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ABSTRACT
Marked-assisted genetic improvement of agricultural species exploits statistical dependencies in the joint

distribution of marker genotypes and quantitative traits. An issue is how molecular (e.g., dense marker
maps) and phenotypic information (e.g., some measure of yield in plants) is to be used for predicting the
genetic value of candidates for selection. Multiple regression, selection index techniques, best linear
unbiased prediction, and ridge regression of phenotypes on marker genotypes have been suggested, as
well as more elaborate methods. Here, phenotype-marker associations are modeled hierarchically via
multilevel models including chromosomal effects, a spatial covariance of marked effects within chromo-
somes, background genetic variability, and family heterogeneity. Lorenz curves and Gini coefficients are
suggested for assessing the inequality of the contribution of different marked effects to genetic variability.
Classical and Bayesian methods are presented. The Bayesian approach includes a Markov chain Monte
Carlo implementation. The generality and flexibility of the Bayesian method is illustrated when a Lorenz
curve is to be inferred.

THE availability of a plethora of markers has led to arrive at improved (in some statistical sense) predictions
of genetic merit of candidates for selection in a breedingconsideration of the issue of the extent to which

molecular information can be used to advantage in ge- program. These two objectives may not be disjoint (e.g.,
netic improvement programs of agricultural species, Fernando and Grossman 1989). However, genetic car-
such as maize or dairy cattle. There is a large body of tography of QTL is not a requirement for prediction
literature on this matter (e.g., Soller and Beckmann of genetic merit or marker-assisted selection (Lange
1983; Smith and Simpson 1986; Lande and Thompson and Whittaker 2001). In fact, remarkable advances
1990); Whittaker (2001) gives a review. Marker- have been made in prediction of breeding values in
assisted selection can be effective as long as part of livestock since the introduction of the best linear unbi-
the genetic variance can be associated with segregating ased predictor (BLUP; Henderson et al. 1959; Hender-
marker loci (Lande and Thompson 1990). son 1973). This method uses only phenotypic and pedi-

The basic idea in marker-assisted selection is to ex- gree information, with the QTL viewed only in an
ploit statistical dependencies (linkage disequilibrium) abstract manner. On the other hand, it has been argued
existing in the joint distribution of marker and quantita- and shown, at least in simulations, that molecular infor-
tive trait loci (QTL) genotypes. For example, when two mation may enhance the accuracy of selection (e.g.,
inbred lines are crossed, the disequilibrium is manifest Whittaker et al. 2000).
in the F2 generation. On the other hand, when there is Our concern is with statistical models and methods
linkage equilibrium at the population level, only the for inferring genetic merit using molecular and pheno-
joint distribution of marker and QTL genotypes within typic information. The objective is to describe pheno-
a family is nontrivial (Ollivier 1998). Georges et al. type-marker associations using multilevel hierarchical
(1995) have exploited high levels of within-family dis- linear models. The setting is mainly as in Whittaker
equilibria in dairy cattle populations for QTL mapping. et al. (2000) and Lange and Whittaker (2001), i.e.,
Most livestock populations have some disequilibrium situations where conditional independence of genetic
due at least to chance (small effective size), as shown sampling can be assumed, such as in an F2 population
by Farnir et al. (2000). derived from a cross between inbred lines. Model fea-

Linkage disequilibrium between markers and QTL tures include chromosome-specific effects, spatial asso-
can be used for two main purposes: (1) to infer genomic ciations of markers within chromosomes, existence of
location and effects of QTL affecting a trait and (2) to background genetic variability, and heterogeneity among

families, if some such clustering exists. Classical and
Bayesian methods are described. First, we present a
mixed-effects model formulation and a BLUP imple-1Corresponding author: Department of Animal Sciences, 1675 Obser-

vatory Dr., Madison, WI 53706. E-mail: gianola@calshp.cals.wisc.edu mentation, with the dispersion components estimated
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by some likelihood-based procedure. An extension of Assume that all individuals have been typed for all mark-
the mixed-effects model is given subsequently. Finally, ers (this is not realistic, but see the discussion). Then,
a Bayesian formulation is presented, including a Markov the unobserved genetic value can be modeled as
chain Monte Carlo procedure for drawing samples from
target posterior distributions. Possible applications to ai � �

l

k �1

mik�k � εi � m �i � � εi , (4)
outbred populations are discussed.

where � � {�k} is of order l � 1. We refer to �k as the
“marked effect” of marker locus k on genetic value, whileA MIXED-EFFECTS MODEL FORMULATION
εi can be interpreted as some residual or “background”

Hierarchical representation: Let the phenotypic value genetic effect not involved in the association between
of individual i for a quantitative trait in an F2 from a genetic value and the markers but, yet, having an effect
cross between inbred lines be described by the model on phenotype. The vector � is the gradient or regression

of the unobservable additive genetic value on the observ-yi � x �i � � ai � ei ; i � 1, 2, . . . , n. (1)
able marker genotype, that is, � � �a i/�m i. As noted
by Lande and Thompson (1990), dominance can beHere, the p � 1 vector � contains some systematic effects

representing, e.g., year of harvest, level of fertilization, introduced by expanding (4) as, e.g.,
or plant density; x �i is a known incidence vector relating

a i � m �i �A � m 2 �i �D � εi ,� to yi ; ai is an unobserved genetic value; and ei is an
independently distributed random residual reflecting

where m 2 �i is a row vector with elements consisting ofenvironmental variability or inadequacy of the model.
the squares of the corresponding entries of mi. Interac-It is assumed that the genetic value a i results from an
tions between marked effects for different marker lociunknown number (K , say) of QTL acting additively, so
can be modeled via cross-products between appropriatethat
elements of mi . For simplicity, additivity of marked ef-
fects is assumed throughout.ai � �

K

k �1

�kQ ik ,
The second level of the hierarchy is represented by

a distribution describing the uncertainty about geneticwhere Qik is the genotype at biallelic (assumed for sim-
values, given the marked effects, that is the backgroundplicity) locus k for individual i and �k is the per-allele
genetic variability. We adopt the Gaussian model,effect. If a i is random, (1) is a special case of the well-

known mixed linear model (e.g., Henderson 1973). ai |mi ,�, � 2
ε � N(m �i �, � 2

ε),
When K goes to infinity this becomes the classical infini-
tesimal model of quantitative genetics. where � 2

ε is the background additive genetic variance.
It is conceptually convenient to develop model (1) It is assumed (rightly or wrongly, depending on the

hierarchically. The first level of a Gaussian hierarchy is context), given the marker genotypes and �, that the
given by “background” genetic effects εi of different individuals

are mutually independent. This implies that either therey i |�, a i , � 2
e � N(x �i � � a i, � 2

e) , (2)
is no family structure or that, conditionally on the

where N (·) indicates a normal distribution and �2
e is marked effects �, the family structure is not relevant.

the environmental variance. If the n environmental devi- Family clustering is taken up in a later section. In matrix
ates are independently and identically distributed, this notation, and consistently with (4), the assumption of
leads to the matrix representation independence leads to

y |�, a, � 2
e � N(X� � a, I� 2

e) , (3) a |M , �, � 2
ε � N(M�, I� 2

ε), (5)

where X is an n � p incidence matrix assumed (without where M is the n � l matrix of known marker genotypes.
loss of generality) to have full-column rank, a � {ai}, Unless there is some prior knowledge about � 2

e and
and I denotes an identity matrix, in this case n � n.

� 2
ε (or some clustering of individuals, such as a familySuppose next that individual i has been typed for marker

structure), the background effect εi must be lumpedgenotypes at each of l loci; this is represented by the
together with ei, because of nonidentifiability. On thevector
other hand, if the variances � 2

ε and � 2
e are known a

priori, it is possible to “predict” εi distinctly from ei , inm �i � [mi 1 , mi 2 , . . . , mi l],
the same way that one can predict additive genetic and

with environmental effects via BLUP when dispersion param-
eters are known.

m ij �






�1 for aa
0 for Aa
1 for aa .

Whittaker et al. (2000) and Whittaker (2001) treat
� as a fixed parameter and employ ridge regression for
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estimation of this vector. From a Bayesian perspective where MM�� 2
� is the variance-covariance matrix of

marked genotypic values, conditionally on the marker(e.g., Lindley and Smith 1972; Zellner and Vandaele
genotypes M observed in the experiment. In scalar nota-1975), this is equivalent to regarding � as having the
tion, the “total variance” of a single observation isdistribution

� |� 2
� � N(0, I� 2

�), (6) Var(y i |�, � 2
� , � 2

ε, � 2
e, M) � �

l

k �1

m 2
ik �

2
� � �2

ε � � 2
e .

with � 2
� elicited in some manner. Assumption (6) is

Hence,adopted as the third level of the hierarchy. In a fre-
quentist setting, the assumption states that the marked �l

k �1m 2
ik �

2
�

Var(ai)
� �l

k �1m 2
ik �

2
�

�l
k �1m 2

ik �
2
� � � 2

ε
(10)effects � are drawn at random from the multivariate

normal distribution (6) in each conceptual repetition
of a crossing experiment. In a Bayesian setting, this is interpretable as the fraction of genetic variance attrib-
would be part of the prior ensemble of the model; this utable to marked effects, in an experiment repeated
is discussed later. Regression coefficients for markers over and over with the marker genotypes fixed across
that are not adjacent to QTL are expected to be null replications. The variance “due to” the association with
under the assumption of no interference (Zeng 1993). the markers is �l

k �1m 2
ik �

2
� , which depends nontrivially

However, without knowing the location of the QTL in on m i , the specific marker genotype of individual i. On
relation to the markers (the usual situation), it is not the other hand, since the marker genotypes vary at ran-
obvious how such a prior consideration can be incorpo- dom over replications,
rated into the model. Since (6) is a prior distribution

