall mean
logistic curve (u(t)), 81 genotypic mean curves contrib-
uted by the four assumed QTL are expressed as

u2222ðtÞ ¼ uðtÞ1 a1ðtÞ1 a2ðtÞ1 a3ðtÞ1 a4ðtÞ
for Q1Q1Q2Q2Q3Q3Q4Q4;

u2221ðtÞ ¼ uðtÞ1 a1ðtÞ1 a2ðtÞ1 a3ðtÞ1 b4ðtÞ
for Q1Q1Q2Q2Q3Q3Q4q4;

..

.

u1111ðtÞ ¼ uðtÞ1 b1ðtÞ1 b2ðtÞ1 b3ðtÞ1 b4ðtÞ
for Q1q1Q2q2Q3q3Q4q4;

..

.

u0000ðtÞ ¼ uðtÞ � a1ðtÞ � a2ðtÞ � a3ðtÞ � a4ðtÞ
for q1q1q2q2q3q3q4q4;

under the assumption that there is no epistasis among
the four QTL, where the time-dependent additive
(ar(t)) and dominant effects (br(t)) at the rth QTL are
specified by Equation 6. Assume that the F2 individuals
are measured for a dynamic trait at eight even-spaced
time points. The time-dependent phenotypic values of
the trait were simulated to follow a multivariate normal
distribution with the four-QTL genotypic mean vector
and the residual covariance matrix fit by the AR(1)
model. The values of the variance s2 and correlation r

were empirically determined, assuring a modest herita-
bility for the dynamic trait at the middle of the
measurement period. The simulated phenotypic data
for individual F2 progeny may also be logistic curves
because of the underlying logistic mean curve.

The assumed phenotypic and marker data were
analyzed by composite functional mapping. To obtain
the best fit of the data, the optimal number of markers
involved in the partial regression analysis of composite
functional mapping and the optimal order of the
Legendre polynomial to model the marker effects
should be determined. We used the Bayesian informa-
tion criterion (BIC) (Schwarz 1978) as the model
selection criterion of the optimal marker number and
polynomial order. The BIC is defined as

BIC ¼ �2 ln LðQ̂u; Q̂v j rÞ1 dimensionðQu ; Qv j r ÞlnðnÞ;
where Q̂u and Q̂v are the MLEs of parameters under the
Legendre polynomial of order r, dimension(Qu; Qv j r)
represents the number of independent parameters
under order r, and n is the total number of observations
at a particular time point. The optimal model is one that
displays the minimum BIC value.

An important issue for composite interval mapping is
to determine the optimal number and combination of
markers as cofactors on the basis of model selection cri-
teria. We empirically chose different numbers of markers,
zero, three, four, five, and six, that bracket the marker
interval containing the tested QTL, as the cofactors of
partial regression analysis, and then evaluated each of
these choices with the BIC values calculated for different
orders of the Legendre polynomial (Table 1). At a given
number of cofactors, order 4 gives the minimum BIC
value, whereas for a given order, five cofactors best fit the
data. Overall, the Legendre function of order 4 and five
markers as cofactors are incorporated into composite
functional mapping for this simulated data set. For the
test of the presence of a QTL, we simulated 500 additional
samples under the null model to obtain the empirical
critical values of the LR test statistic. Under the alternative
model, the simulation was replicated 100 times to
calculate empirical power by counting the number of
runs in which the test statistics were greater than the
critical values. Calculating the averaged LRs at every
scanning point over the segment of chromosome, we
depicted the statistic profiles for the five models with the
number of cofactors, zero, three, four, five, and six.
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Composite functional mapping without cofactor cor-
responds to traditional functional mapping, which de-
tects one flat peak, plus a small peak, on the whole
chromosome segment (Figure 1). This indicates that the
traditional approach has no power to separate individual
QTL on a chromosome. When markers as cofactors are
involved in composite functional mapping under the
Legendre polynomial of order 4, more peaks above the
critical threshold are detected, suggesting the detection
of more QTL. When three cofactors are involved, four
QTL can be identified, but the first QTL is not correctly
located. The involvement of four cofactors leads to the
detection of five QTL, with one between the second and
the third QTL being spurious. When the number of co-

factors increases to five, all of the four assumed QTL can
be accurately detected. The further increase of cofactor
number to six gives a similar LR profile to that for four
cofactors. On the basis of the profile analysis (Figure 1),
the best number of markers as cofactors in composite
functional mapping is consistent with the BIC result.

