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ABSTRACT
We know little about the distribution of fitness effects among new beneficial mutations, a problem that

partly reflects the rarity of these changes. Surprisingly, though, population genetic theory allows us to
predict what this distribution should look like under fairly general assumptions. Using extreme value
theory, I derive this distribution and show that it has two unexpected properties. First, the distribution
of beneficial fitness effects at a gene is exponential. Second, the distribution of beneficial effects at a gene
has the same mean regardless of the fitness of the present wild-type allele. Adaptation from new mutations
is thus characterized by a kind of invariance: natural selection chooses from the same spectrum of beneficial
effects at a locus independent of the fitness rank of the present wild type. I show that these findings are
reasonably robust to deviations from several assumptions. I further show that one can back calculate the
mean size of new beneficial mutations from the observed mean size of fixed beneficial mutations.

ADAPTATION is a two-step process: (i) alleles having in a short time (Lenski and Travisano 1994; Wichman
et al. 1999; Holder and Bull 2001). But even in mi-different effects on fitness arise by mutation and

(ii) those alleles that improve fitness tend to increase crobes it has proved difficult to infer the distribution of
beneficial effects. The main reason is that the beneficialin frequency by natural selection. A good part of classical

population genetics focuses on the second step of this mutations seen in most experiments are not a random
sample of new mutations but rather those that haveprocess, including calculation of the probability that
escaped stochastic loss. [Most beneficial mutations arenatural selection will fix a new favorable mutation (Hal-
accidentally lost when rare; the probability of loss de-dane 1927) and of the rate at which such a mutation
pends on the size of the mutation’s fitness effect (Hal-will increase in frequency (Haldane 1924). But the first
dane 1927).] Imhof and Schlotterer (2001), forstep in adaptation, the origination of new beneficial
instance, recently attempted to characterize the distri-mutations, has been less well studied. We cannot say,
bution of fitness effects among new mutations in Esche-for instance, if beneficial mutations of small effect are
richia coli. But because their experimental design [amore common than those of large effect and, if so, how
variation on periodic selection (Atwood et al. 1951)]much more common.
depended on detection of favorable alleles that hadThis is unfortunate as a number of aspects of adaptive
reached appreciable frequencies, the distribution of ef-evolution depend on the distribution of beneficial fit-
fects observed was actually that for those “lucky” muta-ness effects. For example, the mean increase in fitness
tions that had escaped stochastic loss, not that for newthat occurs during substitution of a beneficial mutation
mutations. Similarly, Rozen et al. (2002) recently charac-must depend on the spectrum of effects among new
terized the distribution of fitness effects among fixedmutations presented to natural selection. Large jumps
beneficial mutations in E. coli. This distribution is alsoin fitness, for instance, are possible only if mutations of
not the same as among new beneficial mutations, aslarge favorable effect occur.
Rozen et al. (2002) emphasize. Indeed the distributionThe most direct approach to finding the distribution
of fitness effects among fixed mutations in asexual mi-of fitness effects among new beneficial mutations is em-
crobes is distorted by both stochastic loss and clonalpirical. But while possible in principle this approach
interference, the competitive exclusion of a mutationhas proved difficult in practice. There are two main
of small beneficial effect by one of larger beneficialproblems: beneficial mutations are rare and beneficial
effect in nonrecombining genomes or chromosome re-mutations of small effect are difficult to detect. Because
gions (Gerrish and Lenski 1998; Rozen et al. 2002).of this, study of experimental microbial populations
Although some experiments have attempted to assaywould seem to provide the best hope of characterizing
beneficial mutations before they are subject to stochasticthe distribution of beneficial effects: the combination
loss (Bull et al. 2000), these experiments are compro-of large population size and short generation time
mised by another of the problems noted above: theymeans that many beneficial mutations can be sampled
cannot detect beneficial mutations of small effect.

