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ABSTRACT
Joint mapping for multiple quantitative traits has shed new light on genetic mapping by pinpointing

pleiotropic effects and close linkage. Joint mapping also can improve statistical power of QTL detection.
However, such a joint mapping procedure has not been available for discrete traits. Most disease resistance
traits are measured as one or more discrete characters. These discrete characters are often correlated.
Joint mapping for multiple binary disease traits may provide an opportunity to explore pleiotropic effects
and increase the statistical power of detecting disease loci. We develop a maximum-likelihood method
for mapping multiple binary traits. We postulate a set of multivariate normal disease liabilities, each
contributing to the phenotypic variance of one disease trait. The underlying liabilities are linked to the
binary phenotypes through some underlying thresholds. The new method actually maps loci for the
variation of multivariate normal liabilities. As a result, we are able to take advantage of existing methods
of joint mapping for quantitative traits. We treat the multivariate liabilities as missing values so that an
expectation-maximization (EM) algorithm can be applied here. We also extend the method to joint
mapping for both discrete and continuous traits. Efficiency of the method is demonstrated using simulated
data. We also apply the new method to a set of real data and detect several loci responsible for blast
resistance in rice.

MULTIPLE traits are measured virtually in all line- true multivariate analysis in which a multivariate normal
crossing experiments of QTL mapping. Yet, al- distribution is assumed for the multiple traits, and thus

most all data collected for multiple traits are analyzed a multivariate Gaussian model is applied to construct
separately for different traits. Joint analysis for multiple the likelihood function. Parameter estimation is con-
traits has shed new light in QTL mapping by improving ducted via either the expectation-maximization (EM)
the statistical power of QTL detection and increasing algorithm (Dempster et al. 1977) or the multiple-traits
the accuracy of QTL localization when different traits least-squares method (Knott and Haley 2000). One
segregating in the mapping population are genetically problem with these multivariate analyses is that if the
related. Joint analysis for multiple traits is defined as a number of traits is large, there will be too many hypothe-
method that includes all traits simultaneously in a single ses to test and interpretation of the results will become
model, rather than analyzing one trait at a time and cumbersome. The other way of multiple-trait analysis is
reporting the results in a format that appears to be to utilize a dimension reduction technique, e.g., the
multiple-trait analysis. In addition to the increased principal component analysis, to transform the data into
power and resolution of QTL detection, joint mapping fewer variables, i.e., “super traits,” that explain the major-
can provide insights into fundamental genetic mecha- ity of the total variation of the entire set of traits. Ana-
nisms underlying trait relationships such as pleiotropy lyzing the super traits requires little additional work
vs. close linkage and genotype-by-environment (G � E) (Korol et al. 1995, 2001; Mangin et al. 1998) compared
interaction, which would otherwise be difficult to ad- to that for the single-trait genetic mapping statistics.
dress if traits are analyzed separately. However, as pointed out by Hackett et al. (2001), infer-

Substantial work has been done in joint mapping ences based on the super traits might result in detection
for multiple quantitative traits (Jiang and Zeng 1995; of spurious QTL. Furthermore, parameters of the super
Korol et al. 1995, 2001; Mangin et al. 1998; Henshall

traits are often difficult to interpret biologically. Never-
and Goddard 1999; Williams et al. 1999; Knott and

theless, joint mapping provides a good opportunity toHaley 2000; Hackett et al. 2001). In general, there
answer more questions about the genetic architectureare two ways to perform a joint mapping. One way is the
of complex trait sets and deserves continued efforts
from investigators in the QTL mapping community.

In contrast to that for multiple quantitative traits, rel-
1Corresponding author: Department of Botany and Plant Sciences, atively little work has been done in joint mapping forUniversity of California, Riverside, CA 92521.

E-mail: xu@genetics.ucr.edu multiple discrete traits (Lange and Whittaker 2001).
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In fact, multiple discrete traits, especially multiple bi- tween the liability and the discrete phenotype is de-
nary disease traits, are frequently collected in plants and scribed by the following threshold model,
laboratory animals. Most disease resistance traits are

yjk � 0 ⇔ wjk � 1 and yjk � 0 ⇔ wjk � 0, (1)measured as one or more dichotomous characters. For
example, in experiments mapping disease resistance where the threshold 0 is chosen in an arbitrary fashion.
loci, multiple pathogen races or strains are commonly Each of the m liabilities is a continuous variable, similar
used to determine the number of race-specific resistance to the phenotypic value of a quantitative trait. The differ-
loci involved. In such cases, infection by each strain is ence between a liability and a quantitative trait is that the
measured as a binary trait and the overall infection former is not observable but inferred from the discrete
spectrum is a vector of several binary measurements. In phenotype. The liabilities are described by the following
practice, scientists may be less interested in identifying linear models,
resistance loci to individual strains, but more interested
in loci with a wide spectrum of resistance, which, in prin- yj 1 � b01x0j � b11x1j � b21x2j � ej 1 ,
ciple, can be better addressed with the joint-mapping

yj 2 � b02x0j � b12x1j � b22x2j � ej 2 ,strategy. Unfortunately, there has been no report on
such a joint-mapping analysis for multiple binary traits. ·
Recently, Lange and Whittaker (2001) applied the gen-

·eralized estimating equations (GEE; Liang and Zeger
1986) method to mapping multiple discrete trait loci. ·
Results of GEE are hardly compared with those of single-

yjm � b0mx0j � b1mx1j � b2mx2j � ejm , (2)trait mapping because there is no univariate version of
the GEE. where b0k is the mean effect (intercept) for trait k in the

Furthermore, it is not uncommon that investigators scale of liability; b1k and b2k are, respectively, the additive
may collect both continuous and discrete traits in a sin- and dominance effects of the putative QTL; x0j, x1j, and
gle mapping experiment. For example, disease resistance x2j are the incidence variables for the mean effect and
characters may be measured in a QTL mapping experi- the additive and dominance effects, respectively; and ejk
ment for yield traits, or vice versa. Combining the disease is the residual error for trait k of individual j. We assume
resistance traits (discrete) with the yield traits (continu- that the residual errors are independent among individ-
ous) may allow investigators to answer some important uals but correlated among traits within individuals. In
questions such as possible fitness penalty of resistance matrix notation, model (2) can be written as
loci. Even if the associated quantitative traits are not di-
rectly responsible for the disease status but linked to yj � xjB � ej , (3)
the disease loci, joint analysis will still provide additional

where yj � [yj1 . . . yjm] is a 1 � m vector for the liabilities;power in identifying the disease loci (Williams et al.
xj � [x0j x1j x2j], which is defined as xj � h1 � [1 1 0] if in-1999; Huang and Jiang 2003). So far, joint analysis of
dividual j takes genotype QQ , xj � h2 � [1 0 1] if j hasmixed types of traits has been attempted only in pedi-
a genotype Qq , and xj � h3 � [1 �1 0] if j is qq at thegree analysis of human populations under the random
putative QTL position; B is a 3 � m matrix defined asmodel methodology.

