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ABSTRACT

Many statistical methods have been developed to map multiple quantitative trait loci (QTL) in ex-
perimental cross populations. Among these methods, multiple-interval mapping (MIM) can map QTL
with epistasis simultaneously. However, the previous implementation of MIM is for continuously distrib-
uted traits. In this study we extend MIM to ordinal traits on the basis of a threshold model. The method
inherits the properties and advantages of MIM and can fit a model of multiple QTL effects and epistasis
on the underlying liability score. We study a number of statistical issues associated with the method, such
as the efficiency and stability of maximization and model selection. We also use computer simulation to
study the performance of the method and compare it to other alternative approaches. The method has
been implemented in QTL Cartographer to facilitate its general usage for QTL mapping data analysis on
binary and ordinal traits.

MAPPING quantitative trait loci (QTL) is important
for studying the genetic basis of quantitative trait

variation. A number of statistical methods have been
developed over the years for QTL mapping data anal-
ysis in designed experiments, such as those of Lander
and Botstein (1989), Haley and Knott (1992),
Jansen (1993), Zeng (1993, 1994), Sillanpää and
Arjas (1998), and Kao et al. (1999). However, many of
these statistical methods focus on continuous data.
Ordinal traits are also common in many QTL mapping
studies. These traits take values in one of several or-
dered categories. In quantitative genetics, we usually
use a threshold model to model the genetic basis of
binary and ordinal traits (Wright 1934a,b; Falconer
1965; Falconer and Mackay 1996). In this model, we
assume that the categorical observation of a binary or
ordinal trait is a reflection of an underlying continu-
ously distributed liability subject to a series of thresh-
olds that categorize phenotypes. Effects of QTL on
observed phenotypes are modeled through the liability.

A number of studies have used this threshold model
for QTL mapping analysis on binary and ordinal traits.
Hackett and Weller (1995) and Xu and Atchley
(1996) first studied a QTL mapping method for binary/
ordinal traits based on composite interval mapping
(CIM) (Zeng 1994). Visscher et al. (1996) compared
the performance and statistical power of using a linear
regression and a generalized linear model directly on a

binary trait for QTL mapping analysis and observed that
the two methods give quite similar results in detecting
QTL and estimating QTL position. Yi and Xu (1999a,b)
studied a few statistical issues for mapping QTL on
binary traits in outbred populations. Broman (2003)
proposed a method to deal with data with a spike in the
trait distribution. In particular, Yi and Xu (2000, 2002)
and Yi et al. (2004) reported a series of studies using a
Bayesian approach for mapping QTL on binary and
ordinal traits and studied several strategies for model
selection in a Bayesian framework.

A major difference between an ordinal trait and a
continuous trait is the number of trait values that a
quantitative character may take: a few, say 2–10, for an
ordinal trait (2 for a binary trait) and theoretically in-
finite for a continuous trait. As a result of this difference,
it is more complicated to map QTL on an ordinal trait,
since there is less information carried by the data.
Therefore, it is important to use appropriate statistical
methods that take the trait distribution into account
for mapping QTL, particularly for mapping multiple
QTL. For mapping multiple QTL, Kao et al. (1999)
and Zeng et al. (1999) developed a method that fits
a multiple-QTL model including epistasis on a trait
and simultaneously searches the number, positions,
and interaction of QTL. This method, called multiple-
interval mapping (MIM), is based on maximum likeli-
hood and combined with a model selection procedure
and criterion. Compared with interval mapping (IM)
(Lander and Botstein 1989) and CIM (Zeng 1994),
MIM has a number of advantages, such as the improved
statistical power in detecting multiple QTL (Zeng et al.
2000), facilitation for analyzing QTL epistasis, and co-
herent estimation of overall QTL parameters.
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In this study, we extend MIM for mapping QTL on
ordinal traits and study many associated statistical issues.
The method is based on a threshold model, implemented
in the framework of MIM and targeted to experimental
populations, such as backcross and F2. After introducing
the models, we focus our discussion on many statistical
issues, such as maximizing the likelihood function and
model selection process. We also use simulations to
investigate a few questions associated with analyzing
multiple QTL on ordinal traits.

METHODS

Threshold model and liability: An imperative step
in mapping QTL is to use appropriate models to con-
nect trait values with QTL genotypes. For continuous
data, MIM uses models that are described in Genetic and
statistical models below. But for ordinal data, these mod-
els are not appropriate to be applied directly. However,
with the help of a threshold model (Wright 1934a,b;
Falconer 1965; Falconer and Mackay 1996), we can
extend the models and methodology of MIM to ordinal
data. The threshold model assumes that there is an
underlying unobserved trait value, called liability, for
the observed ordinal trait. The liability may be contin-
uous. When it reaches a certain threshold, a categorical
phenotype is observed. Thus, we can relate ordinal trait
values to QTL genotypes by relating the ordinal data to
their continuous liability first by the threshold model
and then relating the liability to QTL genotypes by the
regular genetic and statistical models.

Suppose in an experiment, n ordinal-scaled trait
values are observed and are coded as 0, 1, . . . ,n � 1.
In addition, suppose N individuals are sampled for
study. For the ith individual, let zi be its ordinal-scaled
trait value and yi its underlying liability, where i ¼
1, . . . ,N. By definition, zi takes a value from {0, 1, . . . ,
n � 1} and yi is from an unknown continuous distribu-
tion (the liability). These two values are related by the
threshold model in the following way,

gs , yi #gs11 � zi ¼ s;

where ‘‘�’’ represents ‘‘is equivalent to,’’ s is a value
from {0, 1, . . . ,n � 1}, and gs’s (s ¼ 0, 1, . . . ,n � 1) are a
set of fixed (unknown) values in an ascending order and
are called thresholds with g0 ¼�‘ and gn¼ ‘. Briefly, the
above relationship indicates that when the liability of an
individual falls between gs and gs11, its phenotypic value
is s; and on the other hand, if its phenotypic value is s, its
liability must fall between gs and gs11.