Given these difficulties, it seems worth asking if popu-
lation genetic theory can provide any insight into the1Author e-mail: aorr@mail.rochester.edu
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expected distribution of beneficial effects among new Although we know little about the fitnesses of mutant
mutations. Gillespie (1983, 1984, 1991) suggested that sequences at any gene, it is clear that most of the m
the answer is yes. Using extreme value theory, he showed mutations will be less fit than the present wild type. This
that the fitness gap between high fitness alleles is expo- follows from two facts. First, environments are autocor-
nential. If, for instance, we consider a wild-type allele related through time, making it unlikely that the best
that can mutate to a single beneficial allele, the differ- sequence today will be the worst tomorrow (Gillespie
ence in fitness between these two alleles should be expo- 1983). Second, a considerable fraction of mutations are
nentially distributed. This result has been widely cited unconditionally lethal or strongly deleterious, making
in the literature (Gerrish and Lenski 1998; Otto and it unlikely that the wild type would fall into the company
Jones 2000; Wahl and Krakauer 2000; Orr 2002; of such alleles. Given our nearly complete ignorance
Rozen et al. 2002). It has not, however, always been of mutant fitnesses at most genes, Kimura (1983) and
appreciated that Gillespie’s result concerns a special Gillespie (1983, 1984, 1991) suggested that one simply
case. As Otto and Jones (2000) emphasize, Gillespie assume that the fitnesses of alternative alleles at a gene
considers only the distribution of fitness differences be- are drawn from some probability distribution. Impor-
tween “adjacent” alleles, e.g., the difference in fitness tantly, in this article we do not need to specify this
between the second-best allele (the present wild type) distribution. We assume only that, of the relevant m �
and the best allele (the beneficial mutant). Gillespie’s 1 alleles (m mutations plus wild type), the wild type has
work thus provides the distribution of fitness effects relatively high fitness. The wild type can mutate, in other
among new beneficial mutations only if the present wild words, to a small number of beneficial sequences.
type can mutate to a single beneficial allele. We would Distribution of beneficial effects: To find the distribu-
obviously like to know the expected distribution of bene- tion of fitness effects among those few mutations that
ficial effects in the general case where the present wild are beneficial, we first rank the absolute fitnesses of the
type might mutate to two, or three, or four, etc., differ- m mutant and one wild-type sequences: the fittest allele
ent beneficial alleles. is given rank 1, the next fittest rank 2, and so on (Figure

Here I derive this distribution. I show that it has two 1). The wild-type allele has rank i, where i is small. If a
surprising properties: (i) the distribution of fitness ef- typical gene is L � 1000 bp long, then m � 3000 and
fects among new beneficial mutations is always exponen- i might range from, say, 2 to 25. The fitness gaps between
tial and (ii) the distribution is invariant; i.e., it has the adjacent alleles are labeled �1, �2, etc., as shown in
same mean regardless of the starting fitness rank of the Figure 1. Thus a mutation from wild-type allele i to
wild-type allele. Our key assumption is that the starting favorable allele i � 1 improves absolute fitness by �W �
wild-type allele has relatively high fitness. �i�1, while a mutation from wild-type allele i to favorable

allele 1 improves fitness by �W � �i�1 � . . . � �2 �
�1. The overall distribution, f(�W |i), of fitness effectsTHE MODEL AND RESULTS
among beneficial mutations when starting from wild-

The biological scenario: Following Gillespie’s (1983, type allele i is the mixed distribution formed by consid-
1984, 1991) “mutational landscape” model, I consider ering all such possibilities. In symbols,
a population that was, until recently, well adapted to
the environment. In particular, I consider a population

f(�W |i) �
1

i � 1 �
i�1

j�1

f(�W |i, j), (1)
that is essentially fixed for a wild-type sequence that
was—until the recent environmental change—the fittest

where f(�W |i, j) is the probability density of fitnessavailable at the gene. Following the environmental
effects when mutating from an allele of rank i to achange, the wild type has dropped in fitness. The wild-
beneficial allele of rank j.type sequence can mutate to many alternative sequences.