The goal of this study is to develop a formal multivari-
ate version of the maximum-likelihood methodology for
joint mapping of QTL underlying multiple binary traits B � �b01 b02 . . . b0m

b11 b12 . . . b1m

b21 b22 . . . b2m
�; (4)

and mixed types of traits in line-crossing experiments
under the fixed-model framework. We analyzed both sim-
ulated data and data collected from field experiments.

and ej is a 1 � m vector for the residual errors, which
has a covariance matrix

METHODS

Joint mapping for multiple binary traits: Statistical model:
Suppose that we have a sample of n individuals from an
F2 population derived from the cross of two inbred lines
with observation on m binary traits. Assume that we also
genotype a number of codominant molecular markers

(5)

with known map positions for the species in question.
Note that the variances are estimable from the latentLet wjk denote the phenotype of the k th binary trait on
variables but not from the observed data. Therefore, somethe j th individual and wjk � 1 if individual j is affected
restrictions are required when the binary data are takenand wjk � 0 if j is unaffected. Further define yjk as the
into account (McCulloch 1994). The probability thatunderlying latent variable, i.e., the liability, for the k th

binary trait on the j th individual. The relationship be- individual j is affected by all the m binary diseases is
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Pr(wj1 � 1, . . . , wjm � 1|xj , B, V) � �
∞

0

. . . �
∞

0

φm(yj ; xj B, V)dyj 1 . . . dyjm , We now introduce a simple EM algorithm to find the so-
lution, which takes advantage of the simplicity of the orig-

(6)
inal linear model with both Y � {yj }n

j�1 and X � {xj }n
j�1

where being treated as missing values.
Instead of directly maximizing the log likelihood given

φm(yj ; xj B, V) � (2�)�m/2|V|�1/2exp{�1⁄2(yj � xj B)V�1(yj � xj B)T}
in Equation 10, the EM algorithm deals with the com-

(7)
plete-data log-likelihood function,

is the multivariate normal probability density. The prob-
abilities for other joint binary phenotypes are derived L(�, X, Y) � const �

n
2

ln|V|
similarly. For m dichotomous traits, there will be 2m

possible joint binary phenotypes. With the threshold
�

1
2 �

n

j�1

(yj � xjB)V�1(yj � xjB)T. (11)model, mapping binary traits has been formulated as a
problem of mapping quantitative trait loci. Therefore,

Because X and Y are treated as missing values, the EMmethods of QTL mapping for multiple quantitative
algorithm starts with maximizing the expectation of thetraits (Jiang and Zeng 1995) may be adopted here in
complete-data log-likelihood,multiple binary trait mapping.

Model (3) is a general multiple linear model (GMLM)
L(�|�(t )) � E[L(�, X, Y)] � const �

n
2

ln|V |with missing values in xj because the QTL genotypes
are not observable. The next step of the GMLM analysis
with missing values is to infer the probabilities of QTL

�
1
2 �

n

j�1

E[(yj � xjB)V�1(yj � xjB)T], (12)genotypes conditional on the marker information, de-
noted by pjq � Pr(xj � hq|IM) for q � 1, 2, 3, where IM de-

where the expectation is taken with respect to X and Y,notes marker information. We can compute pjq using
conditional on the data W � {wj }n

j�1 and the parametersTable 1 of Jiang and Zeng (1995) if double recombi-
at the current values �(t ). For brevity, we use E[�(X, Y)]nants are not considered or using Table 1 of Luo and
to denote the conditional expectation throughout theKearsey (1992) if no crossover interference is assumed.
entire text, but the full notation for the expectationHowever, in general, we need to adopt the multipoint
should bemethod (Jiang and Zeng 1997) to handle missing or

dominance markers. E[�(X, Y)] � EX{EY|X[�(X, Y)|�(t ), W]},
Maximum-likelihood estimation: Let us denote the pa-

where �(X, Y) represents the term whose expectation isrameters by a vector � � {B, V}. The likelihood function
required in the EM algorithm. Note that Equation 12for the jth individual conditional on xj is
differs from Equation 10 in two aspects: (i) Equation 10

Pr(wj |xj , �) � �
g 2(wj1)

g1(wj1)

. . . �
g 2(wjm )

g1(wjm )

φm(yj ; xjB, V)dyj1 . . . dyjm takes the expectation before the log transformation whereas
Equation 12 takes the expectation after the log transfor-
mation; and (ii) the expectations are taken using differ-� 	m(wj ; xjB, V), (8)
ent probability distributions for the two equations. In

where wj � [wj1, . . . , wjm], g1(wjk) � (wjk � 1) � ∞, and Equation 12, the expectation is taken using the probabil-
g 2(wjk) � wjk � ∞, for k � 1, . . . , m. Note that g1(wjk) � ity distribution conditional on the current parameter
(wjk � 1) � ∞ � �∞ and g 2(wjk) � wjk � ∞ � 0 if wjk � values and the phenotypic values. Maximizing Equation
0, whereas g1(wjk) � (wjk � 1) � ∞ � 0 and g 2(wjk) � 12 with respect to the parameters, we get
wjk � ∞ � ∞ if wjk � 1. The m-dimensional integral 	m

(wj ; xjB, V) may be calculated with some special algo-
B̂ �

⎡
⎢
⎣
�
n

j�1

E(xT
j xj)

⎤
⎥
⎦

�1 ⎡
⎢
⎣
�
n

j�1

E(xT
j yj)

⎤
⎥
⎦

(13)rithms or by executing an intrinsic function from some
software packages. A two-dimensional integral can be
found in SAS (SAS Institute 1999). The probability

V̂ �
1
n �

n

j�1

E �(yj � xj B̂)T(yj � xj B̂)�. (14)Pr(wj |xj , �) is also called the penetrance of the QTL
with genotype xj .

The MLE of B and V in the complete-data situationSince xj is missing and only pjq is calculated, the actual
(both X and Y are observed) can be found in Andersonlikelihood function for the j th individual is
(1984, Sect. 8.2). Giri (1996, pp. 92–98) also provided
the derivation in the simple case where xjB � � is aPr(wj |�) � �

3

q�1

pjq	m(wj ; hqB, V). (9)
1 � m vector of means. The results shown in Equations
13 and 14 are extensions of the results in the complete-The overall log-likelihood for the entire mapping popu-
data situation by adding the symbols of conditional ex-lation is
pectation. appendix c gives a step-by-step derivation of

L(�) � �
n

j�1

ln[Pr(wj |�)]. (10) Equations 13 and 14.
In binary data analysis under the liability model, the

usual restriction is to let all the variances (diagonalSolving the above log-likelihood function is tedious.
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elements of matrix V) equal unity (McCulloch 1994). multivariate normal distribution. The residual error co-
variance matrix in Equation 14 becomesIf we had maximized the complete-data log likelihood

function with such a restriction, the maximization step
would be extremely complicated because there is no V̂ �

