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ABSTRACT
In 2003, Xu obtained remarkably precise estimates of QTL positions despite the many markers simultane-

ously in his Bayesian model. We extend his model and Gibbs algorithm to ensure a valid posterior
distribution and convergence to it, without changing the attractiveness of the method.

STIMULATED by Meuwissen et al. (2001), Xu (2003) 300. The positions of the first six QTL stand out clearly
presented a Bayesian model for marker analysis in with the lines with solid circles representing the effect

which each marker effect has its own specific variance means—the fifth QTL being spread over the interval
with, on the log scale, a flat prior for each variance, [590–615]—whereas the remaining five QTL that each

explain 0.6% of the phenotypic variance are barely visi-
y i � b 0 � �

p

j �1

b jx i j � e i , ble, except perhaps for the tenth QTL. The 95%-credi-
ble intervals cover the true effects for the first six QTL,

where yi denotes the phenotypic value for the i th individ- although only the first three exclude zero. The mean,
ual (i � 1, . . . , n), b 0 is the population mean, b j is the 2.5%, and 97.5% points for markers not coinciding with
QTL effect associated with the j th marker ( j � 1, . . . , QTL are typically near zero (�0.005 in absolute value).
p), x i j is a dummy variable indicating genotype, and e i � The estimates near 450 cM illustrate the danger of non-
N(0, � 2

0) is the residual error. In a backcross (BC) popu- convergence. The peak is at 455 cM, close to the true
lation, the variable x i j is either 1 or �1, depending on QTL position. However, the LOD profile for these data
whether the i th individual is homozygous or heterozy- (Figure 1b), calculated using a one-QTL model (Dupuis
gous. The priors of Xu (2003) are p(b0) � 1, p(� 2

0) � and Siegmund 1999) and phenotypic data from which
1/� 2

0, bj � N(0, � 2
j ), and p(� 2

j ) � 1/� 2
j ; thus p(log(� 2

j )) � the true effects of the other QTL are subtracted, peaks
1. This is a daring model because O’Hagan (1994, Sect. at 450 cM, the scores at 445, 450, 455, and 460 cM being
9.61) and Gelman et al. (2004) warn that such priors 7.1, 10.4, 9.5, and 7.2. The 1.5-LOD interval (Dupuis
yield improper (i.e., invalid) posterior distributions in and Siegmund 1999) includes both 450 and 455 cM.
variance components models. Nevertheless, in simula- As Figure 1a contains little probability mass at 450 cM,
tions Xu’s (2003) Gibbs algorithm did very well in yield- it thereby suggests a more precise QTL position than
ing precise estimates of the QTL effects and positions. warranted.
The Bayesian estimates of the marker effects were all To ensure a valid posterior we extend the prior to
near zero for markers that did not coincide with a QTL. p(� 2

j ) � (� 2
j )�1��, which yields a proper posterior for

We were concerned that this might be an artifact of the the QTL effect for 0 � � � 1⁄2 (appendix). Xu’s prior
Gibbs algorithm, which is prone to converge slowly for (� � 0) is just excluded, because it yields a posterior of
correlated parameters. bj with infinite mass near zero. The new prior requires

For illustration of the power of the method, Figure a change in step 5 in Xu’s Gibbs algorithm. In the
1a shows results from our C�� implementation for the notation of Gelman et al. (2004), the new � 2

j must be
simulated BC population of Figure 6 of Xu (2003),

sampled from inv 	 2(1 � 2�, b 2
j /(1 � 2�)); that is, new

where p � 301, except that we used n � 200 instead of
� 2

j � b 2
j / 	 2

1�2� with 	 2
1�2� a random number sampled

from a chi-square distribution with (1 � 2�) d.f. Another
solution is to use an inv 	 2(
, s 2) prior (Meuwissen et

1Corresponding author: Biometris, Wageningen University and Re- al. 2001), yielding a valid posterior for positive 
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Figure 1.—Bayesian estimates of
marker effects in a simulated BC family
with 11 QTL every 150 cM (QTL effects
4.472, 3.162, 2.236, 1.581, 1.118, 0.7905,
and, for QTL 7–11, 0.559 and � 2