Equation 1 shows that if we knew �1, �2, . . . , �i�1 weOf these, natural selection is essentially constrained to
would know the distribution of fitness effects amongsurveying those that differ from wild type by single-
beneficial mutations. Although we have not specifiedpoint mutations, as first pointed out by Maynard Smith
the distribution of allelic fitnesses, we can, surprisingly,(1970; see also Gillespie 1984). (Double mutations are
still say something about these fitness spacings. Thetoo rare to be of much evolutionary significance; for
reason, as Gillespie (1983) first saw, is that adaptationthe same reason, epistasis among new mutations can be
is confined to the right-hand (fittest) tail of the distribu-ignored. Our results will hold for small genomes, as well
tion of allelic fitnesses. This fact lets us take advantageas for single genes, as long as genomes are small enough
of certain limiting results from extreme value theorythat most mutations arise singly.) Given a gene that is
that describe the behavior of the top several draws fromL bp long, we thus need to consider only the m � 3L
any reasonable distribution. Formally, the distributionssingle-mutational step mutant sequences. For now, we
we consider belong to the so-called Gumbel type, aassume that each of these m mutations arises with equal
broad category that includes most “ordinary” distribu-frequency, reflecting a constant and low per-nucleotide

mutation rate. This assumption is relaxed later. tions like the normal, lognormal, exponential, gamma,
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Figure 1.—The fitness ranks of the top sev-
eral alleles. In total m � 1 alleles (m mutant
alleles plus the wild type) are drawn from an
unknown distribution of allelic fitnesses and
ranked. The fittest allele has rank 1 and the
wild-type allele has rank i. The spacings be-
tween adjacent alleles, �, represent differences
in absolute fitness. These spacings grow small-
er as one moves toward the median allele, as
shown.

Weibull, logistic, etc. Roughly speaking, this class ex- (1/E[�1]) exp(��W/E[�1]). This distribution is identi-
cal to that when starting at i � 2. Remarkably, thiscludes only exotic distributions like the Cauchy (which

has no moments) and many (though not all) distribu- independence from fitness rank is a general result. This
is proved in the next section where the moment-generat-tions that are bounded on the right (Gumbel 1958;

Gillespie 1983, 1984, 1991). The appendix provides ing function (mgf) of f(�W |i) is derived.
The general result: To find the mgf of f(�W |i) wemathematical details. Although most extreme value the-

ory holds asymptotically as the number of draws from first find the mgf for �W conditional on mutating to a
favorable allele of rank j (where j � i as the mutationa distribution approaches infinity, the fact that a wild-

type sequence can mutate to a very large number of is beneficial). Because �W |i, j � �j � �j�1 � . . . � �i�1

and each �n is independent, the mgf for �W |i, j equalsalternate sequences suggests that these asymptotic re-
sults should provide good approximations. the product of the mgf’s for the individual �n . But the

�n’s are exponentially distributed with means E[�k] �For our purposes, the most important of these limit
theorems describes the spacings, �j, between the top E[�1]/k. The conditional mgf is thus
several draws, i.e., the fittest several alleles. Although

M(t )|i, j � � 1
1 � E [�1]t/j� � 1

1 � E [�1]t/( j � 1)� . . . � 1
1 � E [�1]t/(i � 1)� .for any particular wild-type sequence and set of mutants

the �j’s are constants, these extreme spacings will in (3)
general be random variables. Extreme value theory

The overall distribution of fitness effects is a mixtureshows that these �j’s are asymptotically independent
distribution, i.e., one weighted by the probability of mu-exponentially distributed random variables regardless of
tating to each favorable allele (Equation 1). Becausethe distribution of allelic fitnesses. Theory also shows
the mgf of a mixture distribution equals the weightedthat these spacings grow smaller as one moves toward
average of the conditional mgf’s (Chatfield and Theo-the median allele as shown in Figure 1. In particular,
bald 1973) and the probability of mutating to a particu-E[�j] � E[�1]/j, where the constant E[�1] depends on
lar favorable allele is uniform over the integers 1 � j �the form of the distribution of allelic fitnesses (Gumbel
i � 1, we have1958; Weissman 1978).