1
n �

n

j�1

⎡
⎢
⎣
�
3

q�1

p*jq (Ujq � �T
jq �jq � B̂T hT

q �jq � �T
jq hq B̂ � B̂T hT

q hq B̂)
⎤
⎥
⎦
,

easy way to find a closed-form expression for V̂. Trying
(18)to find an explicit form for V̂, one would lose the advan-

tage of the EM algorithm. Fortunately, Gueorguieva where �jq � E(yj |wj , hq , �) is a short notation for the
and Agresti (2001) showed that maximizing Equation conditional expectation and Ujq � Var(yj |wj , hq , �) de-
12 with V unrestricted, the EM algorithm converges to notes the conditional covariance matrix of a truncated
unique estimates of the fully identifiable ratios, BS�1, multivariate normal distribution. Neither �jq nor Ujq has
where an explicit expression except in the special case when

m � 2 and 3. These expectation and covariance matricesS � √diag(V) � diag(
1 . . . 
m). (15)
are calculated using the moment-generating function

Therefore, Gueorguieva and Agresti (2001) max- (Tallis 1963) or the Gibbs sampler (Chan and Kuk 1997).
imized the log-likelihood function with V unrestricted The moment-generating function approach needs mul-
and then standardized the model effects by taking B* � tidimensional integrals and cannot be implemented eas-
BS�1. The standardized covariance matrix became R � ily in practice when m is large (see appendix a for the
S�1VS�1. At each EM iteration, Gueorguieva and Agresti special case when m � 2). The Gibbs sampling approach
(2001) estimated B and V and immediately replaced requires Monte Carlo simulation, which is suitable for
these two parameters by their standardized versions, B* large m. Details of the Monte Carlo method are given
and R, before entering the next EM iteration to make in appendix b.
sure that the EM converges. In our EM algorithm, we The EM algorithm may be summarized in the follow-
have already defined B as a standardized vector of ge- ing steps:
netic effects. We simply need to standardize V during

Step 1. Choose the initial values for �, �(0) � {B(0), R(0)}.each iteration of the EM algorithm to ensure the conver-
Step 2. Calculate the posterior probabilities of the QTLgence of the iterations. The estimated correlation ma-

genotype given the current values of all un-trix R̂ is indeed the MLE of R based on the invariance
knowns using Equation 16.property of the MLE (DeGroot 1986) because V̂ is the

Step 3. Calculate the expectations using Equation 17, aMLE of V and R is a function of V. Equations 13 and
process in the E-step.14 represent the maximization step of the EM algorithm.

Step 4. Calculate �jq � E(yj |wj , hq , �) and Ujq � Var(yj |wj ,We now investigate the expectation step of the EM algo-
hq , �) using the moment-generating function orrithm. Recall that the probability of xj conditional on
the Gibbs sampler (see appendix a and appen-marker information is denoted by pjq. This probability
dix b), another process of the E-step.may be called the prior probability. After incorporating

Step 5. Update parameter B using Equation 13, updatethe phenotypic value and the parameters, we obtain the
parameter V using Equation 14, and convert Vposterior probability, denoted by
into R.

Step 6. Replace the initial parameters by the updatedp*jq � Pr(xj � hq |IM, wj) �
pjq	m(wj ; hqB, R)

�3
h�1pjh	m(wj ; hhB, R)

.
values and repeat steps 2–5 until convergence.

(16)

Likelihood-ratio test: Define the log-likelihood functionNote that the V matrix has been replaced by the R
evaluated at the maximum-likelihood estimate (MLE)matrix to reflect the standardization. In fact, the un-
of parameters asrestricted covariance matrix V is used only once when we

try to estimate it. Once V is estimated, it is immediately
L(�̂) � �

n

j�1

ln[Pr(wj |�̂], (19)standardized into the form of R, which is then used in all
steps of the EM iterations. The expectations are actually

where Pr(wj |�̂) � �3
q�1pjq	m(wj ; hqB̂, R̂) and �̂ is the MLEobtained using the posterior probabilities rather than

of �. This is also called the likelihood value under thethe prior probabilities. Therefore, the conditional ex-
full model. We need the likelihood values under variouspectations given the data W are
restricted models to test different hypotheses.

The overall null hypothesis is “no effect of QTL at
�
n

j�1

E(xT
j xj) � �

n

j�1

⎡
⎢
⎣
�
3

q�1

p*jq hT
q hq

⎤
⎥
⎦

the locus of interest,” denoted by H0: b1k � b2k � 0 for
k � 1, . . . , m or H0: LB � 0, where

�
n

j�1

E(xT
j yj) � �

n

j�1

⎡
⎢
⎣
�
3

q�1

p*jq hT
q E(yj |wj , hq , �)

⎤
⎥
⎦
, (17) L � �0 1 0

0 0 1�.
If we solve the MLE of the parameters under the restric-where E(yj |wj , hq , �) is the expectation of a truncated
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tion of LB � 0 and evaluate the likelihood function
evaluated at the solutions with this restriction, we have

L(�̃ |LB � 0), (20) where yj 1 � [yj 2 . . . yjm] is a special notation for a subvector
of yj that excludes the first element. The yj vector is

where �̃ is the MLE of � under the restricted model.
described by the same model as given in Equation 3.

The likelihood-ratio test statistic is
Let us further partition matrix B into B � [b1 B1], where
bT

1 � [b01 b11 b21] is the first column of matrix B and� � �2[L(�̃ |LB � 0) � L(�̂)]. (21)
B 1 � [b2 . . . bm] is the remaining columns of B. The

Under the null hypothesis, this test statistic will approxi- residual errors are joint normal with mean zero and a
mately follow a chi-square distribution with 2(m � 1) d.f. covariance matrix V, which can be partitioned into

Various other test statistics may be defined by choos-
ing different L matrices, as given by Jiang and Zeng
(1995). For example, to test the additive effects for all
traits, the L matrix is defined as L � [0 1 0]. The degrees
of freedom for this test are m � 1. To test the dominance
effects for all traits, we use L � [0 0 1] with m � 1 d.f.
for the test statistic.

(23)

To test trait-specific effects, we need to introduce
where V11 � 
 2

1 , V11 � [
12 . . . 
1m], V11 � VT
11 , andanother matrix, T, which is used to postmultiply matrix

B. For example, to test QTL effects (both additive and
dominance) for the kth trait, the null hypothesis is H0:
LBT � 0, where

L � �0 1 0
0 0 1�

is the lower right block of matrix V. The variance of the
and T is an m � 1 vector with the k th element being liability for the disease trait, however, is restricted to
one and all the remaining elements being zeros. The unity. Therefore, the standardized form of the V matrix
test statistic will be is R � S�1VS�1, which is a function of the unrestricted

covariance matrix V, where S � diag(
1 1 . . . 1). Simi-� � �2[L(�̃ |LBT � 0) � L(�̂)] (22)
lar partitioning given in Equation 23 also applies to

with 2 d.f. In general, the L matrix controls the type matrix R. The joint distribution of the phenotype for
of effects (population mean, additive, and dominance) individual j is
being tested and the T matrix controls the traits (from

Pr(w j 1 , yj 1|xj , �) � φm�1(yj 1 ; xj B1 , R11)	(w j 1 ; yj1, xj b1, R11),1 to m) being tested.
The position of the QTL is another parameter of (24)

interest. However, in the one-dimensional genome scan,
wherethe position is first treated as fixed and then the entire

genome is tested for every putative position with a 1- or φm�1(yj 1 ; xj B1 , R11) � (2�)�(m�1)/2|R11|�1/2

2-cM increment. The likelihood-ratio test statistic forms
� exp{�1⁄2(yj 1 � xj B1)R�1

11 )(yj 1 � xj B1)T }
a test statistic profile. The position corresponding to the

(25)highest peak is declared as the estimated QTL position if
the peak surpasses a given critical value (Churchill and
and Doerge 1994; Diggle et al. 1996; Piepho 2001).