Table 2 tabulates the MLEs of the QTL positions and
the power of QTL detection for the simulated data set
obtained by traditional and composite functional map-
ping. Traditional functional mapping fails to detect the
first and third QTL, whereas composite functional
mapping can correctly detect all the assumed QTL.
Because the first three QTL are relatively clustered, far
from the fourth QTL, they were detected as a ‘‘big’’
one by traditional functional mapping with 100%
power. These three clustered QTL can be individually
detected by composite functional mapping although
the power of detecting each QTL is a little bit reduced.
However, for an unlinked QTL (i.e., fourth QTL), com-
posite functional mapping displays much more detec-
tion power than traditional functional mapping (Table
2). The growth curves for each QTL genotype were es-
timated under the optimal order of the Legendre
polynomial (4) and optimal number of cofactors (five)
(Table 3). Basically, all these parameters can be accu-
rately estimated, each with reasonably high estimation
precision.

Additional simulation studies were carried out to
investigate the effects of different heritabilities and
sample sizes on the precision of parameter estimation

TABLE 1

BIC values under different models of composite functional
mapping by choosing zero, three, four, five, and six

markers as cofactors

Order of Legendre polynomial

Model 0 1 2 3 4 5

C0 3417.4
C3 3380.2 3285.2 3139.5 3088.4 3096.1
C4 3361.8 3270.2 3098.6 3023.4 3031.6
C5 3351.6 3261.0 3088.9 3012.6 3023.1
C6 3354.7 3265.3 3091.4 3014.4 3026.9

Different orders of the Legendre polynomial are consid-
ered under each model.

Figure 1.—The profiles of the LR values across
a simulated linkage group under different mod-
els of composite functional mapping by choosing
zero, three, four, five, and six markers as cofac-
tors. The vertical dashed lines indicate the loca-
tions of four hypothesized QTL. The critical
thresholds calculated are indicated as horizonal
lines.
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and the power of QTL detection. Because all the results
are expected, they are not presented here. The ex-
pected results are that the behavior of the model is
better with increased heritability and sample size. It
seems that the heritability and sample size interact to
influence the statistical performance of the model.

EXAMPLE

Weng et al. (2000) reported a doubled-haploid (DH)
population with 111 lines generated by crossing an

indica rice variety Gui-630 and a japonica rice variety
Taiwanjing. A linkage map composed of 175 RFLP
markers was constructed for the DH population, cover-
ing a total length of 1225 cM (Figure 2). This DH
population was grown with replicates in a field trial
(Zhou et al. 2001). For each plant, the number of
developed leaves on the main stem was counted, and the
length of the developing leaf was measured every 5–7
days from day 30 after sowing until the full development
of the leaf. These measured data were used to estimate
the leaf age of a plant (y), using

y ¼Number of developed leaves

1
Length of the developing leaf

Final length of the developing leaf
:

Zhou et al. (2001) showed that the growth of leaf age of
a plant obeys a parabolic curve with time, described by
a function

y ¼ c 1 bat ða . 0; 0 , b , 1; c . 0Þ: ð10Þ

For a DH population, there are two homozygous geno-
types at a QTL, denoted by QQ (2) and qq (0). Thus, by
testing the differences of curve parameters between the
two QTL genotypes, we can estimate whether and how a
QTL affects the growth trajectories of leaf age in the DH
population. In composite functional mapping, the
equation of leaf age growth was incorporated to specify
the QTL effect, whereas the Legendre polynomial was
used to model the marker effects by choosing different
numbers of markers (three, four, five, and six), as cofac-
tors, that are close to the test interval of QTL. The best
number of cofactors is determined under different

TABLE 3

The MLEs of genotypic curve parameters at the four assumed QTL and sampling errors (in parentheses) of the estimates by
composite functional mapping under the optimal order of the Legendre polynomial (4) and the optimal number of

cofactors (five)