Because we know the distribution of the top spacing,
M(t)|i � �

i�1

j�1

M(t)|i, j Pr{ j | j � i }�1, we also know the distribution of beneficial effects
when i � 2 and only one favorable mutant is available.
It is

�
1

i � 1 �
i�1

j�1
��

i�1

k�j

1
1 � E[�1]t/k�

f(�W |i � 2) �
1

E[�1]
e��W/E [�1] . (2)

�
1

1 � E[�1]t
. (4)

In words, this distribution is exponential with mean
This is the mgf for an exponential distribution withE[�1], as first noted by Gillespie (1991). We thus know
mean E[�1] and is independent of i. Thus the distributionthe distribution of beneficial fitness effects among new
of fitness effects among beneficial mutations is exponential withmutations if adaptation always involves moving from the
mean E[�1] independent of the fitness rank of the wild-typesecond-best (i � 2) to the best (j � 1) available allele.
allele. The spectrum of mutational fitness effects avail-But what if the wild-type allele has rank i � 3 and two
able to adaptation is, in other words, invariant: althoughfavorable mutants are possible? If the population were
the value of E[�1] might vary from gene to gene, theto jump to the second-best allele, we have f(�W |i � 3,
expected distribution of beneficial effects at a givenj � 2) � (2/E[�1])exp(�2�W/E[�1]); if the popula-
locus is independent of the fitness rank of the currenttion were to jump to the best allele, we have (from the
wild type, where we assume only that wild-type fitnessconvolution), f(�W |i � 3, j � 1) � (2/E[�1])[exp

(��W/E[�1]) � exp(�2�W/E[�1])]. Substituting the rank is high enough to use extreme value theory.
Figure 2 shows the results of exact computer simula-previous two equations in (1), we find that the overall

distribution of beneficial fitness effects is f(�W |i � 3) � tions that test the accuracy of the above asymptotic the-
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ory. A gene of length L � 1000 bp was simulated. For recorded. Allelic fitnesses were assumed to be exponen-
tial, gamma, or half-normal (see Figure 2 legend foreach distribution of allelic fitnesses, the fitnesses of m �

3000 mutant alleles plus one wild type were randomly parameter values). Simulations were begun with wild-
type fitness ranks of i � 2, 10, or 25 (these differentdrawn from the distribution of allelic fitnesses, ranked

in fitness, and the difference in fitness between the wild ranks translate into considerable differences in starting
wild-type fitnesses given the distributions of allelic fit-type and a randomly chosen beneficial mutation was
nesses used). Ten thousand replicates were performed
for each set of conditions. Figure 2 shows that the theory
nicely predicts the distribution of fitness effects among
beneficial mutations regardless of the underlying distri-
bution of allelic fitnesses. More important, the distribu-
tion of fitness effects among beneficial mutations is ap-
proximately invariant over a wide range of i, including
those where it was unclear whether extreme value theory
would hold (e.g., i � 25), although some deviations
appear at large i in the half-normal case. Because these
deviations grow as i increases, it would seem unwise to
extrapolate our results to much larger i (see Figure 2
legend).

It might seem that our results may simply reflect the
memoryless property of exponential distributions. Many
familiar distributions have an “exponential tail” in the
sense that, as x gets large, (1 � F(x � y))/(1 � F(x)) →
exp(�cy), where c is a constant; in words, the probability
of an increase of size y falls off exponentially and is
independent of the precise “starting point,” x. The
memoryless property of exponential tails cannot, how-
ever, fully explain our results. Many distributions of the
Gumbel type do not show such tail behavior, e.g., normal
or lognormal distributions and those that are bounded
on the right. Nonetheless, these distributions still have
independent exponential extreme spacings and still give
rise to an exponential distribution of fitness effects
among new beneficial mutations. Our results hold asymp-
totically for all distributions in the domain of attraction
of the Gumbel extreme value distribution whether or
not they have “exponential tails” (see the appendix).