Joint mapping for mixed types of traits: We now de- 	(wj 1; yj 1, xjb1, R11) � �
g2(wj1)

g1(wj1)

φ(yj 1; yj 1, xjb1, R11)dyj 1 .
scribe a statistical model and likelihood analysis for joint

(26)mapping of loci that affect one binary trait and multiple
quantitative traits. Let wj 1 be the phenotype of the binary The probability density φ(yj1; yj1, xjb1, R11) within the in-
trait for the j th individual and defined as wj 1 � 1 if tegral is a conditional density of yj 1 given yj1. It is a uni-
individual j is affected and wj1 � 0 if it is not affected. variate normal with mean
Further define yjk as the value of the kth observed quanti-

E(yj1|yj 1, xj , �) � xjb1 � R11R
�1
11 (yj1 � xjB1)T (27)tative trait, for k � 2, . . . , m, on the j th individual. We

also define yj 1 as the liability for the binary trait, and variance

yj 1 � 0 ⇔ wj 1 � 1 and yj 1 � 0 ⇔ wj 1 � 0. Var(yj 1|yj1, xj , �) � R11 � R11R
�1
11 R11 . (28)

Therefore, 	(wj1; yj (�1), xjb1, R11) is a truncated univari-The liability of the binary trait and the phenotypic values
of the quantitative traits are arranged in a vector called ate normal probability.
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TABLE 1The likelihood function for the j th individual is

QTL parameters used in the simulation experiments
Pr(wj 1 , yj 1|�) � �

3

q�1

pjq Pr(wj 1 , yj 1|hqB, R). (29)

Heritability (%) b01 b11 b21 b02 b12 b22
The overall log-likelihood of the entire mapping popu-

5 0 0.2 0.36 0 0.2 0.36lation is
10 0 0.4 0.35 0 �0.4 0.35
15 0 0.5 0.45 0 0.5 �0.45L(�) � �

n

j�1

ln[Pr(wj 1 , yj 1|�)]. (30)

Again, we adopt the EM algorithm to find the MLE
RESULTSof parameters. The maximization step is accomplished

through Equations 13 and 14. The expectation step Simulation studies: To further evaluate the properties
requires calculation of the posterior probabilities of of the proposed method, we conducted two simulation
QTL genotypes and then uses these probabilities to find experiments. For the sake of simplicity, we designed one
various expectations. The posterior probability of a QTL experiment to evaluate the performance of joint map-
genotype is ping for two binary traits and another experiment for

the mixture of one binary and one quantitative trait. Inp*jq � Pr(xj � hq |IM, wj 1, yj 1)
each experiment, one chromosome with 11 evenly dis-
tributed markers was simulated for an F2 population.�

pjq Pr(wj 1, yj1|hqB, R)

�3
h�1pjh Pr(wj 1 , yj 1|hhB, R)

, (31)
We simulated a single QTL located at 35 cM of the
chromosome and the QTL effects of both traits under

from which we get the expectations three different levels of heritability (proportion of vari-
ance in liability explained by the QTL). The effects of

�
n

j�1

E(xT
j xj) � �

n

j�1

⎡
⎢
⎣
�
3

q�1

p*jq hT
q hq

⎤
⎥
⎦

the QTL used in the simulation experiments are given
in Table 1. The correlation coefficient between the re-
siduals of the liabilities for the two traits was chosen at
0.25. Under these settings, both traits had the same�

n

j�1

E(xT
j yj) � �

n

j�1

⎡
⎢
⎣
�
3

q�1

p*jq hT
q E(yj |wj 1, hq , �)

⎤
⎥
⎦
, (32)

heritability. The three levels of the QTL effects led to
three different levels of the heritability: 5, 10, and 15%.where
The genetic correlation between the two traits was ex-

E(yj |wj 1, hq , �) � �E(yj 1|wj 1, hq , �, yj 1) yj 1� (33) pected to be 1.0, �0.446, and 0.423, respectively, for
the different chosen levels of the heritability. The sam-is a 1 � m vector, which has been partitioned into a
ple size of the simulated F2 population was n � 200.scalar E(yj 1|wj 1, hq , �, yj 1) and a vector yj 1. The expecta-
Each simulation experiment was replicated 100 times.tion is taken only for the liability of the binary trait. The

The first simulation experiment was to evaluate theremaining traits already take the observed values and
efficiency of the joint binary trait mapping. We firstthus no expectations are taken. The expectation for the
simulated the liabilities of the two traits and then artifi-liability, E(yj 1|wj 1, hq , �, yj 1), is obtained from the trun-
cially truncated the continuous liabilities into two binarycated normal distribution with mean given by Equation
phenotypes using a threshold of zero. In the secondB5 of appendix b and variance given by Equation B6
simulation experiment, we truncated only the liabilityof appendix b. The residual error covariance matrix is
of the first trait to generate a binary phenotype but leftgiven by Equation 18. However, the conditional expecta-
the second trait intact so that we had one binary traittion is replaced by
and one continuous trait.

�jq � E(yj |wj 1 , hq , �) (34) Each data sample was analyzed using both the joint-
mapping and single-trait-mapping statistics. For the sin-and the conditional variance by
gle-trait analysis, we used Lander and Botstein’s (1989)
method for the continuous trait and the method of Xu
et al. (2003) for the binary trait. Since we considered
only two traits in the joint mapping, explicit formulas
were used in each of the EM iteration steps (see appen-
dix a for the explicit formulas). The critical values for
the chromosomewise type I error rate of 5% were deter-
mined by the approximate method of Piepho (2001).

(35)

In real data analysis, one should use the permutationwhere Var(yj 1|wj 1, hq , �, yj 1) is the variance of a trun-
test (Churchill and Doerge 1994) to obtain the mostcated normal distribution. Both E(yj 1|wj 1, hq , �, yj 1) and
appropriate critical values for significance tests. For theVar(yj 1|wj 1, hq , �, yj 1) can be found from the truncated
joint analysis, the empirical power was determined bynormal distribution (Cohen 1991) and no Gibbs sam-

pler is required. the proportion of the replicated samples (out of 100)
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TABLE 2

Comparison of joint mapping with single trait mapping from the first simulation experiment (both traits are binary)

Heritability Power Position
(%) Method (%) (cM) b01 b11 b21 b02 b12 b22 �

5 J-12 42 33.02 �0.05 0.26 0.48 0.05 0.25 0.46 0.24
(10.10) (0.14) (0.13) (0.21) (0.16) (0.14) (0.27) (0.13)

S-1 26 33.46 �0.10 0.28 0.59
(13.36) (0.15) (0.18) (0.20)

S-2 29 36.13 �0.07 0.28 0.56
(12.68) (0.15) (0.16) (0.17)