Var(M�) � E[Var(M�|M)] � Var[E(M�|M)]in the Bayesian sense, its influence on inferences can
be tempered by measuring enough individuals. At this � � 2

�E(MM�), (11)
point, it suffices to say that � can be treated as a random

where the expectation and covariance matrix are takeneffect merely as a device for obtaining possibly improved
over the distribution of marker genotypes in the popula-(in some sense) predictions of genetic value. Hayes
tion. Knowledge of the distribution of marker genotypesand Goddard (2001) assumed that unobservable gene
is needed for evaluation of (11).or chromosome effects followed a Gamma distribution,

Best prediction and best linear prediction: Underso these effects would be strictly positive even though
standard assumptions, with � and the variance compo-estimated values can be negative. Meuwissen et al.
nents � 2

�, � 2
ε, and �2

e known, the joint distribution of �(2001) used Gamma deviates for simulating gene ef-
and ε, given the phenotypes and the marker genotypes,fects, but then “tossed a coin” to determine their sign.
is the multivariate normal process:Therefore, it is unclear what would be gained from

assuming a Gamma distribution for the elements of
�. Note that (6) implies that the “marked effects” are
independent and identically distributed, but this as-





�

ε




|�, � 2

� , � 2
ε , � 2

e , y, M � N








�
�

ε

�




,




V�� V�ε

Vε� Vεε









.
sumption is relaxed later on. The normality assumption

(12)

Here,
in (6) is probably adequate enough and facilitates com-
putation significantly.

The three-stage hierarchy can be condensed by in-
serting (5) into (3), so that the model describing the
phenotypic values can be written as






�

�

ε

�






�




M�M � I	� M�

M I � I	ε





�1 



M�(y � X�)
y � X�




,

y � X� � a � e (7)

(13)

where 	� � � 2
e/� 2

�, 	ε � � 2
e/� 2

ε , and
� X� � M� � ε � e , (8)

where ε � {εi} and e � {ei}. This can be viewed as a fre-
quentist mixed-effects model, where � is a fixed location 




V�� V�ε

V�ε Vεε





�




M�M � I	� M�

M I � I	ε





�1

� 2
e . (14)

parameter and � and ε are random terms. Unless addi-
tional assumptions are made or some knowledge about

The best linear predictor [BLP; also the best predictorthe partition of variance in the population is available,
(BP) under normality; Henderson 1973] of the unob-εi and ei are “confounded.” However, it is conceptually
served total genetic values a � M� � ε isuseful to maintain these two vectors as distinct. The

marginal (frequentist) distribution of the phenotypes
induced by model (8) is the normal process E(M� � ε|�, � 2

�, � 2
ε, � 2

e, y, M) � M�

�

� ε�

� a

�

, (15)

and the variance-covariance matrix of the predictiony |�, � 2
�, � 2

ε, � 2
e, M � N(X�, MM�� 2

� � I(� 2
ε � � 2

e)) , (9)



350 D. Gianola, M. Perez-Enciso and M. A. Toro

error (under normality this is also the covariance matrix gives �

��

� BLUP(�) and ε

��

� BLUP(ε). Further,
of the conditional distribution of a) is





C�� C�ε

Cε� Cεε





�




M�PM � I	� M�P

PM P � I	ε





�1

� 2
e . (19)Var[M� � ε � (M�

�

� ε

�

)|�, � 2
�, � 2

ε, � 2
e, M]

� Var(M� � ε|�, � 2
�, � 2

ε, � 2
e, y, M) The BLUP of a � M� � ε is

� [M I]




M�M � I	� M�

M I � I	ε





�1 



M�

I




� 2

e . (16) a

��

� E(M� � ε|� 2
�, � 2

ε, � 2
e, w, M) � M�

��

� ε

��

,

and the variance-covariance matrix of the prediction
The best predictor has the smallest possible mean- errors is
squared error of prediction. Hence, it would be difficult
to improve upon this, provided that the model is reason- Var[M� � ε � (M�

��

� ε

��

)|� 2
�, � 2

ε, � 2
e, M]

able, normality holds, and parameters are known. Thus,
� Var(M� � ε|� 2

�, � 2
ε, � 2

e, w, M)(13–16) provide an alternative to a ridge regression
approach to prediction. Generalization to multiple
traits measured in different individuals is straightfor- � [M I]





M�PM � I	� M�P

PM P � I	ε





�1 



M�

I




�2

e .
ward, but this is not dealt with here. Since, given M, the
BLP or BP is unbiased (e.g., Henderson 1973), it follows

As noted, BLUP of the unobservable genetic valuesautomatically that it is also unbiased unconditionally.
(marked or background genetic effects or any linearHowever, unconditionally,
combination thereof) takes into account the uncertainty
about �, although given 	�, 	ε , and � 2

e. Since BLUP is
Var[M� � ε � (M�

�

� ε

�

)|�, � 2
�, � 2

ε, � 2
e] conditionally unbiased, it follows that it is also so uncon-

ditionally (averaged over marker genotypes). The un-
conditional covariance matrix of the prediction errors� � 2

eE



[M I]





M�M � I	� M�

M I � I	ε





�1 



M�

I









,
is the average of (19) taken over the distribution of
marker genotypes.

with the expectation taken with respect to the joint The needed variance components: Sensible values of
distribution of marker genotypes in the entire popula- the dispersion parameters must be specified for imple-
tion. A drawback of BP or BLP is that it is unrealistic menting BLUP. As stated, unless there is prior or exter-
to assume that �, � 2

�, � 2
ε, and � 2

e are known without nal knowledge, it is not possible to separate the variance
error. of the background genetic effects (�2

ε) from that of the
Best linear unbiased prediction: An obvious improve- environmental influences (�2

e). The model can be re-
ment is to use BLUP. BLUP takes into account uncer- written as
tainty about �, which is not the case of BP or BLP above,

y � X� � M� � e*, (20)where � is treated as known. Under normality, BLUP(a)
can be interpreted as the mean of the conditional distri- where e* � N(0, I� 2*e ). Methods for obtaining maxi-
bution of the predictand a � M� � ε, given a vector mum-likelihood estimates of �2

� and of (� 2
ε � � 2

e) for
of “error contrasts,” denoted as w. For example, take (20) are well known, e.g., Searle et al. (1992). In this

setting only the marked part of the genetic value canw � y � X�

�

, where �

�

is either the ordinary least-
squares or the generalized least-squares estimator of �. be predicted. Here, the conditional distribution used
In such a setting, BLUP is the best predictor under for inferring � would be
normality, but only in the class of linear translation
invariant predictors (Searle 1974; Gianola and Gof- �|� 2

�, � 2*e , w, M � N(�̃, C*��), (21)
finet 1982). It is well known that for (8) and (9),

where

�̃ �



M�PM � I

� 2*e

� 2
�





�1

M�Py




�

ε




|� 2

� , � 2
ε , � 2

e, w, M � N








�

��

ε

��





,




C�� C�ε

Cε� Cεε








, (17)

where, for P � I � X(X�X)�1X�,
is the best predictor (given the error contrasts) or
BLUP(�). The covariance matrix of the conditional dis-
tribution (21) is





�

��

ε

��





�




M�PM � I	� M�P
PM P � I	ε





�1 



M�Py
Py





C*�� �



M�PM � I

� 2*e

� 2
�





�1

� 2*e ,(18)



351Marker-Assisted Prediction

with this being the same as the covariance matrix of the may be chromosomes that are “hotbeds” of QTL,
whereas other chromosomes may be arid, leading toprediction errors � � �̃, given the marker genotypes

M. The BLUP of the marked quantitative trait genotype between-chromosome variation. This heterogeneity can
be accommodated by introducing chromosome effectsis M�̃, and the prediction error dispersion matrix is

MC*��M�� 2*e . Hence, M�̃ could be used as a criterion in the model, with markers in different chromosomes
having (possibly) distinct distributions. These exten-for genetic evaluation in marker-assisted selection ignor-

ing background effects. If reasonable maximum-likeli- sions are dealt with in the following section.
hood (ML) or restricted maximum-likelihood (REML)
estimates of � 2

� and of � 2*e are available, these can be
EXTENDING THE HIERARCHYtreated as “true” values in (21).

Model without background genetic effects: For sim-
Suppose that estimates of the additive genetic (�

� 2
a) and

plicity, assume first that the state of prior knowledge
of the environmental variance (�

� 2
e) are available

does not allow disentangling background genetic effects
(or of heritability h

� 2 and the phenotypic variance

from environmental deviates. The first tier is then as in
�

� 2
y) from an analysis ignoring marker information.