Robustness of results: The above results are asymptot-
ically independent of the shape of the distribution of
allelic fitnesses (so long as it is of the Gumbel type) and
i (so long as it is small). The above results are also
robust to strong selection; indeed no weak selection
approximations have been made.

Two assumptions, however, are potentially important.
First, I assumed that each of the m mutations appears

Figure 2.—Distribution of fitness effects among beneficial
mutations: results of exact computer simulations. Three cases
are shown: those in which the distributions of absolute allelic
fitnesses were (a) exponential with mean � 1, (b) gamma
with shape parameter of 2 and scale parameter of 2 (mean �
1), and (c) half-normal with mean � 1. The distribution of
beneficial effects is exponential (straight line on a semilog
plot) and essentially identical despite different starting wild-
type fitness ranks (i � 2, 10, and 25). This invariance holds
even at larger i (e.g., i � 50) in the exponential and gamma
cases, although deviations occur in the half-normal case.
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with equal frequency. It is easy to show that unequal
mutation rates do not affect the above findings so long
as all alleles are equally likely to have a given fitness
rank; i.e., mutationally common alleles are no more or
less likely to have a given fitness rank than are muta-
tionally rare alleles. Formally, the chance that the next
mutation has rank j is Pr{ j } � �m

k�1Pr{rank j |k} Pr{k},
where Pr{k} is the probability that the next mutation is
to a particular allele k of the m possible. So long as all
alleles are equally likely to have a given fitness rank, it
is trivially true that Pr{ j } � (1/m)�m

k�1Pr{k} � 1/m,
whether or not Pr{k} is the same for all m alleles. Consid-
ering only that subset of mutations that are beneficial,
an analogous argument shows that Pr{ j | j � i } � 1/(i
� 1), as in Equation 4. Thus Equation 4—and our key
conclusion—remains correct whether or not all alleles
are mutated to with equal frequencies. This was con-
firmed in computer simulations (not shown).

Second, following Gillespie (1983, 1984, 1991), I
assumed that the distribution of allelic fitnesses is well
behaved: it is a simple monotonically decreasing or uni-
modal distribution (e.g., exponential, gamma, half-nor-
mal). But the actual distribution of allelic fitnesses at a
locus might be a complicated mixture of several underly-
ing distributions. To test the robustness of the analytic
results, I used computer simulations to find the distribu-
tion of beneficial fitness effects when sampling from

Figure 3.—Mixture distributions of allelic fitnesses. Top,various “ugly” mixture distributions of allelic fitnesses.
allelic fitnesses are a mixture of two distributions (one gammaFigure 3 shows two such mixture distributions. One is
and the other normal). Bottom, allelic fitnesses are a mixturea mixture of two underlying distributions and the other of four distributions (one gamma and three normal).

is a mixture of four underlying distributions. (In both
cases, normal distributions contributed to the mixture
distribution as the normal represents a near worst-case

allele. Natural selection will, therefore, choose from thescenario, which converges to the extreme value distribu-
same spectrum of mutational effects whether adaptationtion very slowly (Gumbel 1958).) Figure 4 shows that
starts from the second-best possible allele (i � 2) orthe distribution of fitness effects among beneficial muta-
one that is considerably worse (e.g., i � 10).tions remains roughly exponential in both cases. The

These results depend on robust limit theorems fromdistribution of fitness effects is also reasonably insensi-
extreme value theory and so are quite general. Theytive to starting i, which again ranged from i � 2 to i �
are independent of the distribution of allelic fitness (so25. Figure 4 also shows, however, that as the tail of the
long as it is of the Gumbel type), starting wild-type fitnessmixture distribution grows lumpier, the distribution of
(so long as it is high), strength of selection, and hetero-beneficial effects becomes less well behaved. Our ana-
geneity in mutation rates across sites. Although our re-lytic results are therefore reasonably, but not indefi-
sults rest on asymptotic theory and so must be viewednitely, robust to mixture distributions of allelic fitnesses.
as approximations (especially as different parent distri-
butions converge on the extreme value distribution at