Genetic and statistical models: As mentioned earlier,
mapping QTL requires a connection between pheno-
typic values and QTL genotypes. By using the threshold
model, the observed phenotypic values are connected
to the underlying (continuous) liability. The next step is
to connect the liability with QTL genotypes. This can be

done by using the usual genetic and statistical models
that have been used in many previous studies. The
statistical model is used to characterize the relationship
between the liability of an ordinal trait and its compo-
nents, which include a genotypic part determined by
QTL genotype and a random variation part caused by
environment. The genetic model is used to compute the
genotypic value for an individual on the basis of its QTL
genotype. Consider a trait determined by m diallelic
QTL. On the basis of the partition of variance (Fisher
1918), the genetic model for a genotypic value G in-
cludes additive and dominant effects and interactions
among loci. Specifically, the genotypic value for the ith
individual can be expressed as Equation 1 for a back-
cross design and as Equation 2 for an F2 design (ignor-
ing trigenic or higher-order interactions),

gi ¼ mG 1
Xm
j¼1

ajxij 1
Xm�1

j¼1

Xm
k. j

ðaaÞjkðxij xikÞ ð1Þ

gi ¼mG 1
Xm
j¼1

ajxij 1
Xm
j¼1

djuij 1
X
j,k

ðaaÞjkðxij xikÞ

1
X
j 6¼k

ðadÞjkðxijuikÞ1
X
j,k

ðddÞjkðuijuikÞ; ð2Þ

wheremG is the overall mean of genotypic values, aj is the
main effect of QTL j in a backcross design or additive
effect in an F2 design, and dj is the dominant effect of
QTL j. In addition, (aa)jk, (ad)jk, and (dd)jk are, re-
spectively, additive 3 additive, additive 3 dominant, and
dominant 3 dominant interaction effects between QTL j
and k. xij and uij are the corresponding variables for the
additive and dominant effects. With Qj and qj represent-
ing alleles in the two inbred parental lines, xij takes
values of 1

2 for QjQj and �1
2 for qjqj in a backcross design;

and in an F2 design,

xij ¼
1 for genotypeQ jQ j

0 for genotypeQ jqj
�1 for genotype qjqj

8<
:

and

uij ¼
�1

2 for genotypeQ jQ j
1
2 for genotypeQ jqj

�1
2 for genotype qjqj :

8<
:

With this specification of genetic model, the statistical
model can be defined by

yi ¼ gi 1 ei ; ð3Þ

where ei is usually assumed to be independently nor-
mally distributed with mean zero and variance s2.

Likelihood analysis: Given the genetic and statistic
models, proper statistical methods are needed to obtain
estimates for QTL parameters. One way is to find a set of
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parameter values that yield the highest probability for
the observed data given the models. The maximum-
likelihood (ML) method is designed for this purpose.
To use the ML method, two steps are needed: deriving a
likelihood function and then maximizing it using a
reliable and efficient algorithm. The likelihood func-
tion is defined as the joint probability of the sample
given the model. Maximum-likelihood analysis has been
used in interval mapping (Lander and Botstein 1989),
composite-interval mapping (Zeng 1993), and multiple-
interval mapping (Kao et al. 1999). We describe the likeli-
hood function for ordinal data in this section and show
how to maximize it in the next section, using a backcross
design as an example.

The likelihood function for ordinal data is defined
as LðZ j M;Q;G;DÞ, where Z represents the pheno-
types (in an ordinal scale), M the marker genotypes, D
the QTL position parameters (for example, measured
as genetic distance from one end of a chromosome),
G the threshold model parameters gs (s ¼ 1, . . . ,n � 1),
and Q the QTL effects (both the main and epistatic
effects, such as a’s, d’s and w’s) on the underlying lia-
bility. In addition, let I(S ¼ s) be a half-open interval
bracketed by gs and gs11 as (gs, gs11] (s ¼ 0, . . . ,n � 1)
and Qih be the hth (h ¼ 1, . . . , 2m) possible QTL
genotype for the ith individual. With the assumption
of independent sampling, the likelihood function can
be written as

LðZ jM;Q;G;DÞ

¼
YN
i¼1

Pðzi jMi ;Q;G;DÞ

¼
YN
i¼1

ð‘
�‘

�
Pðzi j yi ;GÞ

3

�X
Qih

Pðyi jQih;QÞPðQih jMi ;DÞ
��

dyi ;

ð4Þ

where
Q

represents product, Mi is the marker genotype
of the ith individual, and P(*|*)’s [such as Pðzi j yi ;GÞ]
are conditional probabilities that are explained below
along with their relationship with the likelihood
function.

PðQih j Mi ;DÞ is the probability for individual i hav-
ing QTL genotype Qih given its marker genotype Mi and
QTL positions D. Formulas for computing this proba-
bility have been given in Kao and Zeng (1997) and for
cases with missing marker genotypes, in Jiang and Zeng
(1997).

Pðyi j Qih;QÞ is the probability for individual i having
yi for the underlying liability given its QTL genotypes
and QTL effects Q.

Pðzi j yi ;GÞ is the probability of observing zi given
underlying liability yi and thresholds G. It is one when yi

is between gzi and gzi11 and zero otherwise. In other
words, Pðzi j yi ;GÞ ¼ 1 if yi 2 IðS ¼ ziÞ ¼ ðgzi ; gzi11�, and
Pðzi j yi ;GÞ ¼ 0 if yi ; I(S ¼ zi).

Define FQih
ðyiÞ to be the cumulative distribution func-

tion (cdf) for Pðyi j Qih;QÞ. Note that
Ð ‘
�‘

Pðzi j yi ;GÞ�
Pðyi jQih;QÞdyi ¼ FQih

ðgzi11Þ � FQih
ðgzi Þ. On the basis

of Fubini’s theorem and the properties of the cdf, we
have
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Parameter estimation: Once a likelihood function is
given, estimates of parameters can be made by finding
a set of parameter values that maximize the likelihood
function. Estimates obtained in this way are called
maximum-likelihood estimates (MLEs). In our study,
MLEs are obtained by maximizing aQ function, which is
is the expected log-likelihood function of the complete
data (Dempster et al. 1977), using a combined Newton-
Raphson (NR)–EM algorithm (see appendixes a and b).

When QTL positions are selected (see more in the
Model selection below), parameters such as QTL effects
can be estimated using an approach combining NR and
EM algorithms (see appendix b for the iterative pro-
cess). This approach is investigated by X.-J. Qin and Z-B.
Zeng (unpublished data). It is useful when the matrix H
(the second derivative matrix) is not positive definite
or close to nonpositive definite, under which the NR
algorithm may break down (i.e., fail to converge). The
approach is similar to the regular NR method except that
a check point is added to examine whether the Cholesky
decomposition succeeds. This consequently determines
whether the course of the iterative process is kept on the
NR algorithm or is redirected to the EM algorithm.

Model selection: To search and select QTL, we adapt
the MIM procedure of Kao et al. (1999) and Zeng et al.
(1999). This is a stepwise model adaptation procedure
combined with an initial model selection by markers
(Zeng et al. 1999). The idea is to use a computationally
more efficient procedure, such as stepwise marker se-
lection, first to select an initial model and then to use
several model modification procedures under the MIM
model to optimize the model selection.

We use a stepwise logistic regression to select signif-
icant markers as an initial model (SAS Institute 1999).
We recommend using a backward stepwise selection
procedure with the significance level a ¼ 0.01 or a ¼
0.05 for the F-statistic, if there are more samples than the
number of markers; otherwise, a forward stepwise se-
lection may be used.
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After the initial model selection, the following pro-
cedure can be used to update the model:

1. Optimize QTL position estimation. The position of
each QTL is updated by scanning the genomic re-
gion flanked by the two adjacent QTL to choose the
best position as a new estimate, while fixing the other
QTL at their current positions. This is performed for
each QTL sequentially.