Q rQ r Q rq r qrqr

QTL a2 b2 r2 a1 b1 r1 a0 b0 r0

1
True 41.32 3.12 0.86 38.52 3.05 0.93 43.04 4.65 1.12
MLE 39.82 4.31 0.83 38.48 4.15 0.89 42.33 5.78 1.34

(1.03) (0.69) (0.05) (0.92) (0.28) (0.08) (0.98) (0.43) (0.02)
2

True 41.50 3.86 1.00 40.99 3.70 1.17 42.96 4.84 1.40
MLE 38.75 6.02 0.79 40.74 4.03 1.00 44.25 5.15 1.39

(0.69) (1.15) (0.04) (0.56) (0.51) (0.06) (0.62) (0.25) (0.05)
3

True 38.32 3.19 1.05 37.86 3.48 0.99 42.82 4.67 1.49
MLE 38.11 3.44 0.79 37.13 4.29 0.82 40.66 4.84 (0.04)

(0.97) (0.35) (0.05) (0.65) (0.97) (0.09) (0.94) (0.35) (0.04)
4

True 42.63 3.42 1.45 41.43 4.17 1.20 38.77 3.78 0.70
MLE 42.74 3.25 1.16 40.30 3.69 0.95 36.11 4.58 0.75

(0.49) (0.46) (0.08) (1.00) (0.60) (0.11) (0.680) (0.88) (0.06)

TABLE 2

The MLEs of the QTL positions, sampling errors (in
parentheses) of the MLEs, and power to detect significant

QTL by traditional functional mapping (FM) and composite
functional mapping (CFM) under the optimal order

of the Legendre polynomial (4) and the optimal
number of cofactors (five)

QTL

Model 1 2 3 4

True position 15 36 62 104

FM
MLE — 33.28 — 101.15

— (3.12) — (15.78)
95% power — 100 — 81

CFM
MLE 15.10 34.97 67.89 103.78

(3.38) (4.43) (4.86) (5.41)
95% power 83 86 91 96
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orders of the Legendre polynomial using the BIC crite-
rion. It is found that the optimal number of cofactors
and optimal order of the polynomial are 4 and 2,
respectively, that best explain the rice data. The critical
threshold at the 5% significance level for declaring the
presence of QTL for the growth trajectories of leaf age
was calculated by simulation studies with 500 replicates.

Figure 3 illustrates the profile of the LR values for
testing the presence of QTL across the entire rice
genome. Significant QTL for leaf age growth were
detected on chromosomes 1, 3, 6, 10, and 11 with
composite functional mapping. It is interesting to note
that composite functional mapping can detect three
different QTL on chromosome 3, as indicated by three

Figure 2.—Linkage map in rice constructed of 175 RFLP markers (Weng et al. 2000).
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steep peaks of the LR profile (Figure 3). The MLEs of
curve parameters for different QTL genotypes and the
parameters that model the residual covariance matrix,
along with the marker intervals of the detected QTL,
were tabulated in Table 4. The estimates of the standard
errors of the MLEs obtained by a bootstrapping ap-
proach suggest that these curve and matrix-structuring
parameters can be precisely estimated. The growth
curves of QTL genotypes at each QTL (Figure 4) drawn
with the estimates of curve parameters suggest that all
the QTL detected are expressed increasingly with time,
but display different directions of allelic effects. Favor-
able alleles that increase leaf age growth are contributed
by parent Gui-630 for the three QTL detected on
chromosomes 1, 5, and 6 and by parent Taiwanjing for
the three QTL on chromosome 3 and one QTL on
chromosome 7 (Figure 4).

The same data set was analyzed by traditional func-
tional mapping. As compared to composite functional
mapping, the traditional model is found to have less
power to detect significant QTL. For example, it detects
four QTL on chromosomes 1, 3, 10, and 11, which are all
detected by composite functional mapping, but it fails
to detect the QTL on chromosome 6 detected by

composite functional mapping (Figure 2). Also, com-
posite functional mapping can simultaneously detect
three linked QTL on the same chromosome, whereas
the traditional approach confounds the effects of
different linked QTL. The two QTL, bracketed by
marker intervals C6C–C814A and RZ993–C825B and
separated by �25 cM, can be detected individually by
composite functional mapping.