DISCUSSION different rates), computer simulations suggest that they
are good approximations. Our results also hold in bothFollowing Gillespie (1983, 1984, 1991), I have as-
sexual and asexual species and recombining and nonre-sumed that allelic fitnesses are drawn from some (un-
combining chromosome regions. There would seem toknown) probability distribution and that the present
be good reason, then, for thinking that the distributionwild-type allele, while no longer the fittest sequence, is
of beneficial fitness effects among new mutations at anear the top in fitness. Under these assumptions, I have
locus might be generally approximately exponentialshown that the distribution of fitness effects (�W)
and invariant. (There could, of course, be exceptions.among new beneficial mutations is exponential. More
One predicted by the present theory involves any locussurprisingly, the distribution of beneficial effects shows
at which the wild type is of very low fitness. Extremean invariance property: it remains the same regardless

of the fitness rank (and thus fitness) of the wild-type value theory does not hold here. Another is where the



1524 H. A. Orr

cients are fitness increases normalized by wild-type fit-
ness: s � �W/W�, where W� is the fitness of the wild-
type allele. Because for any given i, �W and W� are
both random variables, it is easy to show that selection
coefficients do not enjoy the above invariance property.
Instead the mean selection coefficient among beneficial
mutations is E[s] � E[�1/(W1 � �1 � . . . �i�1)], which
shrinks slightly with smaller i. Numerical work shows,
however, that the distribution of s remains roughly expo-
nential over small i (not shown; see also Rozen et al.
2002).

The above theory, when combined with previous
work, allows us to back calculate the mean fitness effect
of new beneficial mutations from the mean fitness effect
of fixed beneficial mutations, which are much more eas-
ily assayed in microbial experimental evolution work.
Because large beneficial mutations have a greater chance
of going to fixation than do small ones, the mean fitness
increase among fixed beneficial mutations will obviously
exceed (or at least equal) that among new beneficial muta-
tions. Orr (2002) showed that, under the same assump-
tions as made here, the mean increase in fitness among
fixed beneficial mutations in sexuals is E[�Wfixed] �
2(i � 1)E[�1]/i. This quantity ranges between E[�1] and
2E[�1]. Because the present theory shows that E[�1]
asymptotically equals the mean fitness effect of new
beneficial mutations, it immediately follows that

E[�Wfixed]
2

� E[�Wnew] � E[�Wfixed] ; (5)

i.e., the mean effect of new beneficial mutations is
bounded between one-half and one times the mean
effect of fixed beneficial mutations. Although this back
calculation assumes that beneficial mutations enjoy in-Figure 4.—The distribution of fitness effects among bene-
dependent fates, many asexual microbes having smallficial mutations when sampling from the mixture distributions

of allelic fitnesses shown in Figure 3 (computer simulations; genomes can be made to evolve under experimental
semilog plot). The top corresponds to a mixture of two distri- conditions of effective sexuality (e.g., sufficiently small
butions; the bottom corresponds to a mixture of four distribu- population sizes that beneficial mutations arise one attions.

a time). It thus appears that a notoriously elusive quan-
tity—the mean fitness effect of new beneficial muta-
tions—can be estimated in a way that is, at least indistribution of allelic fitnesses has a very lumpy tail; see
principle, straightforward.the above simulations.)