Then, the variance of the background genetic effects
(20), so that(assuming additivity) could be estimated as �

� 2
ε �

y|�, M, �, � 2*e � N(X� � M�, I� 2*e ) . (22)�

� 2*e � �

� 2
e � �

� 2*e � (1 � h

� 2)�

� 2
y (hoping that this

value will be positive). Then, form
The second tier is given by the distribution of the
marked genetic effects. Here, instead of assuming that

	

�

� �
(1 � h

� 2)�

� 2
y

�

� 2
�

; 	

�

ε �
(1 � h

� 2)�

� 2
y

�

� 2
ε

, �|� 2
� � N(0, I� 2

�), a “one-way layout” is adopted, to par-
tition the variability of marked effects into between-
and within-chromosome components. Arrange markerswhere �

� 2
� is the ML or REML estimate of � 2

� , and
sequentially according to their order within each chro-proceed with the BLUP implementation in (17). The
mosome and assume a dense marker map. The modelresulting predictor is an empirical BLUP having proper-
for the second tier isties that depend largely on the accuracy of the variance

component estimates and on the adequacy of model in
� � Tc � v , (23)(7) and (9).

Differences with ridge regression: A main difference where c � {ci} is an nc � 1 vector of “marked chromo-
with the ridge regression approach of Whittaker et al. somal effects” (nc is the number of pairs of chromo-
(2000) and Whittaker (2001) is how the value of 	� somes), T is a known incidence matrix of order l � nc
(or of 	*� � � 2*e /� 2

�) is obtained. Here, the formalism relating marked effects to chromosomes, and v � {vij }
of the random-effects model (with a justification from is an l � 1 vector of marked “within-chromosome” devi-
a Bayesian viewpoint) is favored over an ad hoc proce- ates. In scalar notation, �ij � ci � vij is the “marked
dure for doing shrinkage and tempering colinearity in quantitative effect of the j th marker at the ith chromo-
a fixed-effects model, such as ridge regression. Lindley some.” It is assumed that
and Smith (1972), Zellner and Vandaele (1975), and

�|c, V � N(Tc, V). (24)Box (1980) discuss ridge regression from a Bayesian
perspective. Further, a random-effects treatment of a Here, V � Diag(Vi) is taken to be a block-diagonal ma-
fixed-effects model can lead to estimators and predictors trix with nc blocks, where Vi is the li � li variance-covari-
with a superior frequentist performance (e.g., Zellner ance matrix of marked within-chromosome deviates in
and Vandaele 1975; Gianola 1990; Weigel et al. 1991). chromosome i, and li is the number of markers in chro-
An advantage of a random-effects treatment is the flexi- mosome i. The block diagonality of V in (24) implies
bility to accommodate additional model features. For that marked within-chromosome effects are indepen-
example, the ridge regression estimator of Whittaker dent across chromosomes. However, a within-chromo-
(2001) implies that all marked effects in � are indepen- some dependence will be introduced. The matrix Vi can
dent (a priori). Evidence of coexpression of genes in at be structured in several different manners, and some
least the same chromosome (Caron et al. 2001) indi- forms of modeling such dependence are discussed be-
cates that the assumption that marked sections or seg- low. In (23) and (24) the nc � 1 vector of chromosome
ments within a chromosome have independent effects effects is assumed to possess the distribution
is not always tenable. Adjacent QTL may coexpress more

c |� 2
c � N(0, I� 2

c) , (25)(that is, be less independent) than QTL further apart.
Thus, some spatial covariance structure along the chro- where � 2

c is the variance between chromosome effects.
mosome might be in order. Ridge regression overstates Some of the possible forms of Vi (among many possible
the prior precision of the model, by virtue of implicitly ones) are considered next:
assuming independence. A possible consequence is that
“more genotype is marked” than warranted. Also, there 1. Within-chromosome deviates are correlated according
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to a first-order autoregressive process. Partition v �
[v �1 , v �2, . . . , v �nc

]� with

Var(vi|�, � 2
v) �









1 
12 
13 . 
1z


12 1 
23 . 
2z

. . . . .

. . . 1 
(z�1)z


1z 
2z . 
(z�1)z 1









� 2
vvi � [vi1, vi2 , . . . , v ili

]�.

Then, if markers are equally spaced,

(Verbeke and Molenberghs 1997) for i � 1, 2, . . . ,
nc. Here, the correlation between within-chromosome
deviates k and t is

Vi � Var(v i |�, �2
vi
) �


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
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


1 � �2 . �li�1

� 1 � . �li�2

. . . . .

. . . 1 �

�li�1 �li�2 . � 1


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
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
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� 2
vi
, Corr(vik, vit) � 
kt .

Note that 
kt here, even though a correlation coeffi-
cient, is not the same as 
i,kt in the preceding section.
Using (23) in (22) the model can be expressed as

where � 2
vi

is the variance between deviates in chromo-
y � X� � M(Tc � v) � e*

some i (i � 1, 2, . . . , nc) and � is a parameter taking
values between �1 and 1. This covariance structure � X� � MTc � Mv � e*. (26)
satisfies the assumption that adjacent within-chromo-

Under Gaussian assumptions, the joint distribution ofsome deviates are more strongly correlated than those
c and v, given a vector or linearly independent errorfurther apart. A form of relaxing the requirement
contrasts w, isthat markers be equally spaced is immediately below.

2. Within-chromosome deviates are correlated according
to a Gaussian decay model (e.g., Verbeke and Molen- 




c
v




|� 2

c, V, � 2*e , w, M, T � N







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��
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,




Ccc Ccv

Cvc Cvv
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





.

berghs 1997). The covariance structure here is
(27)

Here, c

��

� BLUP(c) and v

��

� BLUP(v) are computed as

Var(vi|� i, � 2
vi
) �
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(28)
where and


i, kt � exp�� d 2
i,kt

�2
i
� 


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Cvc Cvv
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�

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

T�M�PMT � I(�2*e /�2
c) T�M�PM

M�PMT M�PM � Diag(V�1
i )�2*e





�1

�2*e .

(29)
is the correlation between marked within-chromo-

The BLUP of the M� is Mtc

��

� Mv

��

. Since the pre-some deviates k and t in chromosome i. Here, di,kt is
dictor is conditionally unbiased (given M), it is alsothe distance (e.g., in physical units such as kilobases)
unbiased unconditionally. The unconditional covari-between markers k and t in chromosome i, and �i �
ance matrix of the prediction errors is the average of0 is a chromosome-specific parameter. When the dis-
(29) taken with respect to the distribution of markertance between markers → 0, 
i,kt → 1; on the other
genotypes.hand, when di,kt → ∞, the correlation between within-

Here, it is possible to predict marked effects on achromosome deviates is null. The parameter �i gov-
chromosomal basis. Consider model (26) and recall thaterns the rate at which the correlation decreases. When
� � Tc � v. Suppose that a hypothetical species has four�i is close to 0, such correlation falls rapidly; when �i
pairs of chromosomes. For the n individuals assayed, theincreases, the drop is more gentle. It may be conve-
incidence matrix M can be written asnient to assume that �i � � for all chromosomes.

3. Suppose that the number of markers is constant
across chromosomes (with l markers and nc chromo-
somes there would be z � l/nc markers per chromo-
some). If the markers are equally spaced and if the M �


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. . . .
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
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


,
variance of within-chromosome deviates is constant
across chromosomes, one may pose the Toeplitz co-
variance specification
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where m�ij are the codes for the marker genotypes of
individual i at chromosome j. Likewise, the “true”
marked effects on a chromosome-by-chromosome basis
can be written as
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

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,

where c j is an effect peculiar to all markers in chromo-
some pair j and 1lj is a vector of 1’s of order lj. Then,

Figure 1.—Lorenz curve depicting the relative contributionafter solving (28), one has the following relationships:
of marked effects to marked genetic variability. Ordinate, cu-
mulative proportion of marked genetic variance explained by(a) BLUP(cj) � c�

�

j ; (b) BLUP(� j) � 1lj c�
�

j � v

��

j ; and
marked effects; abscissa, cumulative proportion of markers.(c) BLUP(m�i �) � �4

j�1m�ij BLUP(�j) � �4
j �1m�ij1ljc

��

j �

�4
j �1m�ijv

��

j .
For many reasonable covariance structures, all disper-

Var(MTc � Mv � ε � MTc

��

� Mv

��

� ε ��

)sion parameters are identifiable in this model and can
� [MT M I]be estimated by tailoring some suitable algorithm for

maximum likelihood. Verbeke and Molenberghs
(1997, 2000) present examples of applications of stan-

�



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



T�M�PMT � I(�2
e/�2

c) T�M�PM T�M�P

M�PMT M�PM � Diag(V�1
i )�2

e M�P

PMT PM P � I(�2
e/�2

ε)








dard statistical software for restricted maximum-likeli-
hood estimation.

Model with background genetic effects: The model
is now an expanded version of (26):

�
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

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

T�M�

M�

I








.

y � X� � MTc � Mv � ε � e. (30)
(33)

The best linear unbiased estimator of � and the BLUP Differential contribution of marked effects to genetic
of c, v, and ε can be obtained by solving the system: variability: A representation of the degree of inequality

of a frequency distribution is given by the Lorenz curve
(e.g., Gastwirth 1971, 1972). This is used for measur-
ing income inequality in economics and was applied
first in quantitative genetics by Urioste et al. (2001) in




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


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

X�X X�MT X�M X�

T�M�X T�M�MT � I(�2
e/�2

c) T�M�M T�M�

M�X M�MT M�M � Diag(V�1
i )�2

e M�

X MT M I � I(�2
e/�2

ε )
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

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an assessment of heterogeneity of variance of milk yield
in cattle among herds. We place the cumulative propor-
tion of the markers 1/l, 2/l, . . . , i/l, . . . , (l � 1)/l in
the abscissa and plot this against the cumulative propor-
tion of a measure of the marked “genetic variability.”