2. Search for a new QTL. The best position for a new
putative QTL is first searched in the genome. The
Bayesian information criterion (BIC) of the new
model with one more QTL is compared with that of
the previous model to decide whether to add this
QTL in the model. If the QTL is added, the number
of QTL is increased by one; otherwise the model is
unchanged.

3. Test the current QTL effects. Each QTL effect is
tested by comparing BICs of the models with or
without the QTL effect conditional on other QTL. If
some QTL are not significant, the number of QTL is
reduced; otherwise the model is unchanged.

This procedure can be used iteratively until the model
is unchanged. Usually the epistatic effects of QTL are
searched and tested afterward among the QTL identified.

SIMULATIONS AND RESULTS

We use computer simulations to investigate the per-
formance of our approach. In each simulation (except
indicated otherwise), 100 data sets are generated by
Windows QTL Cartographer (Wang et al. 2005). Each
data set includes 200 individuals and has one to eight
chromosome(s). On each chromosome, 10 evenly
distributed markers are simulated with 10 cM between
adjacent markers. Various numbers of QTL are simu-
lated, which are specified in Tables 1 and 8. For
simplicity, all QTL have the same main effects. Back-
cross design is used for illustration. Each individual has

a simulated liability score that is transformed, on the
basis of the preset incidence rates, to a phenotype in
binary/ordinal scale. For the purpose of comparison, all
data sets are analyzed in three ways. We use the MIM
module in QTL Cartographer to analyze the liability
score (denoted by QTLC) for comparison. The binary/
ordinal phenotype is analyzed either by our new method
(denoted by bMIM) and by the MIM module in QTL
Cartographer (denoted by QTLB), which ignores the
fact that the phenotypic value is binary/ordinal. Differ-
ent notations are used to represent different parameter
setups to avoid potential confusion, such as 1C1Q for
one-chromosome one QTL. Statistics are collected for
different analysis methods on the percentage of data
sets that obtain the correct number of QTL, the mean
number of QTL detected, and the mean of QTL
position estimates.

We use these simulations to discuss several questions,
such as empirical critical values, effects of various factors
on mapping results, suitability of using QTL Cartogra-
pher/MIM on binary traits directly, loss of information
in mapping when data are scored in binary/ordinal
scale as compared to a continuous distribution, epista-
sis, limitations of the new method, and estimation of
heritability h2 for ordinal traits.

Empirical critical values: Although the criteria and
critical values used for model selection are very impor-
tant issues in QTL mapping, they are not the main study
subject in the current investigation. Therefore, no com-
prehensive investigation of model selection criteria is
performed. Instead, we run a few sets of simulations to
illustrate how critical values likely behave in mapping
binary data for three situations: one QTL vs. two QTL,
four QTL vs. five QTL, and eight QTL vs. nine QTL.

Critical values are estimated in two ways: direct data
simulation (SM) and residual bootstrapping (RB) (Zeng
et al. 1999). Both use a likelihood-ratio test statistic to
test for the significance to add a QTL. For each case, 1000
test statistics are obtained under the null hypothesis.

TABLE 1

List of situations

No. of chr No. of QTL QTL positions Parameter Abbr.

1 1 Chr 1 — — — — — — — h2 0.1 0.3 0.5 1C1Q
cM 25 — — — — — — — Effect 0.67 1.31 2.00

2 2 Chr 1 2 — — — — — — h2 0.1 0.3 0.5 2C2Q
cM 25 35 — — — — — — Effect 0.37 0.72 1.09

4 4 Chr 1 2 3 4 — — — — h2 0.3 0.5 0.8 4C4Q
cM 25 35 35 45 — — — — Effect 0.50 0.77 1.53

8 8 Chr 1 2 3 4 5 5 7 8 h2 0.3 0.5 0.8 8C8Q
cM 25 35 35 45 25 75 35 45 Effect 0.35 0.54 1.08

For each combination with specific numbers of chromosomes and QTL, values under ‘‘QTL positions’’ are, respectively, chro-
mosome numbers (Chr) and the corresponding chromosome positions (cM) where simulated QTL are located; and values under
‘‘Parameters’’ are values of h2 (top row) and QTL effects for the corresponding h2 (bottom row). Note that the chromosome posi-
tions are measured as centimorgans from one end of the chromosome. In addition, nonapplicable parameter sets or unsimulated
situations are indicated by dashes (—). Abbr., abbreviation.
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The 100(1 � a)th percentile of these statistics is chosen
as the critical value at a significance level of a.

For SM, 1000 independent data sets are simulated
on the basis of the given QTL positions and effects
(equivalent to 1000 different experiments). For a spe-
cific test condition, say four QTL vs. five QTL, a four-
QTL model is first established, by finding the set of four
chromosome positions that yield the greatest likelihood
among all combinations of four positions. A fifth
position maximizing the likelihood given the four-
QTL model is found. The test statistic is chosen as the
likelihood ratio between the four-QTL model and the
model with the fifth position.

For RB, all 1000 data sets are derived from one single
data set, as outlined below. Again using four QTL vs. five
QTL as an example, a data set is first simulated on the
basis of the given QTL parameters. A four-QTL model is
established as previously described. Denote D4 as the
estimated QTL positions and b as the estimated QTL
effects. The ith individual then has a genotypic value
of Xijb with a probability of PðQij jMi ;D4Þ and has
a phenotypic value 0 with a probability of w0 ¼P

Qij
½Fðg� XijbÞPðQij jMi ;D4Þ�. A new data set is gen-

erated by assigning the trait value of the ith individual to
be 0 with a probability of w0 while keeping its marker
genotype. The test statistic for the new data set is
obtained using the same procedure as for SM.

Results from these two procedures are shown in Table
2. For few numbers of QTL and low values of h2 such as
one QTL or two QTL with h2 ¼ 0.1 or h2 ¼ 0.3, two
procedures obtain similar results. For higher values of h2

and greater numbers of QTL, more differences are seen
in the results. For RB with the same heritability, similar

results are obtained for testing conditions 4/ 5 and
8/ 9, although they are quite different from results
for 1/ 2. For different heritability, greater differences
among results are seen. This trend has been seen before
in cases for continuous traits by S. Wang and Z-B. Zeng
(unpublished results). That is, heritability has some
effects on critical values, and critical values change when
the number of testing QTL is low and tend to be stable
with increasing numbers of testing QTL. For SM, both
testing conditions and heritability may greatly affect
results. No clear trend is detected for SM. In addition,
we explored an approach proposed by Lin and Zou
(2004), which uses a score-type statistic and results in
less variation among the empirical critical values (data
not shown). Nevertheless, the inconsistency among
critical values makes it difficult to use them in data
analyses. Therefore, before a comprehensive investiga-
tion of this issue is complete, BIC will be used as a
temporary solution in model selection, since this cri-
terion has been used before and reasonable results
are obtained (Zeng et al. 1999; Broman and Speed
2002).