10 J-12 90 34.02 0.01 0.41 0.36 �0.00 �0.42 0.38 0.24
(7.47) (0.14) (0.13) (0.24) (0.13) (0.14) (0.21) (0.10)

S-1 78 35.42 �0.03 0.48 0.42
(12.44) (0.14) (0.13) (0.27)

S-2 69 36.52 �0.01 �0.46 0.39
(11.94) (0.15) (0.11) (0.24)

15 J-12 100 35.08 �0.00 0.50 0.45 �0.00 0.49 �0.47 0.24
(5.08) (0.14) (0.16) (0.21) (0.15) (0.15) (0.22) (0.10)

S-1 92 35.57 0.10 0.56 0.47
(9.23) (0.17) (0.14) (0.26)

S-2 91 36.10 0.01 0.54 �0.48
(10.12) (0.15) (0.15) (0.24)

Entries for the QTL effect and location estimates are the average of 100 replicated simulations with the standard deviations
among the 100 replicates given in parentheses. J-12, joint mapping; S-1, separate mapping for trait 1; S-2, separate mapping for
trait 2.

whose highest test statistic values along the chromosome where p1 and p2 are the powers for traits 1 and 2, respec-
tively, and p12 is the proportion of the replicated simula-were greater than Piepho’s (2001) critical value. The

peak where the highest test statistic occurred was usually tions in which both traits are significant. For example,
among the 100 replicates, if a significant QTL effect isclose to the true QTL position. However, a significant

QTL was declared even if the peak was not exactly at detected in 50 samples for the first trait and a significant
QTL effect is detected in 80 samples for the secondthe true position. For the separate analyses of individual

traits, the statistical power was determined for the analy- trait, then p1 � 0.5 and p2 � 0.8. If QTL effects for both
traits are detected in 40 samples, then p12 � 0.4. Thesis of each trait as in the joint analysis. The critical value

was recalculated for each trait in each replicate. combined power for the separate analyses will be 0.5 �
0.8 � 0.4 � 0.9. Using this approach to calculating theTables 2 and 3 show the observed powers of QTL de-

tection, the mean, and standard deviations (SD) of the power, the combined power of the separate trait analyses
was almost identical to that of the joint analysis (dataestimated QTL locations and effects obtained from 100

replicated simulations. We compared the power of the not shown). Therefore, power increase in joint mapping
as opposed to separate mapping depends on how onejoint analysis with that of a single-trait analysis for each

trait separately. Joint analysis has a substantially higher defines the power in the separate analyses. From the
traditional definition of statistical power for single-traitpower than either single-trait analysis. We understand

that this may not be a fair comparison because joint analysis (Jiang and Zeng 1997), joint analysis has higher
power than single-trait analysis, i.e., joint power greateranalysis uses two traits while the single-trait analysis uses

only one trait. However, this has been the standard way than p1 and joint power greater than p2 . But the joint
analysis has an equivalent power to the combined powerfor comparison of joint mapping with separate mapping

(Jiang and Zeng 1997). One may want to redefine the for separate analyses if the combined power is defined
as p1 � p2 � p12 , i.e., joint power � p1 � p2 � p12 .power for the separate analyses as the ability to detect

at least one QTL effect (either additive or dominance) The QTL effects and their standard deviations esti-
mated from the joint mapping are comparable to thosein at least one trait. Under this definition of the power,

results of the two separate analyses may be combined obtained from separate analyses. No obvious advantage
of the joint mapping has been demonstrated from theso that the power is recalculated in the combined result.

The combined power analysis requires either redefining simulation studies with respect to the estimates of QTL
effects. The real advantage of the joint mapping overthe critical values by taking into account the multiple

tests, which is difficult because the two separate analyses separate analyses has been demonstrated by the in-
creased precision of the QTL position estimates in allmay be highly correlated, or simply using the sum of the

powers of separate analyses (with an appropriate adjust- situations examined (see Tables 2 and 3).
Overall, the parameter estimates are fairly close to thement) as the combined power, which is p1 � p2 � p12,
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TABLE 3

Comparison of joint mapping with single trait mapping from the second simulation experiment
(one binary trait and one quantitative trait)

Heritability Power Position
(%) Method (%) (cM) b01 b11 b21 b02 b12 b22 � 
 2

2

5 J-12 65 35.94 �0.01 0.21 0.41 �0.03 0.24 0.42 0.28 0.98
(9.40) (0.15) (0.17) (0.26) (0.11) (0.10) (0.18) (0.10) (0.10)

S-1 20 37.20 �0.14 0.35 0.59
(13.68) (0.15) (0.14) (0.24)

S-2 58 37.33 �0.04 0.28 0.43 0.97
(12.11) (0.10) (0.11) (0.14) (0.11)

10 J-12 97 34.98 �0.01 0.39 0.36 �0.01 �0.40 0.37 0.27 0.98
(6.50) (0.15) (0.13) (0.20) (0.09) (0.11) (0.15) (0.09) (0.10)

S-1 44 36.27 �0.01 0.51 0.38
(12.46) (0.19) (0.11) (0.29)

S-2 95 35.19 �0.02 �0.43 0.39 0.99
(8.32) (0.11) (0.10) (0.15) (0.10)

15 J-12 100 35.26 0.02 0.49 0.42 0.02 0.52 �0.43 0.23 0.96
(4.54) (0.15) (0.14) (0.22) (0.15) (0.09) (0.17) (0.09) (0.10)

S-1 80 35.34 �0.10 0.56 0.48
(9.37) (0.14) (0.12) (0.23)

S-2 99 35.15 0.01 0.49 �0.48 0.97
(6.49) (0.10) (0.11) (0.15) (0.10)

Entries for the QTL effect and location estimates are the average of 100 replicated simulations with the standard deviations
among the 100 replicates given in parentheses. J-12, joint mapping; S-1, separate mapping for trait 1; S-2, separate mapping for
trait 2.

true parametric values. The general trend follows our defined as w � 0 if the average score was within the
range 0–3 and w � 1 if the average score was 4–5. Weexpectation: high heritability tends to produce more

accurate estimates than low heritability. If we compare were provided only with the binary data, not the original
scores. The breeders were more interested in the ge-the joint mapping of two binary traits with that of one

binary and one continuous trait, we will note the power netic study of the qualitative dichotomous trait than in
the genetic study of the numerical scores. This explainsdifference between the two experiments. Experiment 2

shows higher powers than experiment 1. This observa- why we were approached by the breeders to analyze
their data using the new methods.tion also follows our expectation because binary data

are not as informative as continuously distributed data. Since the mapping population was a RIL population,
a slight modification of our method for F2 was required.Mapping rice blast resistance loci: Developing blast

resistance cultivars is one of the major objectives in rice We replaced the probability transition matrix of F2 by
that of F10 in calculating the conditional probability of(Oryza sativa L.) breeding in both tropical and temper-

ate countries. The causal organism of the rice blast, QTL genotype (Jiang and Zeng 1997). There was still
a 4% residual heterozygosity in the RIL lines (due toPyricularia grisea, is known for its high genetic variability,

allowing it to overcome the resistance of the host plant. F10 instead of F∞), which is sufficiently high to allow the
dominance effects to be estimated. We treated the plantA framework linkage map was developed using 284 F10

recombinant inbred lines (RILs) from a “Lemont” � responses to blast pathogen races IB54 and IG1 as two
separate binary traits. Therefore, joint mapping for both“Teqing” rice cultivar cross. A subset of 245 RILs innocu-

lated with two rice blast races, IB54 and IG1, was used traits and separate mappings for individual traits were
conducted for comparisons. The critical values of testto map loci responsible for the hypersensitive reaction.