�










X�y

T�M�y

M�y

y










. (31) A hypothetical example is in Figure 1. A straight line
with a slope of 45
 indicates perfect equality. For exam-
ple, if 20% of the markers explain 20% of the variability,
40% of the markers account for 40%, and so on, aAs before, if an estimate of the total genetic variance is
straight line results. On the other hand, if a few markersavailable, one can set � 2

ε as �

� 2
ε � �

� 2*ε � (1 � h

� 2)
account for a large portion of the variability, the curve�

� 2
y . Some estimates (e.g., REML) of � 2

c and of the
bends downward because the distribution of effects isparameters defining the structure of Vi can be obtained
unequal. A measure of the inequality of contributions towhen estimating �

� 2*e from the model where back-
variability is the Gini coefficient or twice the “inequalityground genetic effects are ignored or from the full
area,” that is, the area between the Lorenz curve andmodel but fixing the value of � 2

ε. The BLUP of the
the straight line. Since the square in Figure 1 has an“total” genetic value of the entire collection of individu-
area equal to 1, the maximum value of the inequalityals in the sample is then
area is 0.5. Hence, the Gini coefficient takes values be-
tween 0 (all marked effects contributing equally to vari-BLUP(MTc � Mv � ε) � MTc

��

� Mv

��

� ε

��

, (32)
ability) and 1 (a single marked effect explains all vari-
ability).and the covariance matrix of the prediction errors is
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Let Munique be a set of rows of M defining u unique allowed for multiple families in the model, but treated
their effects as fixed. Irrespective of whether these ef-marker genotypes (u may be much smaller than n),

m�unique,j be the j th row of Munique, and munique,jk be the entry fects are viewed as fixed or random, they constitute
statistical nuisances from the point of view of QTL map-for marker locus k in m�unique,j . Define the corresponding

“unique marked effect” as ping (Xu 1998). Here, a different point of view is taken.
Allowance is made for heterogeneity of family effects

�j � �
l

k �1

munique,jk�k on the marker-phenotype relationships. The stylized sit-
uation described in standard treatments of quantitative

� m�unique,j� genetics is adopted; for example, individuals may be
clustered into full-sib or half-sib families. We emphasize

� m�unique,j(Tc � v); j � 1, 2, . . . , u . (34)
that our approach does not include recombination rates
between markers and QTL as model parameters. A rig-Arbitrarily, define “total marked genetic variability” as the
orous treatment for outbred populations requires ex-sum of the squared unique marked genetic effects, so
tremely involved algebra (e.g., Wang et al. 1998). The
purpose here is to bypass these complex procedures viaS(c, v) � �

u

j �1

�2
j . (35)

straightforward linear models having a much simpler
covariance structure.This definition does not take into account the frequency

Let the vector of phenotypic records be partitionedof the unique marker genotypes in the population, but
as y � [y�1, y�2, . . . , y�F]� , where yi contains fi observa-this can be accounted for easily by weighting each �j
tions pertaining to family i (i � 1, 2, . . . , F). Assume nowappropriately. Let now �2

[j ] be the j th ordered value of
that heterogeneity in the marker-phenotype association�2

j , sorted in an increasing order. The ordinate values
exists. In the presence of family-specific marked effectsin the Lorenz curve, i.e., the cumulative proportion of
the entire vector � can be written asthe “total marked genetic variation,” are calculated as

L � i
u� � �i

j �1�
2
[j ]

S(c, v)
� �i

j �1�
2
[j ]

�u
j �1�

2
j

, (36)

�Fl�1 �
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�F
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

,where i/u is the cumulative proportion of unique
marker genotypes. The Lorenz curve results from plot-
ting L(i/u) against i/u; observe that L(0) � 0 and
L(1) � 1. It can be shown (Aguilar-Gutierrez 2000;

where �i is an l � 1 set of effects peculiar to family i. TheUrioste et al. 2001) that the Gini coefficient is approxi-
model for phenotypic values, allowing now for family-mately equal to
specific background effects, εF, becomes

G �
2

(u�u
j �1�

2
j )

�
u

j �1
�j �

1
2��2

[j ] . (37)

A main difficulty in estimating the Lorenz curve and
the Gini coefficient is that nonlinear functions of un-
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known quantities are involved. Simple method of mo-
ment estimators L

��

(i/u) and G

��

are obtained by re-
placing �2

j in (36) and (37) by

�

�� 2
j � m�unique,j(Tc

��

� v

��

)(Tc

��

� v

��

)�munique,j ,

with c

��

, r

��

obtained from (31). This statistic does
not take into account the uncertainty associated with �
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Tc
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.
Family heterogeneity: Suppose that the phenotypic

and molecular marker information can be partitioned
into F nonoverlapping or “independent” clusters repre- � X� � M� � Fεf � w ,
senting some familial aggregation. For example, Xu

(38)

(1998) discussed the use of “families” of line crosses
where X � [X�1, X�2, . . . , X�F]� and Xi has as many rowsfor QTL mapping. This author pointed out that single-
as there are observations for family i (fi) and p columns.family methods present the risk that if two lines involved
Further, M � Diag(Mi). The incidence matrix Mi has fiin the cross are not segregating at a QTL, then the latter
rows and l columns, the number of markers. The F �would not be detected, irrespective of the number of

individuals scored in a backcross or F2 population. He 1 vector εf � {εi} contains F family background effects
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related to the phenotypic values via the known inci- of the F matrices M�i Mi � B�1�2
w, with all these matrices

being l � l. Note thatdence matrix F (consisting of vectors of ones, 1i, in
appropriate locations and of zeroes elsewhere); w is
an n � 1 residual vector of independently distributed X*�X* � �

F

i�1





X�i Xi X�i Mi

M�i Xi M�i Mi





� �
F

i�1

X*�i X*i ,
within-family deviations, with common variance �2

w and
where n � �F

i�1 fi .
X*�M � [X*�1 M1 X*�2 M2 · X*�F MF],In the absence of marker information, the phenotypic

variance can be partitioned into between- and within- X*�F � [X*�1 11 X*2 �12 · X�F1F],
family components. For example, with half-sib families,

M�F � �F
i�1M�i 1i ,the between-family variance contains one-quarter of the

additive genetic variance (supposing additive inheri- F�F � Diag(fi),
tance), and the within-family component includes the
environmental variance plus three-quarters of the addi- X*�y � �

F

i�1

X*�i yi ,
tive genetic variance. In the setting of (38) it is assumed
that εf and w are independently distributed vectors, with M�y � [M�1y1 M�2y2 . . . M�FyF]� ,
distributions εf|�2

εf
� N(0, I�2

εf
) and w|�2

w � N(0, I�2
w), re-

and
spectively. This partitioning reassigns the unmarked addi-

F�y � [1�1y1 1�2y2 · 1�FyF]� .tive genetic variance into between (�2
εf
) and within-family

(�2
w) components. Now, the �i marked effects can be The variance-covariance matrix of the prediction er-

treated as random regressions following the distribution rors is given by the inverse of the coefficient matrix in
(41) multiplied by �2

w. Unless there are many families
� i|�0, B � N(�0, B); i � 1, 2, . . . , F. (39) (e.g., independent half-sib groups in dairy cattle) it will

be difficult to obtain reliable maximum-likelihood esti-Here, �0 is an l � 1 parameter that is common to all
mates of B.families (the “fixed” part of the regression) and B is the

The hierarchy can be extended as in (23) and (24)l � l variance-covariance matrix between the regression
to include chromosome and within-chromosome effectscoefficients. This implies that �i � �0 � �i, where �i �
that would now be family specific. PutN(0, B) is a vector of deviations from the common re-

gression �0 that is specific to family i. In a simpler hierar-
chical model it could be postulated, for example, that
�i|�2

� � N(0, Ii �
2
�) for i � 1, 2, . . . , F. The model for
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, (42)
the more general specification becomes

where �i is l � 1, ci is an nc � 1 vector of chromosome
effects peculiar to family i, Ti is an l � nc incidence
matrix, and vi is an l �1 vector of within-chromosome
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� M� � Fεf � w effects for family i. It is convenient to assume that the
within-chromosome marked effects are independent
across families and chromosomes, but possibly depen-
dent within chromosomes. Here, the variance-covari-� X*�* � M� � Fεf � w ,
ance matrix V in (24) would be Fl � Fl and would take

(40)

the form
where �*� � [��, ��0], X* � [X M0], M0 � [M�1 M�2 ·

V � Diag(Vi), i � 1, 2, . . . , F,M�F]� , and �� � [�1, ��2, . . . , �F] is a vector of family-
specific deviations from the overall regression � in (39). where Vi � Var(vi) is an l � l variance-covariance ma-

Given the dispersion parameters B, �2
εf , and �2

w, the trix that is specific to family i. Now, partition
best linear unbiased estimator of �* and the BLUP of

vi � [v�i1,v�i2 , . . . , v�inc
]� ,each of the family-specific deviations �i are found by

solving the system where vij is an lj (number of markers in chromosome
j) � 1 vector of within-chromosome deviates for family
i in chromosome j. Then, under the assumption of inde-
pendence of deviates across chromosomes,
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,

Vi � Var(vi) � Diag[Var(vij)] � Diag(Vij).
(41)

where �F
i�1 is the “direct sum” of matrices notation (e.g.,

With this,

V � �F,nc
i�1,j�1Vij ,Searle 1982), denoting a block-diagonal concatenation
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and Vij can be assigned any of the spatial structures sponding columns of Mi , with all its rows being equal.
A model of interest might bediscussed earlier. Then, the distribution of all family-

specific deviations from regression would be







�1

�2

.
�F







|T, c, V � N













T1c1

T2c2

.
TFcF







, �i,jVij







. (43)









y1

y2

.