Effects of various factors: In real experiments, the
range of parameter values varies dramatically. To un-
derstand what effects parameter value differences may
have on mapping results is helpful in choosing appro-
priate mapping methods and in evaluating QTL map-
ping results. Two parameters that are likely to change
from one experiment to another are investigated. They
are the proportion of each category and heritability.
Proportions of different categories may affect mapping
results. For example, when categories are divided un-
evenly, few individuals may exist within a specific
category that carries inadequate information for map-
ping QTL. With other conditions being the same, a
greater heritability, which measures the proportion of
total variation explained by genetic factors, usually means
relatively larger QTL effects. Therefore, it should be
easier in finding QTL when heritability increases.

Effects of proportions of categories are studied for
binary cases with 20, 30, and 50% of individuals having
phenotypic values of 0 (others having 1). Simulation is
done under 4C4Q with h2 ¼ 0.3. Numbers of data sets
detecting various numbers of QTL, mean numbers of
detected QTL, and estimated h2 (with its standard devi-
ation) are shown in Table 3. Mapping results are also
obtained for the same data sets using QTLB. For mod-
erately unevenly divided data (such as a data set with 20%
of individuals having a trait value of zero), the majority
of data sets detect 2 or 3 QTL (totally 66%). For data sets
divided more evenly, more data sets detect 2, 3, or 4 QTL
(.90%). The mean number of detected QTL has in-
creased from 2.57 for data with 20% zeros to�3 for cases
with more evenly divided categories. The differences
may be partially because with varying proportions of
categories, the chances for individuals with various
genotypes being in the same category are also changed.

TABLE 2

Critical values for the likelihood-ratio test statistic at
significance levels of 0.01 and 0.05

0.01 0.05

h2 Method 1/ 2a 4/ 5 8/ 9 1/ 2 4/ 5 8/ 9

0.1 SM 5.71 — — 3.96 — —
RB 5.10 — — 3.89 — —

0.3 SM 5.76 7.32 6.87 3.86 5.23 5.13
RB 5.45 9.26 9.41 3.92 5.63 6.56

0.5 SM 11.00 8.69 6.52 8.07 6.53 4.23
RB 6.72 9.60 8.27 4.50 6.20 6.88

0.8 SM — 13.85 15.26 — 8.41 10.19
RB — 8.90 9.01 — 6.52 6.64

As in the text, direct data simulation and residual bootstrap-
ping are abbreviated as SM and RB, respectively. For SM, 1000
different data sets are simulated, and for RB, 1000 data sets
are generated by residual bootstrapping from one simulated
data set.

a Tests are labeled as a/a1 1, meaning that the compari-
son is made between a model (A) with a QTL as the null hy-
pothesis and a model with (a1 1) QTL (including a QTL from
model A and an extra QTL) as the alternative.
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Effects of heritability can be seen in several tables,
such as Tables 4–7. As expected, when h2 is higher, all
methods obtain better mapping results given other situ-
ations being the same.

Suitability of using QTL Cartographer/MIM on or-
dinal data directly: When the number of categories
for an ordinal trait is relatively large, the data can be
analyzed by approaches implemented for continuous
traits, such as in Visscher et al. (1996), binary traits are
analyzed directly by using a linear regression method
proposed by Haley and Knott (1992). However, the
use of Haley–Knott approximation can yield a sub-
stantially inflated residual variance (Xu 1995) and po-
tentially decrease the power of detecting QTL. Here we
use the maximum-likelihood-based method (MIM mod-
ule in QTL Cartographer) to analyze binary/ordinal
traits directly, with the hope of remedying part of the
inflation.

Simulations are performed for different combina-
tions of QTL and chromosomes (1C1Q, 2C2Q, 4C4Q,
and 8C8Q) with various values of heritability (0.1, 0.3,
0.5, and 0.8). The results are shown in Tables 4–7, with
likelihood-ratio profiles from different approaches for
8C8Q shown in Figure 1. By comparing results between
QTLB and QTLC and between QTLB and bMIM, we
investigated whether/when QTLB can be used. Relative
to QTLC, the efficiency of detecting QTL by QTLB
increases with higher h2 and a lower number of QTL:
from �60% for 4C4Q (8C8Q) with h2 ¼ 0.3, under
which the mean number of detected QTL is 1.87 (1.82)
for QTLB and 2.87 (2.77) for QTLC, to almost 100% for
1C1Q with h2 ¼ 0.3. Compared to bMIM, QTLB yields
similar results when h2 is high and the number of QTL is
low, but has a lower efficiency for low h2 or low h2 with a

high number of QTL. For example, for 2C2Q with h2 ¼
0.1, �30% of data sets detect two QTL when bMIM is
applied and only �10% when QTLB is used. Generally
speaking, QTLB yield reasonable mapping results when
h2 is high (say .0.4) and the number of QTL is low (say
,4).

Loss of information: Binary/ordinal data carry less
information than continuous data due to at least two
factors. One is that phenotypic values cannot be ranked
in detail for ordinal data with only several categories.
This lowers the resolution of QTL mapping and reduces
the ability of finding QTL with small effects. The other is
related to the shape of the distribution of phenotypic
values. For ordinal data, trait values concentrate on
several separate points instead of covering a region for a
continuous trait. This may limit the ability to evaluate
mapping results in terms of power and error rate. Since
some traits may yield binary/ordinal data only for tech-
nical and practical reasons, investigating the efficiency
of mapping QTL using binary/ordinal data relative to
using continuous data can help us to better understand
the limitation of analyzing QTL in experiments pro-
ducing binary/ordinal data.

Comparing results from bMIM and QTLC in Tables
4–7, we find that the efficiency of bMIM increases with
higher h2. For example, for 2C2Q with h2 ¼ 0.1, 51 and
65% of position estimates by bMIM fall within 15 cM
of the two corresponding simulated QTL, respectively,
relative to 69 and 88% by QTLC; when h2 increases to
0.5, the results are 98% and 98% for bMIM and 100%
and 100% for QTLC. However, the estimates for QTL
numbers are relatively closer: for h2 ¼ 0.1, 0.3, and 0.5,
the numbers are 1.06, 1.93, and 2.16 for bMIM, com-
pared to 0.90, 1.96, and 2.05 for QTL, respectively. A

TABLE 3

Estimation results for data with different category proportions

No. of data sets detecting
a certain no. of QTLa

Proportion of individuals having 0 trait value

0.2 0.35 0.5

QTLB bMIM QTLB bMIM QTLB bMIM QTLC

0 25 2 7 0 10 0 0
1 44 14 39 4 36 4 12
2 25 31 39 20 35 20 22
3 4 35 14 41 14 42 35
4 1 14 1 31 5 32 29
5 1 4 0 4 0 2 2
Mean 1.15 2.57 1.63 3.11 1.87 3.08 2.87

Estimated heritability
h2 0.102 0.175 0.121 0.202 0.132 0.198 0.205
SDb 0.052 0.067 0.053 0.063 0.059 0.062 0.073

Results in this and all following tables are based on 100 simulated data sets, unless indicated otherwise. 4C4Q with h2 ¼ 0.3 is
simulated for this table.

a Values are the numbers of data sets (of 100) detecting certain numbers of QTL (given in the leftmost column). Mean is com-
puted as

P
ðNdQNdDÞ=100, where NdQ is the number of detected QTL and NdD is the number of data sets detecting NdQ QTL.

b Values are the standard deviation for the corresponding heritability estimation.
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similar trend is also seen in multiple QTL and multiple
chromosomes cases.