0 � 10).
(a) Original analysis (� � 0); (b) reanaly-
sis with � � 0.001 and swap step 5b to
improve mixing. The lines with solid cir-
cles indicate posterior means, and trian-
gles and inverted triangles indicate 2.5
and 97.5 percentiles, respectively. Sym-
bols for values �0.2 are not plotted to
avoid cluttering. The profile (b) is LOD
for the QTL at 450 cM. The insets zoom
in at the interval 425–625 cM.

and 97.5% points for markers not coinciding with QTL which the true effects of the other QTL are subtracted.
As 95% credible intervals we thus obtained for QTL 4–6were typically �100 times larger than those with Xu’s

method, even for small values such as 
 � s 2 � 10�4. and 10 [450, 455], [590, 610], [150, 1330], and [75,
1425]. It is thus no surprise that QTL 6 and 10 do notWe examined the danger of slow convergence (bad

mixing) by adding a Metropolis step as step 5b in Xu stand out in Figure 1b. In further simulations we found
that the swap step often has little effect on the results,(2003) in which � 2

j and � 2
j�1 are swapped ( j � 1, . . . ,

p � 1) with an acceptance probability (A5). This step showing that the original Gibbs algorithm mixes reason-
ably well. We view the swap step as an extra safeguardis not conditional on bj and b j�1 as these are integrated

out (Brown et al. 2002) and ensures appropriate mixing against bad mixing of consecutive � 2
j ’s. In addition,

parameter expansion (Gelman et al. 2004) could beof close marker variances and, thereby, of close marker
effects. beneficial for the mixing for each (b j , � 2

j ) pair.
In this all-marker model, mixing has the drawbackFigure 1b shows the results obtained for � � 0.001

with the swap step. As in Figure 1a the major QTL stand that the size of the QTL effect is shrunken compared
to that of the unmixed case. The sum of bj’s at 450 andout and the markers not coinciding with QTL have

near zero means and percentage points. The improved 455 cM has a posterior mean of 1.39 in Figure 1a and
a mean of 0.89 in Figure 1b, whereas the true QTLmixing is visible near 450 cM where now the largest

effect is where the LOD peaks instead of being at 455 effect is 1.58. The reason is that the model shrinks each
effect more the smaller its t-value is. For a better sizecM. Also the peak at 615 cM in Figure 1a has decreased

in importance in favor of the peak at 590 cM in Figure estimate, nearby markers can be suppressed, as sug-
gested by Xu (2003) in the case of closely linked mark-1b, in agreement with the LOD profile for this QTL

(not shown). In a one-QTL Bayesian model with p � 1 ers. We see virtue in the extended model in QTL selec-
tion models with epistatic and G � E effects, where theand fixed � 2

1 � 10, (A6) in the appendix is proportional
to the posterior density of a QTL at the location of the number of predictors at each location may be very large.
marker. The posterior distribution and credible interval We thank Shizhong Xu and Jean-Luc Jannink for constructive com-
for a single QTL can thus be obtained by calculating ments that improved this note.

(A6) at all markers and normalizing the obtained values
to a sum of 1. We use this one-QTL model for its analyti- LITERATURE CITED
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APPENDIX

Posterior of bj : Xu’s (2003) Bayesian model and our extension of it can be expressed without reference to variance
components � 2

j . Let the prior of bj given � 2
j be N(0, � 2

j ) and the prior for � 2
j be p(� 2

j ) � (� 2
j )��1. Then, by integrating

out � 2
j , the (unconditional) prior for bj becomes

p(b j) � �
∞

0

(� 2
j )��1 ��1

j exp(�1⁄2b 2
j ��2

j )d� 2
j � (b 2

j )��1/2. (A1)