.
yF









�









X1

X2

.

.
XF









� �









M1

M2

.

.
MF









�B �









M1 � M1

M2 � M2

.

.
MF � MF









�W

The hierarchy is completed by assigning a distribution
to the family-specific chromosome effects ci. An exten-
sion of assumption (25) is

�









11 0 . . 0
0 12 . . 0
. . . . .
. . . . .
0 0 . . 1F

















ε1

ε2

.

.
εF









�









w1

w2

.

.
wF















c1

c2

.
cF







|K � N







0,







K 0 . 0
0 K . 0
. . . .
0 0 . K













, (44)

� X� � M�B � MW�W � Fε � w , (47)

where K � {kij} is an nc � nc matrix of covariances be- where �B is the regression of phenotypes on mean family
tween chromosome effects of the same family, with this molecular scores, MW is a matrix of within-family de-
dispersion structure assumed homogeneous across fami- viations from the mean scores for the appropriate fami-
lies. For example, element k45 of K would be the covari- lies, and �W is the vector of regressions of phenotypes
ance between the effects of chromosomes 4 and 5 within on the within-family deviations. Assume that �B �
the same family. As a side note, observe that uncon- N(0, IF � 2

�F) and �W � N(0, IF � 2
�W) where � 2

�F and �2
�Wditionally to ci, (43) and (44) imply that �i � are components of variance, and suppose that the two

N(0, TiKT�i � Vi). Hence, assumption (39) is equivalent random vectors are independently distributed. The best
to (43) and (44) if and only if TiKT�i � Vi � B for all i. linear unbiased predictor of the between- and within-

Using (42) in (40) leads to the following model for family regressions can be calculated by solving
phenotypes,

y � X*�* � MTc � Mv � Fεf � w , (45) 







X�X X�M X�MW X�F

M�X M�M � I(�2
w/�2

�F) M�MW M�F

M�WX M�WM M�WMW � I(�2
e/�2

�W) M�WF

F�X F�M F�MW F�F � I(�2
w/�2

ε)

















�

��

�b

��

�W

��

ε��









where M � Diag(Mi) and T � Diag(Ti). The BLUP of
all family-specific chromosome and within-chromosome
effects is obtained by solving

�









X�y

M�y

M�Wy

F�y









. (48)









X*�X* X*�MT X*�M X*�F

T�M�X* T�M�MT � (IF � K�1)�2
w T�M�M T�M�F

M�X* M�MT M�M � �i,jV�1
ij �2

w M�F

F�X* F�MT F�M F�F � I(�2
w/� 2

εf
)









The variance-covariance matrix of the prediction errors
can be obtained from the inverse of the coefficient
matrix in (48), times �2

w. Model (47) can be extended
by allowing the within-family regressions to be family-

�










�*

��

c

��

v

��

εf

��










�







X*�y

T�M�y

M�y

F�y







.
specific. In this extended model, in addition to �B, there
would be �Wi (i � 1, 2, . . . , F) within-family regressions.

(46)

The variance-covariance matrix of the prediction errors
A BAYESIAN FORMULATION

is the inverse of the coefficient matrix in (46) times �2
w.

Lande-Thompson regression model revisited: Lande We adopt now a Bayesian point of view and describe
a Markov chain Monte Carlo (MCMC) implementation.and Thompson (1990) suggested splitting the molecu-

lar scores into between- and within-family components, The focus is on model (40) and its hierarchical expan-
sion in (42–44), leading to (45) and (46) in the mixedso that the components could be combined “optimally”

for the purpose of genetic improvement. In our context model and BLUP treatment. This is the most general
and richly parameterized specification among those dis-and for simplicity, consider the following variant of their

model, using (38). Write the marker codes for family i cussed so far. The developments follow the typical hier-
archical structure of Bayesian multilevel models (Lind-as Mi � Mi � (Mi � Mi), where Mi is an fi � l matrix

with columns equal to the mean values of the corre- ley and Smith 1972).
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Joint posterior distribution: Start with (40) as sam- p(c, φ, �2
εf
|K, �, s2

v, �v, s2
f , �f ) �


�

F

i�1

N(ci|0, K)


pling model (data-generating process) or first level of
� p(�, �2

v1
, �2

v2
, . . . , �2

vnc
|�, s2

v, �v)p(�2
εf
|s2

f , �f )the Bayesian hierarchy. Conditionally on �*, �, and
εf, it is assumed that the phenotypic values are drawn
independently from the distribution �


�

F

i�1

N(ci|0, K)


y|�*, �, εf, �2
w � N(X*�* � M� � Fεf, I�2

w). (49)
� p(�|�)[�

nc

i�1

p(�2
vi
|s2

v , ��)]p(�2
εf
|s2

f , �f) .
It is convenient to express the joint density of all pheno- (53)

types, given �*, �, εf, and �2
w as the product of F densities

In the preceding, it is assumed that (a) the chromosomecorresponding to the contributions to information
effects of different families are mutually independent,made by the phenotypic values in each of the families.
although correlated within a family with an nc � ncThus,
covariance matrix K, as in (44); (b) the parameter � has

p(y|�*, �, εf, �2
w) � �

F

i�1

N(yi|X*i �* � Mi �i � 1i εi, I�2
w) . (50) a prior distribution indexed by some known parameter

vector � and is independently distributed (a priori) of
The notation N(yi|X*i �* � Mi �i � 1i εi, I�2

w) indicates a all within-chromosome variances �2
vi
; (c) the nc variances

normal density or distribution with yi as random vari-
�2

vi
are independently and identically distributed as

able, X*i �* � Mi�i � 1i εi as mean vector, and I�2
w as

scaled inverted chi square with known hyperparameterscovariance matrix; a similar notation is used if the distri-
s2

v and �v; and (d) the variance between families �2
εf

fol-bution involves a scalar.
lows a scaled inverted chi-square distribution withThe second level assigns a prior distribution to all
known parameters s2

f and �f .unknown parameters of the first tier. It is assumed that
The fourth and final level of the hierarchical modelthe joint prior density can be written as

is the prior distribution assigned to K, the covariance
p(�*, �, εf, � 2

w|c, V(φ), � 2
εf) � N(�*|�*0 , Is2

�*)N(�|Tc, V(φ)) matrix between effects of the same family on different
chromosomes. It is assumed that K follows an inverted� N(εf|0, I� 2

εf
)p(�2

w|s2
w, �w) .

Wishart process of order nc (the order of K) with density
(51)

p(K|�cSc, �c), where �cSc is a known scale matrix and �cAbove, �*0 is the known mean of the prior distribution
is a known positive parameter usually referred to as theof �* and s2

�* is a known scalar that tunes the degree
“degrees of freedom” of the distribution (e.g., Gelmanof vagueness of the prior for this parameter. Different
et al. 1995). Our parameterization is such that, a priori,degrees of vagueness may be assigned to the two compo-
E(K|�cSc, �c) � �cSc/(�c � nc � 1). For a very large valuenents of �*; thus, there would be two distinct tuning
of �c, Sc then approximates the mean value of the priorparameters, s2

� and s2
�0

. The notation V(φ) means that
distribution. In less structured models, e.g., indepen-the variance-covariance matrix of v (the within-chromo-
dence of chromosome effects within a family, K wouldsome deviates) depends on some parameter vector φ.
take a simpler form, in which case the prior distributionFor example, if within-chromosome deviates are corre-
would be modified appropriately.lated according to an autoregressive process having �

Some of the prior distributions given above are diffi-as parameter and with chromosome-specific variances
cult or impossible to elicit. In such a situation, one may�2

v1
, �2

v2
, . . . , �2

vnc
, then φ � [�, �2

v1
, �2

v2
, . . . , �2

vnc
]�. The

consider using some of the standard default improperautoregressive process is assumed hereafter, to illustrate
priors, carry out a technically involved reference priorone of the possible specifications. In (51), s 2

w and �w are
analysis (Bernardo 1979; Bernardo and Smith 1994),known parameter values (hyperparameters) of a scaled
or resort to maximum entropy fits; see Cantet et al.inverted chi-square distribution (e.g., Gelman et al.
(1992) and Sorensen and Gianola (2002) for an ele-1995) assigned to �2

w. Now, as stated in the developments
mentary discussion of the latter in a genetics context.following (42) and leading to (43), given the chromo-
Collecting (50), (52), (53), p(K|�cSc , �c) and letting Hsome effects c, the marked effects � of different families

are taken to be mutually independent. Hence, (51) can denote the set of all known hyperparameters, the joint
be put as posterior density of the uncertain parameters is, after

rearrangement,
p(�*, �, εf, � 2

w|c, V(φ), �2
εf
) � N(�*|�*0 , Is2

�*)

p(�*, �, εf, c, �2
w, �, �2

v1
, �2

v2
, . . . , �2

vnc
, �2

εf
, K|y, H)

� �
F

i�1

[N(�i|Ti ci,Vi(φ))� N(εi|0, �2
εf
)]p(�2

w|s2
w, vw).