Epistasis: To study epistasis, we adapt an approach
using a stepwise model selection scheme in MIM, as
described in Kao et al. (1999) and Zeng et al. (1999). In
this scheme, two types of epistasis can be searched. The
first type is the interaction between QTL with main
effects. The second one is between QTL with main
effects and QTL without main effects. For either type of
interaction, epistatic effects are tested for statistical sig-
nificance and are added to or dropped from the model
on the basis of the testing results. Two case studies are
used to illustrate and test our implementation. Details
of parameter values are listed in Table 8. Briefly, for all
cases three QTL are simulated on two chromosomes at
the following positions: 25 cM (QTL 1) and 75 cM (QTL
2) on chromosome 1 and 35 cM (QTL 3) on chromo-
some 2. The interaction is between QTL pair 1–3 for all
cases. For case 1, all QTL have main effects with Vi/Va ¼
0.1 (case I-1) or 0.3 (case I-2), where Vi and Va are the
epistatic and additive variances, respectively. For case 2
(case II), QTL 1 and 2 have main effects, QTL 3 does not
(hence QTL 3 enters into the model only through
interaction), and Vi/Va ¼ 0.3.

Results are shown in Figure 2, based on 1000 simu-
lated data sets with 300 individuals for each set of pa-
rameter values. Test statistics of the interaction among
different QTL pairs are shown in Figure 2, a (for case I-1)
and b (for case I-2). QTL pair with real interaction (QTL

pair 1–3) is detected with a higher probability than other
QTL pairs (QTL pairs 1–2 and 2–3). Indeed for 98% of
case I-1 and for 88% of case I-2, QTL pair 1–3 has the
largest statistic. In Figure 2c, the distribution of the case
II test statistic, which is for interaction between detected
QTL and regions without detected QTL, is shown. The
distribution has a mean of �15 and a variance of �37.
About 97% of the test statistics are significant when chi-
square distribution is used as an approximation under
the null hypothesis. In addition, 97% of these signifi-
cant statistics have their corresponding QTL being in
accordance with simulated data. Therefore, 94% of tests
recover the simulated interaction and consequently, the
average number of QTL detected changes from 2.08
when no epistasis is considered to �3.02 when epistasis
is considered. The counts of detected QTL based on
their estimated locations are shown in Figure 2d.

Limit: It is also interesting to study parameters such as
the minimal effect of QTL or maximal number of QTL
that can be detected. This is useful in determining the
applicability of a method and the validity of its results.
Computer simulations are again used for the investiga-
tion. A preliminary result for a range of h2-values and the
number of QTL are shown in Table 9. It can be seen that
the mean number of detected QTL increases when h2

increases. For example, for bMIM, the number in-
creases from 0.17 to 0.61 for 1C1Q and from 0.18 to
0.37 for 2C2Q, respectively, when h2 changes from
0.01 to 0.05. This is partially expected because QTL

TABLE 4

Estimation results under one-chromosome one-QTL (1C1Q) simulation

No. of data sets detecting a
certain no. of QTL

h2 ¼ 0.1 h2 ¼ 0.3 h2 ¼ 0.5

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

0 21 9 8 0 0 0 0 1 0
1 77 82 91 99 92 100 88 51 96
2 2 9 1 1 8 0 1 44 4
Mean 0.81 1.00 0.93 1.01 1.08 1.00 0.90 1.51 1.04

Distribution of detected QTLa

h2 ¼ 0.1 h2 ¼ 0.3 h2 ¼ 0.5

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

,10 75.3 81.7 89.0 99.0 98.9 100 100 100 100
10–25 16.9 12.2 11.0 1.0 1.1 0 0 0 0
.25 7.8 6.1 0 0 0 0 0 0 0

Mean locations of detected QTL

h2 ¼ 0.1 h2 ¼ 0.3 h2 ¼ 0.5

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

Mean 26.81 26.14 23.83 25.44 25.30 25.16 24.48 24.67 24.86
SD 15.37 13.60 6.60 3.49 3.56 2.76 2.35 2.84 2.07

The simulated QTL is located at 25 cM.
a Values show the distribution of the detected QTL around the simulated location, measured by the percentage of detected QTL

falling into different chromosome regions around the simulated QTL position. The regions are defined by distances (centimor-
gans) to the simulated QTL, such as 10–25 represents regions 0–15 cM and 35–50 cM since both of them are 10–25 cM away from
the simulated QTL position at 25 cM.
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effects are smaller when h2 is smaller and the number of
QTL stays the same. However, no trend for the mean
number of the detected QTL is seen when the same
value of h2 and different numbers of simulated QTL are
considered: the results fluctuate from 0.61 to 0.37 to
0.63 for 1C1Q, 2C2Q, and 4C4Q with h2 ¼ 0.05, when
bMIM is used. Another useful measurement is the
percentage of detected QTL to simulated QTL (or the

ratio between the mean number of detected QTL and
the number of simulated QTL). For 1C1Q with h2 ¼
0.03, �30% of QTL could be detected by all three
approaches; for four QTL with h2 ¼ 0.1, percentages are
,30. Note that the numbers are higher for bMIM
for 4C4Q and 8C8Q. This may be due to lower critical
values used in bMIM than they should be. Generally
speaking, we expect that when QTL effects are ,0.10,

TABLE 5

Estimation results under two-chromosome two-QTL (2C2Q) simulation

No. of data sets detecting
a certain no. of QTL

h2 ¼ 0.1 h2 ¼ 0.3 h2 ¼ 0.5

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

0 57 27 30 3 0 0 0 0 0
1 34 35 49 26 6 4 0 0 0
2 9 33 20 69 80 92 98 84 95
3 0 5 1 2 14 4 2 16 5
4 0 0 0 0 0 0 0 1 0
Mean 0.52 1.06 0.90 1.67 1.93 1.96 2.02 2.16 2.05

Distribution of detected QTL

h2 ¼ 0.1 h2 ¼ 0.3 h2 ¼ 0.5

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

,15 (Q1) 63.2 51.1 69.2 87.8 81.7 92.6 96.9 97.6 100.0
15–25 (Q1) 26.3 21.3 17.9 7.3 13.4 4.3 2.0 2.4 0.0
.25 (Q1) 10.5 27.7 12.8 4.9 4.9 3.2 1.0 0.0 0.0
,15 (Q2) 75.8 64.8 88.0 96.3 90.5 97.9 98.0 97.6 100.0
15–25 (Q2) 12.1 13.0 4.0 2.4 3.6 1.1 1.0 1.2 0.0
.25 (Q2) 12.1 22.2 8.0 1.2 6.0 1.1 1.0 1.2 0.0

Mean locations of detected QTL

h2 ¼ 0.1 h2 ¼ 0.3 h2 ¼ 0.5

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

Q1 Mean 25.79 36.62 29.74 26.32 27.28 26.21 25.67 25.60 25.01
Q1 SD 21.27 22.94 18.82 13.42 13.90 9.34 6.89 5.53 3.91
Q2 Mean 36.55 39.83 35.76 34.90 35.38 34.30 35.47 35.17 34.76
Q2 SD 17.63 21.61 15.39 8.07 11.73 6.56 6.03 6.35 3.69

The two simulated QTL are located at 25 cM on chromosome 1 (Q1) and 35 cM on chromosome 2 (Q2), respectively.