DISCUSSION

The genetic architecture of complex traits can be well
understood by incorporating their developmental fea-
tures. Functional mapping that integrates genetics,
statistics, and developmental biology has proven to be
useful for deciphering the ontogenetic development of
the genetic control of a complex trait (Wu and Lin

2006). Original models for functional mapping have
been based on simple interval mapping of QTL in which
two flanking markers that bracket a QTL are assumed to
be independent of all the markers outside the marker
interval tested. Although such interval mapping has
power for QTL mapping, it is often limited when more
than one QTL is located on the same chromosome.

Figure 3.—The profiles of the log-likelihood
ratios (LR) between the full and the reduced
(no QTL) model estimated from composite func-
tional mapping (solid curves) and functional
mapping models (shaded curves) for leaf age
growth trajectories across the entire genome.
The genomic positions corresponding to the
peaks of the curves are the MLEs of the QTL po-
sitions. Tick marks on the x-axis represent the po-
sitions of markers on the linkage group, whose
names are given in Figure 1. The threshold values
for claiming the existence of a QTL are given as
the horizonal lines. To save computational time,
the threshold was determined on the basis of
those chromosomes that possibly contain signifi-
cant QTL in terms of high LR peaks.
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Zeng (1993, 1994) and Jansen and Stam (1994) pro-
posed a joint approach for simultaneously modeling the
two flanking markers for testing the existence of a QTL
by interval mapping and the markers outside the inter-
val by a partial regression analysis. This so-called com-

posite interval mapping, powerful for the separation of
multiple linked QTL, has been instrumental in the
genetic mapping of complex traits (Zeng et al. 2000).

In this article, we have integrated the principles of
functional mapping and composite interval mapping

Figure 4.—Two growth curves each pre-
senting a group of genotypes, QQ (solid
curves) and qq (shaded curves), at each
of the seven QTL, detected by composite
functional mapping on chromosomes 1,
3, 6, 10, and 11. Alleles Q and q are in-
herited for the three QTL (1, 5, and 6) de-
tected on chromosomes 1, 6, and 10 from
parents Gui-630 and Taiwanjing, respec-
tively. The inverse is true for the four
QTL (2, 3, 4, and 7) detected on chromo-
somes 3 and 11.

TABLE 4

The MLEs of curve parameters and sampling errors (in parentheses) of the estimates for the QTL detected on different
chromosomes by composite functional mapping

Position QQ qq Residual

QTL Chromosome Marker interval a2 b2 c2 a0 b0 c0 s2 r

1 1 C178–RZ776 1.22 0.55 5.69 0.84 0.61 5.48 0.97 0.13
(0.09) (0.01) (0.13) (0.07) (0.01) (0.08) (0.01) (0.02)

2 3 C6C–C814A 0.83 0.60 5.10 1.06 0.58 5.84 0.98 0.30
(0.33) (0.04) (0.11) (0.21) (0.03) (0.11) (0.02) (0.02)

3 3 RZ993–C825B 0.90 0.58 5.29 1.06 0.58 5.71 0.99 0.39
(0.07) (0.01) (0.09) (0.11) (0.01) (0.16) (0.02) (0.04)

4 3 C1032A–RZ142 0.85 0.60 5.33 1.19 0.55 5.74 0.98 0.25
(0.09) (0.02) (0.13) (0.11) (0.01) (0.18) (0.02) (0.03)

5 6 R276–R2071 1.00 0.60 6.03 1.02 0.55 4.91 0.99 0.37
(0.28) (0.04) (0.17) (0.29) (0.04) (0.15) (0.02) (0.02)

6 10 RZ892–RZ561 1.10 0.57 5.80 1.02 0.58 5.29 0.98 0.28
(0.14) (0.02) (0.18) (0.07) (0.01) (0.10) (0.02) (0.02)