�

�

F

i�1

N(yi|X*i �* � Mi �i � 1i εi, I�2
w)N(�i|Ti ci, Vi(φ))N(εi|0, �2

εf
)

(52)

The third level of the hierarchy consists of the prior
� N(�*|�*0 , Is2

�*)
�

F

i�1

N(ci|0, K)



�

nc

i�1

p(�2
vi
|s2

v, �v)

distribution assigned to c, φ, and �2

εf
, the parameters of

the second tier. It is assumed that the corresponding
� p(�2

w|s2
w, �w)p(�2

εf
|s2

f , �f )p(�|�)p(K|Sc, �c). (54)density takes the form
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Markov chain Monte Carlo scheme: At least in theory, regressions �i are mutually independent, given all other
parameters. The density of the conditional posteriorall marginal or joint distributions of sets of parameters

of interest can be derived from (54) by effecting the distribution of �i (i � 1, 2, . . . , F) is
necessary integrations, to take uncertainty about nui-

p(�i|ELSE) � N(yi|X*i �* � Mi �i � 1i εi, I�2
w)N(�i|Ti ci, Vi(φ)) .sance parameters into account properly. Since the joint

posterior distribution is not in a form amenable to ana- The distribution can be shown to be the l-variate normal
lytical treatment, MCMC (e.g., Gilks et al. 1996) can be process
used for simulating draws from the posterior. Features

�i|ELSE � N(�̃i , C̃�i �i), i � 1, 2, . . . , F , (56)of any target posterior distribution can be estimated
from the simulated samples. Monte Carlo error can be where
made negligible by sheer computing force; however,

�̃i � [M�i Mi � V�1
i (φ)�2

w]�1[M�i (yi � X*i �* � 1i εi)suitable reparameterizations may enhance the efficiency
of the simulation. � V� 1

i (φ)�2
wTici],

The hybrid algorithm proposed uses the conditional
andposterior distributions as candidate-generating densities,

whenever possible. Save for the presence of p(�|�) (whose C̃�i �i � [M�i Mi � V�1
i (φ)�2

w]�1�2
w .

structure has not been specified yet), the joint posterior
All family-specific marked effects can be drawn on aprocess with density (54) is in a normal-inverse Gamma
family-by-family basis by sampling from the multivariateor normal-inverse Wishart form. All fully conditional
normal distribution given in (56).distributions (except that of �) can be identified and

Conditional distributions of family-specific background ef-sampled with relative ease. This defines a Gibbs sampler
fects ε: From (54), it follows thatfor drawing from most posterior distributions of inter-

est. Since the conditional process is not recognizable for
�, a Metropolis procedure is tailored. The most relevant p(εf|ELSE) �




�
F

i�1

N(yi|X*i �* � Mi �i � 1i εi , I�2
w)N




εi|0, �2

εf







expressions needed for implementing this hybrid algo-

rithm are presented below. The notation [parameter
� �

F

i�1

p(εi|ELSE),or parameters|ELSE] is used throughout to denote a
fully conditional posterior distribution, that is, the pos-

so that family-specific background effects are condition-terior distribution of a scalar or vector parameter given
ally independent, given all other parameters. In particu-all other parameters, the data, and H. For details, see
lar, for the ith family one hasWang et al. (1993, 1994), Sorensen et al. (1994), and

Sorensen and Gianola (2002). p(εi|ELSE) � N(yi|X*i �* � Mi �i � 1i εi, I� 2
w)N(εi|0, � 2

εf
).

Conditional distribution of �*: This is arrived at by re-
This can be shown to be the kernel of the density oftaining in (54) only the terms involving �*. The re-
the univariate normal distribution,sulting conditional density is

εi|ELSE � N(ε̃i, c̃εiεi), i � 1, 2, . . . , F , (57)p(�*|ELSE) � �
F

i�1

N(yi|X*i �* � Mi �i � 1i εi, I�2
w)N(�*|�*0 , Is2

�*).

where
This can be identified as the density of the multivariate
Gaussian distribution, ε̃i �




1�i 1i �

�2
w

�2
εf





�1

1�i (yi � X*i �* � Mi �i)
�*|ELSE � N(�̃, C̃��), (55)

where �
�2

εf

�2
εf

� (�2
w/fi)

1�i (yi � X*i �* � Mi �i)

�̃ �



X*�X* � I

�2
w

s2
�*





�1 


X*(y � M� � Fεf) �

�2
w

s2
�*

�*0



, and

and
c̃εi εi �




1�i 1i �

�2
w

�2
εf





�1

�2
w

C̃�� �



X*�X* � I

�2
w

s2
�





�1

�2
w .

� �2
εf




1 �

�2
εf

�2
εf � �2

w/fi




.Obtaining samples from (55) is straightforward, espe-

cially if the order of �* is not too large. When the prior
Note that 1�i 1i � fi is the number of individuals in familydistribution of �* is diffuse (s2

�* → ∞), this step involves
i and that �2

εf
/(�2

εf
� �2

w/fi) is proportional to the “herita-essentially least-squares type computations, after making
an offset of the data vector. bility of a family mean” (whenever the variance of back-

ground effects between families is proportional to theConditional distributions of family-specific marked effects �:
Inspection of (54) reveals that all family-specific marked additive genetic variance), in the terminology of stan-
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dard quantitative genetics. Sampling from distribution Writing the densities explicitly and rearranging one ar-
rives at(57) is straightforward.

Conditional distributions of chromosome effects: The den-
p(�2

w|ELSE) � (�2
w)�((n��w)/2�1)

sity of the conditional distribution of the vector of chro-
mosome effects c is, from (54),

� exp



�

(y � X*�* � M� � Fε)�(y � X*�* � M� � Fε) � s2
w�w

2�2
w





.

p(c|ELSE) �



�

F

i�1

N(�i|Tici, Vi(φ))N(ci|0, K)


 This is the distribution of the scaled inverted chi-square

random variable
� �

F

i�1

p(ci|ELSE).
�2

w|ELSE � [(y � X*�* � M� � Fε)�(y � X*�* � M� � Fε) � s2
w�w]��2

n�w .

(60)
Thus, family-specific chromosome effect vectors ci (i �
1, 2, . . . , F) are conditionally independent of each other. The sampling process is similar to that described in
After algebra, as in Gianola and Fernando (1986) or connection with (59).
Gianola et al. (1990), it can be shown that the ith Autoregressive parameter �: Note in (54) that the only
conditional distribution is the nc-variate normal process, terms involving � are the prior densities of the family-

specific marked effects �i and the prior density p(�|�).ci|ELSE � N(c̃i, C̃cici
), i � 1, 2, . . . , F, (58)

Hence,
where

p(�|ELSE) � �
F

i�1

N(�i|Tici, Vi(φ))p(�|�).
c̃ � {T�i V�1

i (φ)Ti � K�1}�1T�i V�1
i (φ)�i ,

and Now, recall that Vi(φ) is an l � l covariance matrix such
thatC̃cici

� {T�i V�1
i (φ)Ti � K�1}�1 .

Vi(φ) � �ncj�1Vij(φ),For instance, in a species with 30 pairs of chromosomes
such as cattle, a draw would need to be made from a where Vij(φ) is the lj � lj covariance matrix of within-
30-variate normal distribution for each of the F families chromosome deviates for family i in chromosome j. Spe-
represented in the data set. cifically,

Between- and within-family variances of background effects:
The density of the conditional posterior distribution of
the between-family variance of background effects, �2

εf
, is

Vij(φ) �









1 � �2 . �lj�1

� 1 � . �lj�2

. . . . .

. . . 1 �

�lj�1 �lj�2 . � 1









� 2
vjp(�2

εf
|y, H) �


�

F

i�1

N(εi|0, �2
εf
)
p(�2

εf
|s2

f , �f).

Writing the F Gaussian densities and the density of the
scaled inverted chi-square prior process of �2

εf
explicitly,

� Wj(�)�2
vj
. (61)

one arrives at

Note that this covariance matrix is chromosome specific.
Using this, the conditional posterior density above hasp(�2

εf
|y, H) � (�2

εf
)�((F��f)/2 � 1)exp




� �F

i�1ε2
i � s2

f �f

2�2
εf




.

the form

This indicates that the conditional posterior distribu-
p (�|ELSE) � �

F

i�1

|�nc
j�1Wj(�)�2

vj
|�1/2 exp





�
(�i � Ti ci)�


�nc

j�1W
�1
j (�)/�2

vj


(�i � Ti ci)

2



tion of �2

εf
is scaled inverted chi square (e.g., Wang et

al. 1993; Gelman et al. 1995), that is,
� p (�|�) . (62)

�2
εf |y, H �




�

F

i�1

ε2
i � s2

f �f




��2

F��f
. (59) When viewed as a function of �, (62) is not in a

recognizable form, irrespective of the form of the prior
density p(�|�) adopted for the autoregressive parame-To draw samples from (59), one extracts a random
ter. Effecting a draw from this distribution requires adeviate from a central chi-square distribution on F � �f
more involved procedure, such as a single-site Metropo-degrees of freedom, takes its reciprocal, and multiplies
lis or Metropolis-Hastings algorithm (Metropolis et al.the inverted deviate by (�F

i�1ε2
i � s2

f �f).
1953; Tanner 1993; Gelman et al. 1995; Gilks et al.Likewise, the density of the conditional posterior dis-
1996; Sorensen and Gianola 2002). Perhaps the sim-tribution of the within-family variance is
plest is to adopt a Metropolis step. Here, a proposal
distribution is needed for generating candidate valuesp(�2

w|ELSE) �



�

F

i�1

N(yi|X*i �* � Mi �i � 1i εi, I�2
w)




p(�2

w|s2
w, �w) .

of �. As in Fisher (1921), and for the purpose of facilitat-
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ing the generation of proposals, consider transforming
�[t�1] �





�* if U � �

�[t] otherwise.the correlation coefficient � into � as

Invert the candidate as� �
1
2
log




1 � �

1 � �




,

�* �
exp(2�*) � 1
1 � exp(2�*)

,
with the Jacobian of the transformation being

and set
J �





2 exp(�)
1 � exp(2�)





2

.