TABLE 6

Estimation results under four-chromosome four-QTL (4C4Q) simulation

No. of data sets detecting
a certain no. of QTL

h2 ¼ 0.3 h2 ¼ 0.5 h2 ¼ 0.8

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

0 10 0 0 0 0 0 0 0 0
1 36 4 12 2 0 0 0 0 0
2 35 20 22 13 1 0 0 0 0
3 14 42 35 37 14 5 0 0 0
4 5 32 29 46 61 87 93 58 78
5 0 2 2 2 20 8 6 28 21
6 0 0 0 0 4 0 1 14 1
Mean 1.87 3.08 2.87 3.33 4.12 4.03 4.08 4.56 4.23

The four simulated QTL are located at 25 cM on chromosome 1 (Q1), 35 cM on chromosome 2 (Q2), 35 cM on chromosome 3
(Q3), and 45 cM on chromosome 4 (Q4), respectively.
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the percentage of detected QTL will be around or
,5%, which is close to the rate of random errors and
therefore may be close to QTL detection limits for these
methods.

Approximation of h2: R2 of the fitted models can be
used to approximate h2, such as in QTLC and QTLB.
For ordinal data using bMIM, the estimate of h2 can be
approximated by an alternative form of R2 designed for
logistic regression, suggested by Nagelkerke (1991),

R2
L;adj ¼ R2

L=R
2
L;max;

which is an adjusted form of RL
2 proposed by Maddala

(1983), Cox and Snell (1989), and Magee (1990),

R2
L ¼ 1 � ðL0=L1Þ2=N ;

where L0 is the likelihood under the null model (no
QTL), L1 is the maximum likelihood under the alter-
native model (a certain number of QTL exist), and N is
the sample size. RL,max

2 is the maximal possible value for
RL

2 and is equal to 1 � L0
2/N. Note that RL,adj

2 ranges
between 0 and 1.

Using the simulated data sets of Tables 4–7, results of
approximating h2 are summarized in Table 10. These
results suggest that better approximation of h2 is ob-
tained when underlying heritability (denoted by hR

2 )
increases for a specific combination of numbers of QTL
and chromosomes and that for the same hR

2 value, a
smaller number of QTL generally result in a better
approximation of h2. For example, for hR2 ¼ 0.3, estimates
of h2 are 0.247, 0.270, and 0.301 by QTLB, bMIM, and
QTLC, respectively, for 1C1Q, and 0.132, 0.198, and
0.205, respectively, for 4C4Q. These results are somehow
expected: with a lower underlying heritability and/or
greater number of QTL, QTL effects are smaller, and
this will make it more difficult to detect these QTL. The
model then will explain a smaller amount of total

variation. In addition, QTLC has the best estimates and
bMIM yields better results than QTLB does, especially for
large number of QTL/chromosome situations.

IMPLEMENTATION IN QTL CARTOGRAPHER

We have implemented the procedures of categorical
trait MIM (CT–MIM) in version 2.5 of Windows QTL
Cartographer (Wang et al. 2005). Categorical traits are
coded in integer value and can be input into the
program in the same way as continuous traits. One can
use the categorical trait analysis to perform interval
mapping (CT–IM) and multiple-interval mapping (CT–
MIM) analysis. One can also use the regular IM, CIM,
and MIM, implemented for continuous traits, to analyze
the data for comparison.

For model selection in CT–MIM, we implemented
several interactive procedures. They include a proce-
dure that selects an initial model on the basis of forward
or backward stepwise logistic regression on markers, a
procedure to search for more QTL one at a time, a
procedure to search for epistasis of QTL, a procedure to
test effects of selected QTL, a procedure to optimize
positions of QTL, and a procedure to output the
complete information of the selected model. These
procedures can be used interactively in practical data
analysis to explore the data and compare different
models. For more information see the software manual
(http://statgen.ncsu.edu/qtlcart/WQTLCart.htm).

DISCUSSION

Kao et al. (1999) developed MIM for QTL analysis
that fits a multiple-QTL model and simultaneously
searches for the positions and interaction patterns of
multiple QTL. This multiple-QTL-oriented approach
has a number of advantages, such as improved statistical

TABLE 7

Estimation results under eight-chromosome eight-QTL (8C8Q) simulation

No. of data sets detecting
a certain no. of QTL

h2 ¼ 0.3 h2 ¼ 0.5 h2 ¼ 0.8

QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

0 8 1 0 0 0 0 0 0 0
1 31 0 17 7 0 0 0 0 0
2 35 11 26 18 1 2 0 0 0
3 23 16 30 27 2 4 0 0 0
4 3 30 20 31 8 10 1 0 0
5 0 21 4 12 19 35 13 0 0
6 0 12 3 5 40 24 26 3 0
7 0 9 0 0 19 19 36 10 0
8 0 0 0 0 7 4 20 39 67
$9 0 0 0 0 4 2 4 48 33
Mean 1.82 4.30 2.77 3.38 6.00 5.58 6.73 8.32 8.33

The eight simulated QTL are located at 25 cM on chromosome 1, 35 cM on chromosome 2, 35 cM on chromosome 3, 45 cM on
chromosome 4, 25 cM and 75 cM on chromosome 5, 35 cM on chromosome 7, and 45 cM on chromosome 8, respectively.
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power in QTL detection, facilitation for analyzing QTL
epistasis, and coherent estimation of overall QTL param-
eters. The implementation of the MIM method in QTL
Cartographer (Basten et al. 2005) and Windows QTL
Cartographer (Wang et al. 2005), both freely available at
http://statgen.ncsu.edu/qtlcart/, has greatly facilitated
applications of the method for general QTL mapping
data analysis. However, the MIM method of Kao et al.
(1999) and its implementation in QTL Cartographer and
Windows QTL Cartographer is for continuous traits.

Although extensive research has been made that takes
multiple QTL into account in mapping analysis on
binary and ordinal traits (e.g., Yi and Xu 2000; Yi
et al. 2004), no computer program is available for QTL
mapping data analysis on ordinal traits under the MIM
framework.