The last proportionality uses Box and Tiao’s (1973) Equation A2.1.2. The prior is improper, for � � 1⁄2 flat and
for � � 0 a hyperbola. For the posterior distribution of b j , given b 0 and the other QTL effects b k (k � j), we obtain,
with y*i � y i � b 0 � �p

k �jb kx i k ,

p(b j |y) � (b 2
j )��1/2 exp[�1⁄2 �

n

i �1

(y*i � b jx i j)2/� 2
0] � (b 2

j )��1/2 exp(�1⁄2 fj(b j � b̂ j)2), (A2)

where fj � ��2
0 xT

j xj and b̂ j � (xT
j xj)�1xT

j y*, the least-squares estimate of bj given the other parameters. For � � 0,
the integral C � �∞

�∞ p(b j |y)db j does not exist, as can be shown as follows. For any ε between 0 and 1,

�
1

ε
�b�1

j �exp(�1⁄2 fj(b j � b̂ j)2)db j � a�
1

ε
b�1

j db j � a[log(b j)]1
ε � �a log(ε) → ∞ for ε ↓ 0

with a the minimum of exp(�1⁄2 f j(b j � b̂ j)2) over bj in the interval [0, 1]; a is a positive number. As the integrand
is positive over the whole range of bj, C � ∞; the posterior of bj is thus improper and no valid Bayesian analysis is
available. For 0 � � � 1⁄2,

C � 2�f��
j exp(�1⁄2 b̂ 2

j fj)
(�)M(�, 1⁄2, 1⁄2 b̂ 2
j fj) � ∞, (A3)

with 
(·) the gamma function and M(· , · , ·) the first Kummer function (Abramowitz and Stegun 1972). For
� � 1⁄2, C � (2��2/xTx)1/2 and (A2) is the normal density. Equation A2 has an infinite mode at 0 and, for b̂ j/se(b̂ j) �
2(1 � 2�)1/2, a finite local mode between 1⁄2 b̂ j and b̂ j. The second mode thus starts to appear if, for small �, the z-
ratio �2. This may also explain why � � 0 works well in practice to pick up QTL.

Swap step: Let G be a 2 � 2 diagonal matrix with elements � 2
j and � 2

j �1, X � [x j |x j �1], V � XTX � � 2
0G�1, and

ỹ the phenotypic data residualized with respect to b0 and all current marker effects, except bj and bj�1. Because
p(b j , b j �1|ỹ, � 2

0 , G) is bivariate normal N(b̃, � 2
0V�1) with b̃ � V�1XTỹ, the posterior distribution of the variance

components � 2
j and � 2

j �1 has density

p(� 2
j , � 2

j �1|ỹ, � 2
0) �

p(bj , b j �1 , � 2
j , � 2

j �1|ỹ, � 2
0)

p(b j , b j �1 |ỹ, � 2
0 , G)

� 2��0 |V|�1/2p(b j � b̃ 1 , b j�1 � b̃ 2 , � 2
j , � 2

j �1 |ỹ, � 2
0)

� (� 2
j � 2

j �1)��1 |I � ��2
0 XTXG|�1/2exp �ỹ

TXV�1XTỹ
2� 2

0
� (A4)

(Box and Tiao 1973; O’Hagan 1994; Gelman et al. 2004). If � 2
j � a and � 2

j �1 � b at the beginning of the swap
step (the additional Metropolis step 5b), the acceptance probability of the swap to � 2

j � b and � 2
j �1 � a is

� � min(1, p(� 2
j � b, � 2

j �1 � a|ỹ, � 2
0)/p(� 2

j � a, � 2
j �1 � b|ỹ, � 2

0)). (A5)

The two conditional probabilities in (A5) are calculated by inserting (b, a) and (a, b) for (� 2
j , � 2

j �1) in (A4),
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respectively. Note that G and V in (A4) depend on � 2
j and � 2

j �1. The calculation is easy and quick as (A4) contains
the determinant and inverse of 2 � 2 matrices only.

Posterior of � 2
j : The univariate analogue of (A4) is

p(� 2
j |y*, � 2

0) � (� 2
j )��1(1 � fj �

2
j )�1/2exp�1⁄2

b̂ 2
j f 2

j � 2
j

1 � fj �
2
j
� . (A6)

The posterior of � 2
j can be shown to be proper for 0 � � � 1⁄2.