Although theoretical population genetics has histori-Though counterintuitive, the invariance property
cally focused on neutral and deleterious mutations, re-among beneficial mutations can be explained heuristi-
cent theory has turned to adaptation (Gerrish andcally. If adaptation starts from a high-quality wild-type
Lenski 1998; Hartl and Taubes 1998; Orr 1998, 2000,allele (i � 2), the jump to the best allele usually involves
2002, 2003; Gerrish 2001). This body of theory now letsmedium-sized fitness increases (�1; see Figure 1). But
us describe how a uniform rate of mutation to variousif adaptation starts from a lower-quality allele (i � 3),
mutant sequences gets transformed under fairly broadjumps to better alleles involve some fitness increases
conditions into an exponential distribution of beneficialthat are usually smaller than before (�2) and an equal
fitness effects of mean E[�Wnew] � E[�1]. In sexuals thisnumber that are usually larger than before (�1 � �2).
distribution then gets transformed by probabilities ofOn average these balance and the mean fitness increase
fixation into one of mean E[�Wfixed] � 2(i � 1)E[�1]/iis unchanged. This argument generalizes for any start-
(Orr 2002). This distribution, which characterizes aing wild-type fitness rank i, so long as it is small.
single step in adaptation, in turn gets transformed dur-It is important to note that our results concern fitness

increases, not selection coefficients. Selection coeffi- ing the stepwise approach to a fixed optimum into a
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tion of factors fixed during adaptive evolution. Evolution 52:roughly exponential distribution of fitness effects (Orr
935–949.

1998, 2002; the former article considered phenotypic Orr, H. A., 2000 Adaptation and the cost of complexity. Evolution
54: 13–20.effects and the latter selection coefficients; in both cases,

Orr, H. A., 2002 The population genetics of adaptation: the adapta-however, �W is also roughly exponential). Thus both
tion of DNA sequences. Evolution 56: 1317–1330.

the distribution of beneficial effects among new muta- Orr, H. A., 2003 A minimum on the mean number of steps taken
in adaptive walks. J. Theor. Biol. 220: 241–247.tions and the distribution of effects among the muta-

Otto, S. P., and C. D. Jones, 2000 Detecting the undetected: estimat-tions ultimately fixed should be roughly exponential,
ing the total number of loci underlying a quantitative trait. Genet-

at least when adaptation uses new mutations and ap- ics 156: 2093–2107.
Rozen, D. E., J. A. G. M. de Visser and P. J. Gerrish, 2002 Fitnessproaches a constant optimum. It will obviously be of

effects of adaptations in microbial populations. Curr. Biol. 12:some importance to determine if similar patterns char-
1040–1045.

acterize adaptation when evolution proceeds from the Wahl, L. M., and D. C. Krakauer, 2000 Models of experimental
evolution: the role of genetic chance and selective necessity.standing genetic variation and/or approaches a moving
Genetics 156: 1437–1448.optimum.
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g(t) need not be a constant. Indeed in the case of thelim
t → xF

f 	(t)(1 � F(t))
[ f(t)]2

� �1. (A1) normal and lognormal distributions, as well as in the
case of bounded distributions, g(t) is not a constant.

It is easy to show that familiar distributions like the Nonetheless, these distributions are in the domain of
exponential, gamma, normal, lognormal, etc., fulfill this attraction of the Gumbel extreme value distribution.
condition. If the maximum of a distribution converges to a partic-

The necessary and sufficient condition for f(x) to be ular extreme value distribution, the second and third,
in the domain of attraction of the Gumbel extreme etc., largest-order statistics will converge to an asymp-
value distribution has also been found. It is totic distribution of related functional form; i.e., these

order statistics belong to the same type as the maximum.lim
t → xF

1 � F(t � xg(t))
1 � F(t)

� e�x , (A2) Weissman (1978) showed that all parent distributions
in the domain of attraction of the Gumbel extreme

where g(t) is a strictly positive function. It is important value distribution have spacings between extreme order
to note that this condition is not identical to having an statistics that are asymptotically independent exponen-
“exponential tail” in the usual sense of (1 � F(t � x))/ tial random variables that behave as described in the

text.(1 � F(t)) → exp(�x) for large t. The reason is that