In this study, we extend MIM to ordinal traits on the
basis of a threshold model. This extension utilizes the
properties and advantages of MIM for QTL mapping
analysis on ordinal traits. The method fits a model of

Figure 1.—Likelihood-ratio (LR) profiles for three approaches with various parameter values. Each plot represents the result
on a specific chromosome, with the x-axis for chromosome locations and the y-axis for LR. In each plot, the thick solid line is for
the result of bMIM, the thin solid line for that of QTLB, and the dotted line for that of QTLC, if the QTL is detected by the
respective approaches. Small triangles along the x-axis (and the corresponding dashed lines) indicate positions of simulated
QTL. (a) One chromosome, one QTL; (b) two chromosomes, two QTL; (c) four chromosomes, four QTL; and (d) eight chro-
mosomes, eight QTL (chromosomes 6 and 7 are not shown since no QTL is detected on them).
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multiple-QTL effects and epistasis on the underlying
liability and searches for the number and positions of
QTL and epistasis simultaneously. It has similar advan-
tages to MIM on the statistical power of QTL detection

and estimation of overall QTL parameters. The imple-
mentation of this method in Windows QTL Cartogra-
pher will greatly facilitate the general usage of the
methodology for QTL mapping data analysis on binary
and ordinal traits.

Using simulations, we investigated several statistical
issues, such as the effect of trait distribution on QTL
mapping results, comparison of QTL mapping on an
ordinal trait and on a continuous trait, and the statistical
power of the method for QTL detection. As expected,
the larger the number of trait categories, the higher the
statistical power for QTL detection. There is not much
difference in mapping results to regard an ordinal trait
with five or more categories as a continuous trait in QTL
analysis (data not shown). Also it is interesting to ob-
serve that if we regard a binary trait as a continuous trait
using the current MIM in QTL Cartographer, the map-
ping result is actually quite comparable to that using the
threshold MIM model if the heritability is reasonably
high. Of course, the threshold MIM model is always
more powerful and appropriate for QTL mapping
analysis on binary and ordinal traits.

TABLE 8

List of epistatic situations

QTL
no.

Chr
no.

Position
(cM)

Main
effect Epistasis

Epistatic
effect

I-1 1 1 25 0.845 1 and 3 2.31
2 1 75 0.845
3 2 35 0.845

I-2 1 1 25 0.987 1 and 3 1.21
2 1 75 0.987
3 2 35 0.987

II 1 1 25 1.061 1 and 3 1.92
2 1 75 1.061
3 2 35 0.000

h2 ¼ 0.5 for all cases, and 1000 data sets of 300 individuals
are simulated for each case.

Figure 2.—Results for cases with epistatic effects. (a) Distribution of test statistic for case I-1: main effects for all QTL and the
epistatic effect for QTL pair 1–3 with Vi/Va ¼ 0.3. (a and b) Solid bars represent the test statistic (LR) for QTL pair 1–3 and open
bars the LR for other pairs (QTL pairs 1–2 and 2–3). (b) Distribution of the test statistic for case I-2, which is the same as case I-1
except Vi/Va ¼ 0.1. Note that in a and b, the rightmost bars represent test statistics $10. (c) Distribution of the test statistic for case
II: main effects for QTL 1 and 2 and epistatic effect for QTL pair 1–3. (d) Distribution of the estimated locations of the detected
QTL for case II.
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In studying ordinal traits, the trait value of an in-
dividual may be misspecified due to measurement error.
For a binary trait, Rousseeuw and Christmann (2003)
used a ‘‘hidden logistic regression model’’ with the
assumption that an observed response has a small
chance to be measured with error. This can occur when
a binary or ordinal phenotype is difficult to classify. A
model with measurement error similar to that of
Rousseeuw and Christmann (2003) can also be used
for our analysis. This can be done by reassigning the
value of Pðzi j yi ;GÞ in Equation 4. Namely, instead of
being either 1 or 0, it can be 1 � ei and ei, where ei is a
small nonnegative value for error rate. This error rate
can be assumed to be the same for all observations or
different for different observations.

In this article, we used the maximum-likelihood ap-
proach for mapping multiple QTL on binary and
ordinal traits. The Bayesian approach has also been
used extensively for QTL mapping analysis in designed
experiments, such as in Thomasand Cortessis (1992),
Hoeschele and van Raden (1993a,b), Satagopan and
Yandell (1996), and Sillanpää and Arjas (1998,
1999). For binary and ordinal traits, a series of studies
have been performed by Xu and Atchley (1996), Yi
and Xu (1999a,b, 2000), and Yi et al. (2004) to develop
statistical methods for mapping multiple QTL under a

Bayesian framework combined with Markov chain Monte
Carlo sampling with a reversible-jump algorithm for
model selection. These methods, based on a threshold
model for binary/ordinal traits, are comparable to our
maximum-likelihood method. However, despite the ex-
tensive studies performed, no user-friendly software is
publicly available for QTL mapping data analysis on
binary/ordinal traits. The statistical methods described
in this article will be implemented in QTL Cartographer
and Windows QTL Cartographer and publicly distributed
at http://statgen.ncsu.edu/qtlcart/ for general usage of
mapping multiple QTL on binary and ordinal traits.

There are still some issues that deserve further in-
vestigation. Currently, we use a procedure suggested by
Lin and Zou (2004) to estimate the threshold at each
step of searching for new QTL to aid in model selection.
This procedure performs a function similar to a per-
mutation test, but is numerically much more efficient.
However, it is still not quite clear yet what significance
level one needs to use in this stepwise procedure in the
context of model selection for multiple QTL with
epistasis. We will further pursue this line of research.

We thank Yongqiang Tang for help in computer programming. This
work was partially supported by National Institutes of Health grant
GM45344 and U.S. Department of Agriculture Plant Genome grant
2003-00754.

TABLE 9

Limits of different approaches

1C1Q 2C2Q 4C4Q 8C8Q

h2: 0.01 0.03 0.05 0.01 0.03 0.05 0.05 0.10 0.20 0.05 0.10 0.20
Effect: 0.20 0.35 0.46 0.11 0.19 0.25 0.18 0.26 0.38 0.12 0.18 0.27

The mean no. of detected QTL
QTLB 0.10 0.23 0.42 0.04 0.14 0.17 0.29 0.46 0.73 0.24 0.37 0.90
bMIM 0.17 0.39 0.61 0.18 0.29 0.37 0.63 1.02 1.98 1.47 2.24 3.41
QTLC 0.11 0.34 0.64 0.06 0.16 0.33 0.37 0.78 1.64 0.43 0.78 1.62

TABLE 10

Estimate of heritability for ordinal data

1C1Q 2C2Q 4C4Q 8C8Q

h2 QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC QTLB bMIM QTLC

0.1 0.093 0.104 0.111 0.081 0.094 0.090 — — — — — —
0.034 0.041 0.039 0.031 0.042 0.039 — — — — — —

0.3 0.247 0.270 0.301 0.158 0.198 0.222 0.132 0.198 0.205 0.128 0.237 0.180
0.066 0.056 0.054 0.058 0.062 0.059 0.059 0.062 0.073 0.056 0.068 0.079

0.5 0.482 0.483 0.499 0.282 0.332 0.387 0.264 0.346 0.385 0.234 0.378 0.384
0.077 0.069 0.048 0.061 0.070 0.059 0.070 0.072 0.053 0.076 0.073 0.082