�[t�1]




�* if U � �

�[t] otherwise.Then, the conditional posterior density of � is

The preceding completes the updating of the autore-
p (�|ELSE) � �

F

i�1

|�nc
j�1Wj(�)�2

vj
|�1/2exp





�
(�i � Ti ci)�


�nc

j�1
W�1j (�)/�2

vj

(�i � Tic i)

2



 gressive parameter.

Variances of within-chromosome deviates �2
vi: From (54),

� p(�|�)




exp(�)
1 � exp(2�)





2

,
p(�2

v1
, �2

v2
, . . . , �2

vnc
|ELSE) �




�

F

i�1

N(�i|Ti ci, Vi(φ))







�nc

j�1p ��2
vj
|s2

v, �v�



.(63)

where � � [�, �2
v1
, �2

v2
, . . . , �2

vnc
]�. Suppose now that the It is convenient to rewrite the model for marked effects

state of � at iteration t of the algorithm is �[t] and that presented in (42) into a chromosome-specific basis.
all other parameters in its conditional posterior distribu- Write
tion have been updated. This implies that the state of
� is

�[t] �
1
2
log





1 � �[t]

1 � �[t]




.








�*1
�*2
.

�*nc








�








T*1 c*1
T*2 c*2

.
T*nc

c*nc








�








v*1
v*2
.

v*nc








,

We update � via a Metropolis jump. Here, a candidate
value �* must be sampled from a symmetric candidate where �*j is a vector of order Flj � 1 containing the
generating distribution with density Q(�*|�[t]); symmetry marked effects of the lj markers in chromosome j for
means that Q(�*|�[t]) � Q(�[t]|�*) for all pairs (�*, �[t]) the F families, and v*j is a vector of within-chromosome
and for every t (Gelman et al. 1995). A distribution deviates. An assumption made earlier is that within-
meeting this requirement is a t-process; the t-distribu- chromosome deviates are conditionally mutually inde-
tion has thicker tails than the normal, so “extreme” pendent across chromosomes and families, but corre-
values appear at higher density, specially when the de- lated within chromosomes according to the covariance
grees of freedom are low (4–10, say). A possible Metrop- matrix in (61). Since the preceding is merely a re-
olis jump is as follows. arrangement of (42), it follows that

First, sample a deviate r from a Gamma(d.f./2, d.f./2)
�

F

i�1

N(�i|Tici, Vi(φ)) � �
nc

j�1

N(�*j |T*j c*j , I � Vij(φ)),where d.f. denotes the degrees of freedom of the t-dis-
tribution.

where the identity matrix is F � F. Hence,Second, following Box and Tiao (1973), sample a candi-
date �* from

p (�2
v1
, �2

v2
, . . . , �2

�nc
|ELSE) �




�
nc

j�1

N (�*j |T*j c*j , I � Vij(φ))p ��2
vj
|s2

v, �v�




�* � N




1
2
log





1 � �[t]

1 � �[t]





�
5�[t]

2l
,

1

l√r




.

� �
nc

j�1

p (�2
vj|ELSE); j � 1, 2, . . . , nc

Third, using (63), compute the Metropolis ratio:
indicating that the within-chromosome variances �2

vj

have independent fully conditional posterior distribu-� �
p(�*|ELSE)
p(�[t]|ELSE)

.
tions. In particular, and writing the densities explicitly,
one has for �2

vj
,The integration constant cancels out in the numerator

p (�2
vj
|ELSE) � |I � Vij(φ)|�1/2and denominator, so � is calculated by direct evalua-

tion of ratios involving (63).
� exp




�

(�*j � T*j c*j )�[I � V�1
ij (φ)](�*j � T*j c*j )

2



Fourth, draw a deviate U from a Uniform(0, 1) distribu-

� p (�2
vj
|s2

v,�v)tion, and set
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ditional posterior distributions, perhaps changing
� |I �

W�1
j

�2
vj

|�1/2

the order of visitation at each round: (55) for �*;
(56), (57), and (58) for the family-specific marked

� exp



�

(�*j � T*j c*j )�

I � w�1

j /�2
vj


 (�*j � T*j c*j )

2





effects, background effects, and chromosome effects,
respectively; (59) and (60) for the between- and

� p(�2
vj
|s2

v,�v) � (�2
vj
)�((Flj � v�)/2�1)

within-family variances of the background effects;

� exp



�

(�*j � T*j c*j )�[I � W�1
j ](�*j � T*j c*j ) � s2

v�v

2




.

(62) for the autoregressive parameter, after incorpo-
rating the Metropolis step; (65) for the nc variances

(64) of within-chromosome deviates; and (66) for K, the
covariance matrix of chromosome effects. This con-This is the density of the scale-inverted chi-square

variate: stitutes a single completed iteration of the scheme.
At each subsequent loop, update the values of the

�2
vj
|ELSE � 

(�*j � T*j c*j )�[I � W � 1
j ](�*j � T*j c*j ) � s2

v�v

��2

Flj
� �v ;

appropriate conditioning values with the new draws.
3. Repeat the iteration as many times as needed toj � 1, 2, . . . , nc .

ensure (a) that draws can be reasonably claimed as
(65)

belonging to the posterior distribution and (b) thatThus, the within-chromosome variance can be sampled
posterior features are estimated with a sufficientlyindependently, chromosome by chromosome.
small Monte Carlo error.Covariance matrix of chromosome effects K: Retaining in

4. If necessary, discard early iterations, in what is called(54) only those terms involving K leads to
the “burn-in” period.

5. Using the remaining samples, estimate any feature
p(K|ELSE) �




�

F

i�1

N(ci|0, K)



p(K|Sc, vc) . of the posterior distribution, e.g., a posterior mean

or variance, a posterior density, or the distribution
Now, we write explicitly the F normal densities and the of an order statistic.
inverse Wishart density p(K|Sc, vc), to obtain

To illustrate the flexibility of the approach, consider
inferring the Lorenz curve and the Gini coefficient in

p(K|ELSE) �



�

F

i�1

|K|�1/2exp




�
c�i K�1ci

2








|K|�(nc�vc�1)/2

(36) and (37), respectively, and contrast this with the
crude methods discussed in Differential contribution of
marked effects to genetic variability. Let �(k) be a draw from� exp





�
tr(ScvcK�1)

2



 the posterior distribution of the marked effects in the

simplest model. Then, as in (34), �(k)
j � m�unique,j�(k) is a

draw from the posterior distribution of �j and S(�(k)) is� |K|�(nc�F�vc�1)/2exp




�
1
2

tr



K�1




�

F

i�1

cic�i �Scvc













.
a sample from the posterior distribution of S(�) in (35).

(66) Next, order all the �2(k)
j , so that

This indicates that the fully conditional posterior distri- 
�2(k)

[1] , �2(k)
[2] , . . �2(k)

[u]

bution is inverse Wishart of order nc, degrees of freedom

equal to F � vc , scale matrix �F
i�1cic�i � Scvc , and poste-

is a sample from posterior distribution of the orderedrior expectation
squared “unique” marked effects. Then

E(K|ELSE) � �F
i�1cic�i � Scvc

F � vc � nc � 1 L(k)� i
u� � �i

j �1�
2(k)
[j ]

S(�(k))
� �i

j �1�
2(k)
[j ]

�u
j�1�

2(k)
j(given all other parameters). Procedures for sampling

from inverse Wishart distributions in a quantitative ge- is a sample from the posterior distribution of the Lorenz
netics context are in, e.g., Jensen et al. (1994), Kors- curve in (36). Likewise,
gaard et al. (1999), and Sorensen and Gianola (2002).