7 11 C189–C6A 0.96 0.58 5.35 1.28 0.54 5.53 0.98 0.33
(0.06) (0.01) (0.08) (0.10) (0.01) (0.14) (0.03) (0.02)
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within a unifying framework for QTL mapping, aimed at
increasing the resolution of multiple QTL on the same
region of a chromosome. The new model allows us to
approximate the ontogenetic changes of the genetic
effects triggered by a QTL and the markers outside the
test interval. Because many biological processes, such as
growth, follow a particular pattern of development
(West et al. 2001), the ontogenetic control of a QTL
can be mathematically described and, thereby, tested by
estimating the parameters that define a biological pro-
cess (Ma et al. 2002). If a parametric approach is
implemented to model the time-dependent marker
effects, this would lead to tremendous computational
burden. We instead fit marker effects by capitalizing on
the linear property of a Legendre polynomial. In fact,
the Legendre polynomial is flexible in the modeling of
various forms of curves and has been used to model
genetic and environmental effects in quantitative ge-
netic studies (Kirkpatrick and Heckman 1989;
Schaeffer 2004; Meyer 2005a,b) and QTL mapping
(Gao and Yang 2006; Yang et al. 2006). One important
aspect of functional mapping is to model the structure
of the covariance matrix by a stationary or nonstationary
approach. Because of its computational simplicity,
AR(1) is advantageous for structuring the covariance
although it needs the variance and covariance statio-
narity assumptions. The TBS-based model can relax the
assumption of variance stationarity (Wu et al. 2004b),
but it has not resolved the covariance stationarity issue
when embedded into the AR(1) model. A so-called
structured antedependence (SAD) model, advocated
by Zimmerman and Núñez-Antón (2001), can be used
to simultaneously model the time-dependent changes
of and variance and correlation in the analysis of longi-
tudinal traits. The SAD model is found to display many
favorable properties (Zimmerman and Núñez-Antón

2001). More recently, Zhao et al. (2005) applied this
model to functional mapping and further explored its
robustness in modeling the covariance structure through
a comparison with the AR(1) model.

The advantage of our composite functional mapping
lies in the combination of biologically sensible functions
that enhance biological relevance of QTL detection and
the flexibility of a nonparametric approach that is
aimed at increasing the computational efficiency. The
model is used to analyze a published data set on the
growth of leaf age in rice (Zhou et al. 2001). As
compared to traditional functional mapping, the new
model has tremendous power to detect and separate
linked QTL located on the similar regions of a chromo-
some. The model has been found to be robust in that it
provides reasonable estimates of QTL effects and posi-
tions in a wide range of parameter space, as demon-
strated by simulation studies.

It is possible that our model can be modified in
several areas. First, a mathematical function is used to
model the ontogenetic change of genetic effects of a

QTL, considering that the trait studied undergoes a
certain developmental pattern. There may also be many
traits that do not follow a mathematical function. Yang

et al. (2006) used the Legendre polynomial to model the
time-dependent QTL effects. A similar idea was em-
ployed in Cui et al. (2006) and Lin and Wu (2006), who
incorporated the Legendre-based transformation to
model some particular stage of growth or one aspect
of a joint longitudinal and time-to-event analysis. Sec-
ond, composite functional mapping can be extended to
explore the effects of interaction between different
QTL (Kao and Zeng 2002) and QTL and environments
(Zhao et al. 2004b,c) on variation in a dynamic trait by
expanding Equation 4 to interaction terms with quan-
titative genetic theory (Lynch and Walsh 1998). Be-
yond composite interval mapping, Zeng and colleagues
(Kao and Zeng 1997; Kao et al. 1999) extended a so-
called multiple-interval mapping approach to a genome-
wide search for the distribution of QTL throughout
the genome. The integration of functional mapping
and multiple-interval mapping will help to improve the
statistical behavior of functional mapping. All the
modified models will certainly prove their value in
elucidating the genetic architecture of dynamic traits
and will probably be the beginning of detecting the
driving forces behind dynamic genetics and their re-
lationship to the organism as a whole. The computer
code for the method proposed can be requested from
the corresponding author.

The preparation of this manuscript was partially supported by
National Science Foundation grant no. 0540745 and the National
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