0.8 — — — — — — 0.487 0.601 0.696 0.483 0.645 0.723
— — — — — — 0.046 0.057 0.039 0.058 0.061 0.039

For each value for h2, its estimates from different approaches are listed in the top row with standard deviation given in the
bottom row.
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APPENDIX A: THE Q-FUNCTION AND ITS DERIVATIVES

The Q-function is defined as the expectation of log-likelihood function for the complete data (Dempster et al.
1977). In our study, QTL genotypes are unknown and have to be inferred from marker genotypes. This can be dealt
with by the Q-function and the process is briefly described below as

QðB jBðtÞÞ ¼ EBðtÞ ½logLcðfZ;Qgcomplete;BÞ j fZ;Mgobs�;

where B ¼ ðGT;QT;DTÞT is the vector of parameters to be estimated, and the superscript t indicates the tth cycle of the
iteration. Since the real B is unknown, we compute the Q-function on the basis of its value at the tth stage. This is
symbolized as QðB jBðtÞÞ. The subscript for the expectation sign E indicates that the expectation is computed using a
specific set of values. In addition, with missing data, the complete likelihood Lc has to be computed on the basis of
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observed data {Z, M}obs. Using definitions of expectation and conditional probability and assuming independent
sampling, we have

QðB jBðtÞÞ ¼ EBðtÞ ½logLcðfZ;Qgcomplete;BÞ j fZ;Mgobs�

¼
XN
i¼1

X
Qih

½PB¼BðtÞ ðQih j zi ;MiÞlogPB¼BðtÞ ðzi ;QihÞ�

¼
XN
i¼1

X
Qih

fPB¼BðtÞ ðQih j zi ;MiÞlog ½PB¼BðtÞ ðzi jQihÞPðQihÞ�g

¼
XN
i¼1

X
Qih

½PB¼BðtÞ ðQih j zi ;MiÞlogPB¼BðtÞ ðzi jQihÞ�1C ; ðA1Þ

where C is the probability of the observed data and is a constant. Therefore, C can be omitted where maximization of
the Q-function is concerned. By Bayes’ theorem and noting that PB¼B

(t)(zi jQih, Mi)¼PB¼B
(t)(zi jQih), we have

L
ðtÞ
ih ¼ PB¼BðtÞ ðQih j zi ;MiÞ ¼

PB¼BðtÞ ðzi jQih;MiÞPB¼BðtÞ ðQih jMiÞP
Qil

½PB¼BðtÞ ðzi jQil ;MiÞPB¼BðtÞ ðQil jMiÞ�
: ðA2Þ

Here, Lih
(t) can be considered as a posterior probability for Qih. Equation A1 can then be written as

QðB jBðtÞÞ ¼
XN
i¼1

X
Qih

fLðtÞ
ih log½FQih

ðgzi11Þ � FQih
ðgzi Þ�g: ðA3Þ

With a logistic-distributed liability and denoting B0 ¼ ðGT;QTÞT, Equation A3 can be written as QðB jBðtÞÞ ¼PN
i¼1

P
Qih

½LðtÞ
ih logðpzi11;ih � pzi ;ihÞ� with

pk;ih ¼ pðBT
0 xk;ihÞ ¼ expðtBT

0 xk;ihÞ=½11 expðtBT
0 xk;ihÞ�; ðA4Þ

where subscript ih indicates the hth QTL genotype for the ith individual, and B0 ¼ ðGT;QTÞT is a parameter vector for
the thresholds and QTL effects. In addition, xk,ih ¼ (lk

T, xih
T )T, where lk (k ¼ 0, . . . , n � 1) is an n 3 1 vector with all

elements being 0 except the (k 1 1)th element being 1. Define

bih ¼ pzi11;ih � pzi ;ih

and

aih ¼ @bih=@B0 ¼ pzi11;ihð1 � pzi11;ihÞxzi11;ih � pzi ;ihð1 � pzi ;ihÞxzi11;ih:

Noting that @pk,ih/@B0 ¼ pk,ih(1 � pk,ih)xk,ih, we have

@QðB jBðtÞÞ
@B0

¼
XN
i¼1

X
Qih

L
ðtÞ
ih

@ logðpzi11;ih � pzi ;ihÞ
@B0

� �
¼

XN
i¼1

X
Qih

L
ðtÞ
ih

pzi11;ih � pzi ;ih

@pzi11;ih

@B0
� @pzi ;ih

@B0

� �
¼

XN
i¼1

X
Qih

L
ðtÞ
ih aih
bih

:

ðA5Þ

Further differentiating the first derivative, we have the second derivative as

@2QðB0 jBðtÞ
0 Þ

@B0@BT
0

¼
XN
i¼1

X
Qih

L
ðtÞ
ih

b2
ih

3
@ðaih=bihÞ

@BT
0

¼
XN
i¼1

X
Qih

L
ðtÞ
ih

b2
ih

bih
@aih
@BT

0

� aih
@bih
@BT

0

� �
¼

XN
i¼1

X
Qih

L
ðtÞ
ih

Aihbih � aihaT
ih

b2
ih

; ðA6Þ

where

Aih ¼
@aih
@BT

0

¼ @2bih
@B0@BT

0

¼ pzi11;ihð1 � pzi11;ihÞð1 � 2pzi11;ihÞxzi11;ihxT
zi11;ih � pzi ;ihð1 � pzi ;ihÞð1 � 2pzi ;ihÞxzi ;ihxT

zi ;ih
:
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APPENDIX B: THE ITERATIVE PROCESS FOR THE NR–EM ALGORITHM

For a set of fixed QTL positions, an approach combining Newton–Raphson (NR) and EM algorithms can be used to
obtain estimates of other parameters such as QTL effects. A brief description of the iterative process is given below:

1. Initialize B0
(0).

2. Update Lih
(t) in Equation A2 (the E-step) and pih in Equation A4.

3. Obtain the first derivative (g(t)) and second derivative (H(t)) using Equations A5 and A6.
4. Update B0

(t11) using a formula

B
ðt11Þ
0 ¼ B

ðtÞ
0 � b½HðtÞ��1gðtÞ;

where the superscript ‘‘�1’’ indicates the inverse of a matrix, and the inverse of H could be obtained by Cholesky
decomposition. Several EM steps may be performed in the case that the decomposition fails.

5. Find the new value of the Q-function at B0
(t11) by Equation A3.

6. Determine whether the iteration process converges, usually by comparing the relative change of the Q to a
convergence tolerance (d). If the change of the Q-function is smaller than d, stop; if not, go back to step 2.

Note that two parameters (b and d) in the above process need to be preset. b is a scalar and characterizes the step
length in the gradient direction. It should not be too large (missing maximum) or too small (slow convergence).
During computation, b will start at one and reduce its value gradually in each cycle if needed, but it will be reset to one
in a new iteration cycle. The value of d can be determined through several methods. Here, we take the simplest one: set
d to a fixed small number, say 10�8.
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