The MCMC scheme in a nutshell: A discussion of how G(k) �
2

(u�u
j �1�

2(k)
j )�

u
j �1�j �

1
2��2(k)

[j]
Markov chain Monte Carlo schemes can be tuned, run,
and monitored for convergence can be found in Gelman

is a sample from the posterior distribution of the Giniet al. (1995), Gilks et al. (1996), Cowles and Carlin
coefficient in (37), measuring unequal contribution of(1996), Robert and Casella (1999), and Sorensen and
marked effects to genetic variability. The Bayesian analy-Gianola (2002). A possible implementation follows.
sis produces an entire description of the uncertainty
about the Lorenz curve and the Gini coefficient.1. Set starting values that are hopefully “inside” of the

Draws from the posterior distribution of the “total”target joint posterior distribution.
2. Sample systematically from each of the following con- genetic value (in the simplest model) would be obtained
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as M�(k) � ε(k), and posterior means, variances, and co- is dominated (in the mean-squared error sense)
throughout the parameter space by a nonlinear, shrink-variances can be computed directly from such samples.
age type, estimator. This result, which torpedoes best
linear unbiased estimation and maximum-likelihood es-

DISCUSSION
timation under normality, has been ignored in quantita-
tive genetics (Gianola 1990), although it is widely ac-Several methods for incorporating molecular infor-

mation into predictors of genetic merit of candidates knowledged in econometrics (Theil 1971; Judge et al.
1985). On these grounds, not much should be expectedfor selection in improvement programs have been pro-

posed in recent years. For example, Lande and Thomp- from least-squares derivatives in marker-assisted predic-
tion of genetic value, as found by Meuwissen et al.son (1990) suggested using multiple regression (in a

least-squares sense) of the phenotypic value of an indi- (2001).
Whittaker et al. (2000) and Whittaker (2001)vidual on the number of copies of alleles at polymorphic

loci; in situations where the linkage map is known, sepa- noted that having “too many” markers in the regression
model produces serious colinearity, causing unstablerate regressions could be calculated for each chromo-

some. They argued that, given a sufficient number of least-squares estimates and a poor prediction of the
molecular score. The method leads to apparent para-markers, nearly all of the additive genetic variance could

be accounted for by the regression model. These au- doxes, as follows. At least in theory, the regression coef-
ficients of phenotype on markers flanking a QTL mustthors calculated a “molecular score” (the fitted value of

the least-squares regression) and combined the molecu- have the same sign (Whittaker et al. 1996). However,
the estimated regression coefficients can differ in signlar score with the phenotype for the quantitative trait

via standard selection index techniques. Lande and even when the true parameters agree in sign (Hwang
and Nettleton 2002). The latter authors point outThompson (1990) also introduced a familial structure

and discussed how selection could be optimized (in that sign inconsistency is greatest when flanking markers
are close together and, thus, highly correlated. As ansome sense) by combining family means and within-

family deviations for both the molecular score and the alternative to selection of subsets of markers to include
in the model, Whittaker et al. (2000) and Whittakerphenotypic values via selection index theory (Smith

1936; Hazel 1943). There are some problems with this (2001) suggested employing ridge regression (Hoerl
and Kennard 1970) for estimation. This ad hoc proce-approach. First, the method breaks down when formu-

lated in a vectorial manner. Even in the trivial case where dure shrinks the least-squares estimates toward zero,
improves the condition of the coefficient matrix in least-candidates are independent and identically distributed

(essentially their setting), the covariance matrix of the squares, and often produces a reduction in mean-
squared error of estimation. Here, one encounters themolecular scores is singular since the distribution of

fitted values in regression is defined only in a p-dimen- typical dilemma: the shrinkage estimator may be more
precise but less accurate, since it is biased. Whether orsional space, rather than in n dimensions (the number

of individuals with molecular scores). Hence, a selection not this reduces mean-squared error depends on a bias
vs. variance trade-off, and the performance of ridgeindex approach coined in the more general framework

of best linear prediction (Henderson 1973) leads to relative to least-squares regression is a function of the
true value of the regression vector, which is obviouslyan infinite number of solutions. Hence, care must be

exercised to ensure that the functions of genetic merit to unknown. One never knows how much shrinkage
should be effected, although there are some informalbe predicted are indeed predictable (Harville 1976).

Another difficulty with the least-squares method arises recipes for tuning the shrinkage parameter. On the
other hand, ridge regression makes more sense whenwhen the number of markers is almost as large as the

number of individuals typed. For example, �1.5 million viewed from a Bayesian perspective (Lindley and
Smith 1972; Zellner and Vandaele 1975; Gianolasingle-nucleotide polymorphisms (the current desidera-

tum of genetic marker) have been identified in the and Fernando 1986). Ridge regression is equivalent
to adopting a normal prior for the regression vectorhuman genome and their positions located at an aver-

age spacing of 2 � 10�3 cM (Hartl and Jones 2002). centered at zero and with a prior covariance structure
equal to an identity matrix times a scalar, the varianceIf advantage is to be taken of this map density, this leads

to a situation where l � n. Hence, colinearity of pre- of the prior distribution. A small variance means large
prior precision and more shrinkage (a stronger beliefdictor variables creates an insurmountable parameter

identification problem unless some dimension-reduc- that the regression is null); a large variance implies
diffuse prior knowledge of the regression vector. Thetion technique, such as singular value decomposition,

or some ad hoc marker model selection procedure is scalar prior covariance matrix implies that the individ-
ual regression coefficients of phenotypes on markersemployed. Also, it is well known in statistics that least-

squares is an inadmissible estimation procedure. Stein are viewed as independently and identically distributed
a priori. Shrinking all marked effects toward a common(1955) showed for the orthonormal linear regression

model that whenever l � 2, the least-squares estimator prior mean may be questionable. Also, assuming that
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different chromosome sections have independent ex- (e.g., Hoeschele 2001). For this reason, all analyses
presented in our article treat the matrix M as nonsto-pression levels is contradicted by evidence from gene

expression trials (Caron et al. 2001). chastic. Concerning the background genetic effects, one
can introduce a full relationship matrix under additiveIn practice, all individuals cannot be typed for all

markers. Further, if typing costs continue to be abated, inheritance.
Model (38) introduces a family structure, and (47)the number of predictor variables (markers) may grow

faster than the number of observations. This situation expands Lande and Thompson (1990) to a matrix do-
main, but with a random-effects treatment. To illustrateis encountered routinely in animal breeding, and it can

be solved by positing random-effect models. The BLUP a Bayesian analysis of the latter, consider the following
terms: (1) Mi �B , the fi � 1 vector of unobserved (con-methods used in animal breeding can be viewed as based

on conditional or posterior distributions (Gianola and trary to least-squares fitted values) mean molecular
scores for all members of family i (all its elements areFernando 1986), illustrating why the dimensionality

and identification problems arising in least-squares are equal); (2) (Mi � Mi)�W, the within-family contribu-
tions to the molecular scores; (3) εi or background ge-circumvented. Meuwissen et al. (2001) noted this and

compared least-squares with BLUP and with two Bayes- netic effect of family i (e.g., the additive genetic contribu-
tion, net of the marked part of the variability); and (4)ian methods for marker-assisted prediction. In their sim-

ulation, effects of 50,000 marker haplotypes needed to wi, a vector of within-family deviations (also net of the
marked part of the variability). The mean of the posteriorbe inferred from 2200 observations. Since this is not

possible via least-squares, they calculated regressions on distribution of the total genetic merit of the individuals
in family i would be obtained by averaging Mi�(k)

B �markers found in chromosome segments of 1 cM each
and evaluated a log-likelihood (assuming normality) for (Mi � Mi)�(k)

W � 1iε(k)
i over the MCMC samples. Simi-

larly, the posterior mean of the within-family deviationsevery segment. Then, “significant” segments were se-
lected using an arbitrary procedure on the basis of the can be estimated by averaging w(k)

i � yi � Xi�(k) �
Mi�(k)

i � 1iε(k)
i . Lande and Thompson (1990) considersaid likelihoods. Eventually, the authors combined all

such segments into a single multiple regression model. “selection optimization” by defining total merit of a
candidate for selection as a linear combination of familyIn the BLUP analysis, all chromosome effects were re-

garded as independent and identically distributed ran- and within-family information. For instance, one could
write the merit vectordom effects with known variance. Their first Bayesian

model was as in BLUP, but assigning independent scaled
Ti � hF�Mi �B � hF ε1i εi � hw�(Mi � Mi)�W � hwεwi ,inverted chi-square distributions to the variances of the

chromosome segments. The second Bayesian model where hF� and hFε are some nonstochastic relative weights
assigned to the unobserved molecular and quantitativeused a mixture prior distribution for the variance of the

chromosome segment variances. Their main conclu- trait family means, respectively, and hw�, hwε are corre-
sponding weights assigned to the unobserved within-sions were: (1) least-squares had a low accuracy of pre-

diction of genetic value, (2) the BLUP and Bayesian family deviations. The means, variances, covariances,
and any feature of a posterior distribution involving themethods differed by little, and (3) the Bayesian methods

assigning prior distributions to the variance associated unobserved total merits Ti can be estimated from the
MCMC samples. The procedure takes the ideas ofwith chromosome segments gave the most accurate pre-

dictions. Lande and Thompson (1990) to a higher level of gener-
ality, with the uncertainty about nuisance parametersThe classical and Bayesian methods outlined here do

not accommodate complex genealogical structures such taken into account fully in the usual Bayesian manner
(Box and Tiao 1973).as those arising in animal breeding. To illustrate, con-

sider the hypothetical situation in which the markers We have assumed throughout that all individuals have
been typed for all markers, but this is seldom the case,and the QTL are identical, so that there are no back-
as noted earlier. In the Bayesian context missing mark-ground effects if gene action is additive. Hence, in the
ers can be dealt with automatically via an augmentationnotation of A Mixed-Effects Model Formulation,
of the posterior distribution. Subsequently, MCMC isai � �l

k�1mik�k, and, therefore, one would expect a priori
used to make imputations for the unobserved part ofthat the covariance between the genetic value of any
the molecular information, at least if missingness is attwo relatives i and i� is equal to
random in the sense of Rubin (1976). See Hoeschele
(2001) for technical details.

Cov



�

l

k�1

mik�k, �
l

k�1

mi�k�k





� �2
�E(m�i m�i ). It remains to be seen to what extent the proposed

procedures hold in practice or in simulations what they
In the absence of knowledge of genotype frequencies, seem to promise on theoretical grounds. In a simula-
the term E(m�i m�i ) cannot be assessed. In a fully Bayesian tion, Whittaker et al. (2000) found that a simple ridge
method one needs to assign a prior to the genotypic regression procedure enhanced response to selection

over plain phenotypic selection or selection based onfrequencies and take the MCMC method even further
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