Details of the experimental design, the measurements of statistics used to declare QTL were calculated using the
method of Piepho (2001).phenotypes, and genotypes can be found in the original

article by Tabien et al. (2000). The phenotypes were Table 4 shows the results of joint mapping and sepa-
rate analyses. The joint mapping may have a greaterevaluated using a completely randomized design with

three replicates. In other words, each line was evaluated power than separate analyses, as demonstrated by more
detected QTL and higher test statistic values. A total ofthree times for its reaction to each of the phathogen

infections. The original scores of the plant response five resistance loci were identified by the joint mapping
(qtl1–qtl5), but only four of them were detected withwere measured from grade 0 to grade 5. The average

score of the three replicates for each line was recorded separate analyses (qtl4 was missed). Of these detected
QTL, three of them (qtl1, qtl3, and qtl4) correspondedas the raw data observation. The binary phenotype was
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TABLE 4

QTL mapping result for rice blast resistance in the “Lemont” � “Teqing” crossing experiment

Position
Method QTL Chr. (cM) � b01 b11 b21 b02 b12 b22 �

J-12 qtl1 2 7.8 33.92 �0.43 0.20 �0.78 �0.72 0.85 �0.44 0.73
qtl2 3 137.4 25.22 �0.95 0.52 0.71 �1.00 0.37 0.56 0.65
qtl3 11 3.0 37.55 �1.08 �0.84 0.13 �1.22 �0.71 0.42 0.63
qtl4 12 54.2 25.01 �0.84 0.44 �1.81 �0.90 0.28 �1.75 0.69
qtl5 12 87.2 46.57 �1.02 0.75 0.51 �0.98 0.30 0.46 0.66

S-1 qtl2 3 137.4 23.35 0.61 0.96 1.06
qtl3 11 2.0 29.75 �0.87 0.35 1.17
qtl5 12 84.5 48.57 0.78 0.35 1.08

S-2 qtl1 2 7.8 28.95 1.11 0.10 1.06

� is the likelihood-ratio test statistic and � is the residual correlation. J-12, joint mapping for IB54 and IG1;
S-1, separate mapping for IB54; S-2, separate mapping for IG1. The critical values of the test statistic (Piepho
2001) used to declare QTL were 20.57 for the J-12 analysis and 18.15 for each of the separate analyses (S-1
and S-2). Chr., chromosome.

to Pi-tq5, Pi-lm2, and Pi-tq6 detected previously on the listed the probabilities of all the four possible phenotype
combinations for all genotypes of each detected QTLbasis of chi-square tests of individual marker-trait associ-

ations (Tabien et al. 2000). Two additional loci (qtl2 in Table 5. The penetrances of any particular genotypes
for each QTL may be calculated from this table. Forand qtl5) were detected on chromosomes 3 and 12, and

they were not reported in the previous study (Tabien example, if we define the penetrance of a genotype as
the probability that a plant with this genotype is affectedet al. 2000). For each of the two loci, the allele carried

by the Lemont parent was responsible for the resistance. by either of the two pathogens, the penetrance should
be calculated using 1 � Pr(IB54 � R and IG1 � R).None of the genetic parameters, e.g., the QTL effects

and positions, were estimable in the previous chi-square On the other hand, if we define the penetrance as the
probability that the plant is affected by both pathogens,tests conducted by the original authors (Tabien et al.

2000). The most striking result from the joint mapping then we should use Pr(IB54 � S and IG1 � S). The
marginal penetrance for one pathogen, say pathogenwas that all five resistance loci showed fairly consistent

effects against both P. grisea races, while different resis- IB54, should be defined as
tance loci were detected separately by the single-trait

Pr(IB54 � S) � Pr(IBS � S and IG1 � S)analyses.
It is worth mentioning that results of joint mapping � Pr(IBS � S and IG1 � R).

and separate mapping do not seem to be consistent in
Taking the first genotype of the first QTL, for example,the real data analyses. This inconsistency, however, did
we may be able to find penetrances defined in all possi-not occur in the simulation studies. The reason for this
ble ways, as shown below,is that we have taken a one-dimensional genome-scan

approach, which uses a single-QTL model. In the simula- Pr(affected by either pathogen|QQ ) � 1 � Pr(IB54 � R and IG1 � R)
tion studies, we indeed simulated a single QTL. There- � 1 � 0.3863 � 0.6137,
fore, the model adequately described the data. In the Pr(affected by both pathogens|QQ ) � Pr(IB54 � S and IG1 � S)
real data analysis, however, we used the single-QTL � 0.3457,
model to fit data controlled by apparently multiple QTL. Pr(affected by IB54|QQ ) � Pr(IB54 � S)
The remaining QTL not fitted in the model may have � Pr(IB54 � S and IG1 � S)
caused all the inconsistencies observed between the � Pr(IB54 � S and IG1 � R)
joint and the separate analyses. In addition, the back- � 0.3457 � 0.0637 � 0.4094,
ground QTL also have caused the observed high resid-

andual correlation. These problems can be solved by fitting
a multiple-QTL model (see the discussion in a later Pr(affected by IG1|QQ) � Pr(IG1 � S)
section).

� Pr(IB54 � S and IG1 � S)
Table 5 shows the probabilities of the four possible

� Pr(IB54 � R and IG1 � S)
phenotypic combinations under different genotypes of

� 0.3457 � 0.2043 � 0.55.
the identified QTL. For a single disease trait, penetrance
is defined as the probability that a specific QTL geno- Interested rice geneticists and breeders may want to

find out all kinds of penetrances of interest from Ta-type shows the affected phenotype. Penetrance has not
been defined for multiple disease traits. Therefore, we ble 5. This table may also help rice breeders develop
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TABLE 5

The penetrances of QTL genotypes for rice blast resistance in the “Lemont” � “Teqing” crossing experiment

QTL IB54 � S, IB54 � S, IB54 � R, IB54 � R,
QTL genotype IG1 � S IG1 � R IG1 � S IG1 � R

qtl1 QQ 0.3457 0.0637 0.2043 0.3863
Qq 0.0602 0.0548 0.0628 0.8222
qq 0.0504 0.2092 0.0084 0.7319

qtl2 QQ 0.1764 0.1582 0.0874 0.5779
Qq 0.2294 0.1683 0.0975 0.5048
qq 0.0304 0.0407 0.0551 0.8738

qtl3 QQ 0.0080 0.0207 0.0199 0.9514
Qq 0.0961 0.0752 0.1148 0.7139
qq 0.2190 0.1858 0.0874 0.5078

qtl4 QQ 0.1899 0.1533 0.0786 0.5782
Qq 0.0009 0.0034 0.0034 0.9924
qq 0.0516 0.0496 0.0496 0.8314

qtl5 QQ 0.1856 0.2048 0.0628 0.5468
Qq 0.1822 0.1188 0.1184 0.5806
qq 0.0224 0.0176 0.0784 0.8816

R, resistance; S, susceptibility. Q represents the allele from parent “Lemont” and q represents the allele from
parent “Teqing.”

an optimal marker-assisted seletion scheme to improve Atchley 1996; Yi and Xu 1999, 2000; Xu et al. 2003),
using likelihood-based methods or Bayesian methods.blast resistance in rice.
However, the method of separate analyses of individual
binary traits is, so far, the only approach currently avail-

DISCUSSION able. For the first time, we developed the full probability
model for joint mapping of multiple binary traits. TheJoint mapping offers several advantages over single-
method requires numerical multiple integrals, as wetrait analyses. First, joint mapping may increase statisti-
know that high-dimensional numerical integration can-cal power of QTL detection compared to single-trait
not be implemented easily in practice. Therefore, weanalyses. Second, joint analysis can improve the preci-
presented the method using two traits as examples. Insion of parameter estimation. Third, joint mapping pro-
real data analysis, one may pay more attention to thevides an opportunity to answer more questions related
information extracted from the data and thus may wishto the genetic architecture of complex traits. These have
to perform joint mapping for more than two traits usingbeen discussed by many authors (Jiang and Zeng 1995;
the general algorithm developed here. Two factors mayKorol et al. 1995; Mangin et al. 1998; Henshall and
limit the number of traits included in the analysis. OneGoddard 1999; Knott and Haley 2000) in multiple
is the computing time and the other is the difficulty inquantitative traits QTL mapping. Similar advantages
interpreting the results. For the rice blast data analysisalso have been demonstrated here in the joint mapping
with two binary traits, QTL search for the entire ricefor multiple binary traits. In this study, we paid more
genome took �10 min, which is quite reasonable. Forattention to the development of the EM algorithm
more than two traits, computing time is a big factor ofrather than to various hypotheses tests, because the lat-
concern. We highly recommended using a different butter have been fully addressed by Jiang and Zeng (1995).
fast numerical integration algorithm specially designedIn addition, the method was derived in the context
for high-dimensional integration, e.g., Monte Carlo inte-of interval mapping. Extension to composite interval
gration. The Bayesian method implemented via Markovmapping should be preferred in practice, but this is
chain Monte Carlo (MCMC) is an ideal tool to accom-simply a matter of implementation. Furthermore, the pro-
plish this. In addition, the Bayesian method can handleposed method for F2 populations can be easily extended
the multiple-QTL model with ease. To deal with the prob-to other types of populations, e.g., backcrosses or four-
lem of interpretation, one must have some intuitiveway crosses, as demonstrated by the extension from F2

knowledge about the trait relationships and hypothesesto RILs described in this study. The method differs from
underlying the traits. In the disease-resistance case, oneone mating design to another only by the possible differ-
would be interested not only in the number of locient number of genotypes and different transition matrix
involved, but also in the level of race specificity of indi-from one locus to another.
vidual resistance loci, since the hypersensitive responseIn fact, there has been much work on single binary

trait mapping (Hackett and Weller 1995; Xu and of rice to P. grisea is known to be controlled by the gene-
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for-gene system (Silué et al. 1992). However, this gene- tween host plants and their pathogens in natural and
agricultural systems (Leonard and Czochor 1980). Jointfor-gene system normally assumes that only two conse-

quences, resistance or susceptibility, would result from analyses of the correlated qualitative and quantitative
phenotypes may substantially increase the power of de-interactions between alleles at a resistance locus of host

plants and alleles at its corresponding avirulence locus tecting disease resistance loci and allow exploration of
in pathogens, which may not be always true, as is dis- new features of loci involved.
cussed in the following section; imperfect penetrance We are grateful to three anonymous reviewers for their suggestive
appears to be an important feature of resistance loci in- comments on early versions of the manuscript. This research was sup-

ported by the National Institutes of Health grants R01-GM55321 andvolved in the gene-for-gene interactions between host
the United States Department of Agriculture National Research Ini-plants and their pathogens.
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APPENDIX A: MOMENTS OF TRUNCATED BIVARIATE NORMAL DISTRIBUTION

Let zT � [z1 z2] be a vector of two variables distributed as a standardized bivariate normal distribution with
correlation �. Let [a1, c1] and [a2, c2] be the double truncation points on variables z1 and z2, respectively, and define

1 � Pr(z1 � c1, z2 � c2) as the area (integral) within the domain. Let us further define the first and second moments
of the truncated standardized bivariate normal distribution at z1 � c1 and z2 � c2 as

E(z 1) �
φ(c1)[1 � 	(d 1)] � �φ(c2)[1 � 	(d 2)]


1

E(z 2) �
φ(c2)[1 � 	(d 2)] � �φ(c1)[1 � 	(d 1)]


1

E(z 2
1) �


 � c1φ(c1)[1 � 	(d 1)] � �2c2φ(c2)[1 � 	(d 2)] � �(1 � �2)φ2(c1, c2; �)

1

E(z 2
2) �


 � c2φ(c2)[1 � 	(d 2)] � �2c1φ(c1)[1 � 	(d 1)] � �(1 � �2)φ2(c1, c2; �)

1

E(z 1z 2) �

� � �c1φ(c1)	(d 1) � �c2φ(c2)	(d 2) � (1 � �2)φ2(c1, c2; �)


1

, (A1)

where

d 1 �
c1 � �c2

√1 � �2
(A2)

and

d 2 �
c2 � �c1

√1 � �2
. (A3)

Equations A1 can be found from Tallis (1963). Similarly, we can calculate the first and second moments of truncated
standardized bivariate normal distribution at z 1 � a1 and z 2 � c2, z 1 � a2 and z 2 � c1, and z 1 � a1 and z 2 � a2,
respectively. We further denote the above four truncated domains by 1, 2, 3, and 4, respectively. The following
formula is used to calculate the moments under the double truncation with [a1, c1] and [a2, c2],

T �

1T1 � 
4T4 � 
2T2 � 
3T3



, (A4)
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where Ti , i � 1, 2, 3, 4, represents the arbitrary first moment of (A1), 
i represents the probability under the
corresponding truncated domain, and


 � �
c1

a1
�

c2

a2

φ2(z 1, z 2; �)dz 1dz 2 � 
1 � 
4 � 
2 � 
3 . (A5)

APPENDIX B: CONDITIONAL EXPECTATION AND VARIANCE VIA GIBBS SAMPLER

The basic idea of the Gibbs sampler is to find the distribution of one element, say yjk , conditional on the remaining
components in vector yj and sample yjk from the conditional distribution. Under the assumption of multivariate
normality for the liability vector, i.e., yj � Nm(xjB, R), the conditional density of a single component is univariate
normal with mean and variance described as follows. First, let us make the following matrix partitioning, yj �
[yjk yjk], where

yjk � [yj 1 . . . yj (k�1) yj (k�1) . . . yjm] (B1)

is a special notation for a subset of vector yj that excludes yjk ; i.e., the subscript k indexes all elements except k.
Using this special notation we can partition matrix B into B � [bk B k], where bT

k � [b0k b1k b2k] is the k th column of
matrix B and

Bk � [b1 . . . bk�1 bk�1 . . . bm] (B2)

is a submatrix of B with the k th column left out. Let us further partition matrix R into

R � �Rkk Rkk

Rkk Rkk
� , (B3)

where Rkk � 1, Rkk � [�1k . . . �(k�1)k �k(k�1) . . . �km], Rkk � RT
kk, and

(B4)

Note that Rkk is the submatrix of R with the kth row and k th column removed. The above matrix partitionings allow
us to define the conditional mean of yjk as

E(yjk|xj , �, yjk) � xjbk � RkkR�1
kk (yjk � xjBk)T (B5)

and the conditional variance as

Var(yjk|xj , �, yjk) � Rkk � RkkR�1
kk Rkk . (B6)

Having found the distribution of one component conditional on the remaining components, one can easily sample
each element from its perspective univariate normal distribution. The binary phenotype for each trait has not played
a role in the above sampling scheme. To incorporate this information, we need to sample each liability from a
truncated normal distribution with the mean and variance given above. For example, if wjk � 0, yjk should be sampled
only if yjk � 0. If wjk � 1, however, yjk should be sampled only if yjk � 0. In fact, we adopted the algorithm of Devroye
(1986) to simulate a variable from a truncated normal distribution. This special algorithm has a 100% rate of
acceptance. The Monte Carlo sampling process is repeated many times with the simulated yj forming a large sample,
y (1)

j , y (2)
j , . . . , y (M)

j , where M is a large number. Discarding the observations during the burn-in period and thereafter
saving one observation every few cycles, we get a sample containing roughly independent observations, from which
the sampled mean vector and the covariance matrix are calculated. The sampled mean and covariance matrix are
used in place of �jq � E(yj |wj , hq , �) and Ujq � Var(yj |wj , hq , �).
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APPENDIX C: DERIVATION OF THE EM ALGORITHM

The expected likelihood function: The complete-data log likelihood is

L(�, X, Y) � const �
n
2

ln|V | �
1
2 �

n

j�1

(yj � xjB)V�1(yj � xjB)T, (C1)

where � � {B, V} is the vector of parameters and X and Y are the missing values. The data are the phenotypes of
multiple binary traits, denoted by W.

The expectation of the complete-data log-likelihood function conditional on the current parameter values and
the data is

L(�|�(t )) � EX �EY |X �L(�, X, Y)|�(t ), W�	 � const �
n
2

ln|V | �
1
2 �

n

j�1

EX �EY |X �(yj � xjB)V�1(yj � xjB)T|�(t ), W�	, (C2)

where the expectation is taken with respect to the missing values, X and Y, conditional on the current parameters
�(t ) � {B(t ), V(t )} and the data W. Note that we use a special notation EY |X to denote conditional expectation with
respect to Y given X. The expectation of the complete-data log-likelihood (C2) is the target function subject to
maximization in the EM algorithm.

Maximization with respect to B: The expectation of the complete-data log-likelihood function relevant to B is

L(B|�(t )) � const �
1
2 �

n

j�1

EX �EY |X �(yj � xjB)(V(t ))�1(yj � xjB)T|�(t ), Wj�	

� const �
1
2 �

n

j�1

tr �(V(t ))�1EX �EY |X �(yj � xjB)T(yj � xjB)|�(t ), Wj�		

� const �
1
2

tr �(V(t ))�1 �
n

j�1

EX �EY |X �(yj � xjB)T(yj � xjB)|�(t ), Wj�		 . (C3)

The partial derivative of L(B|�(t )) with respect to B is

�

�B
L(B|�(t )) � �

1
2

�

�B
tr 
(V(t ))�1 �

n

j�1

EX �EY |X �(yj � xjB)T(yj � xjB)|�(t ), Wj�	�
� �

1
2

(V(t ))�1 �
n

j�1

EX 
EY |X � �

�B
(yj � xjB)T(yj � xjB)|�(t ), Wj ��

� (V(t ))�1 �
n

j�1

EX �EY |X �(yT
j xj � BTxT

j xj)|�(t ), Wj�	

� (V(t ))�1 �
n

j�1

EX �EY |X (yT
j xj |�(t ), Wj)� � (V(t ))�1BT �

n

j�1

EX �EY |X (xT
j xj |�(t ), Wj)� . (C4)

Setting (C4) equal to zero and solving for B, we obtain

B̂ �
⎧
⎨
⎩
�
n

j�1

EX �EY |X (xT
j xj |�(t ), Wj)�

⎫
⎬
⎭

�1 ⎧
⎨
⎩
�
n

j�1

EX �EY |X (xT
j yj |�(t ), Wj)�

⎫
⎬
⎭

. (C5)

In the main text, we used the following simple notation for the conditional expectations,

E(xT
j xj) � EX �EY |X (xT

j xj |�(t ), Wj)� and E(xT
j yj) � EX �EY |X (xT

j yj |�(t ), Wj)� .

With this short notation, the solution for B becomes

B̂ �
⎡
⎢
⎣
�
n

j�1

E(xT
j xj)

⎤
⎥
⎦

�1 ⎡
⎢
⎣
�
n

j�1

E(xT
j yj)

⎤
⎥
⎦
, (C6)

which concludes the proof of Equation 13 of the main text.
Maximization with respect to V: The expectation of the complete-data log-likelihood function relevant to V is

L(V|�(t )) � const �
n
2

ln|V | �
1
2 �

n

j�1

EX �EY |X �(yj � xjB(t ))V�1(yj � xjB(t ))T|�(t ), Wj�	

� const �
n
2

ln|V�1| �
1
2

tr
⎧
⎨
⎩
V�1 �

n

j�1

EX �EY |X �(yj � xjB(t ))T(yj � xjB(t ))|�(t ), Wj�	⎫⎬
⎭

. (C7)
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The partial derivative of this likelihood function with respect to V is complicated, but the derivative of L with respect

to V�1 is straightforward. On the basis of the invariance property of ML analysis, if V�1

�

is the MLE of V�1, then

(V�1

�
)�1 � V̂ should be the MLE of V. Therefore, we set the partial derivative of L with respect to V�1 equal to

zero and solve for V, as

�

�V�1
L(V |�(t )) �

n
2

�

�V�1
ln|V�1| �

1
2

�

�V�1
tr 
V�1 �

n

j�1

EX �EY |X�(yj � xjB(t ))T(yj � xjB(t ))|� (t ), Wj�	�
�

n
2

V �
1
2 �

n

j�1

EX �EY |X �(yj � xjB(t))T(yj � xjB(t ))|�(t ), Wj�	 . (C8)

Setting (C8) equal to zero and solving for V, we get

V̂ �
1
n �

n

j�1

EX �EY |X �(yj � xjB(t ))T(yj � xjB(t ))|�(t ), Wj�	 . (C9)

In the main text, we adopted a short notation for the expectation and denoted Equation C9 by

V̂ �
1
n �

n

j�1

E�(yj � xjB(t ))T(yj � xjB(t ))� . (C10)

This proves Equation 14 of the main text of the article.




