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ABSTRACT
It is often convenient to define models for the process of chiasma formation at meiosis as stationary

renewal models. However, count-location models are also useful, particularly to capture the biological
requirement of at least one chiasma per chromosome. The Sturt model and truncated Poisson model are
both count-location models with this feature. We show that the truncated Poisson model can also be
expressed as a stationary renewal model, while the Sturt model cannot. More generally, we show that
there is only one family of count-location models for the chiasma process that can also be expressed as
stationary renewal models. The models in this family can exhibit either positive or negative interference.

BECAUSE of its mathematical simplicity, Haldane’s cies for many of the map functions in use. A much more
satisfactory approach is presented in Zhao and SpeedPoisson process model (Haldane 1919) for the
(1996). Zhao and Speed (1996) show that stationaryoccurrence of crossovers along chromosomes at meiosis
renewal processes give rise to most of the map functionsis generally assumed when calculating probabilities on
found in the literature and characterize the class of mapmultiple linked genetic loci. However, there is increas-
functions that may be achieved by stationary renewaling interest in investigating alternative models. Several
process models.authors (e.g., Foss et al. 1993; McPeek and Speed 1995;

Rather than define models for the crossover processZhao et al. 1995b) have compared the fit of various
directly, it is best to start with a model for the underlyingmodels to meiosis and tetrad data. Browning (1999)
chiasma process, since the formation of chiasmata is thepresents a method for comparing the fit of models to
physical event underlying crossing over. At meiosis, eachidentity-by-state data from pairs of related individuals.
chromosome duplicates to form two sister chromatidsThe approach in Browning (1999) can also be used
and the two pairs of homologous chromatids line upto incorporate any model for the crossover process into
into a bundle of four. On this bundle, chiasmata occur,relationship analysis based on identity-by-state data from
and each chiasma causes two nonsister chromatids totwo individuals of uncertain relationship.
cross over. Figure 1 illustrates the process. Any one ofRegardless of the crossing-over model, the genetic
the four resulting chromatids may be the one transmit-distance in Morgans between two loci on a chromosome
ted to the offspring. It is common to assume no chroma-is defined to be the expected number of crossovers
tid interference (NCI), so that each chromatid is in-between them in a single meiosis; hence the rate of cross-
volved in a crossover with probability one-half at eaching over along a chromosome will be 1/M.
chiasma independent of the outcome at other chiasmataA map function M(d) gives the probability of recombi-
on the bundle. This assumption seems to fit the availablenation (an odd number of crossovers) in an interval of
data (see Zhao et al. 1995a) and is convenient. A chi-genetic length d. Until recently, it was common to define
asma process model with a model for chromatid inter-map functions rather than to model the crossover point
ference or the assumption of NCI defines a correspond-process directly. However, as Fisher (1947) pointed out,
ing crossover process model.map functions do not uniquely determine multilocus

The two main classes of chiasma process models thatrecombination probabilities (the probabilities of pat-
have been studied are stationary renewal models andterns of recombination and nonrecombination between
count-location models (see Lange 1997). Count-loca-multiple loci) for more than three loci. The issue was
tion models (Karlin and Liberman 1978) define a dis-complicated by the approach of Liberman and Karlin
tribution for the number, N, of chiasmata and assume(1984) for extending map functions to multilocus re-
that the locations of the chiasmata given N are indepen-combination probabilities, which leads to inconsisten-
dent. In this article, we characterize the relationship
between count-location and stationary renewal models,
showing that there is only one family of count-location
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RESULTS

In this section we show that the truncated Poisson
model can be expressed as a stationary renewal model
while the Sturt model cannot. Moreover, we show that
there is only one family of count-location chiasma pro-
cess models that can be expressed as stationary renewal
models, and we characterize interference for this family.

Theorem 1. Count-location chiasma process models with
probabilities of the following form can be expressed as stationary
renewal models:

Figure 1.—The process of chiasma formation.

pn 5 (1 2 p0)
bnLne2bL

n!(1 2 e2bL)
for n $ 1, (1)

cated Poisson count-location models, showing that the
where pn 5 P(N 5 n) and b . 0 solvestruncated Poisson model is a stationary renewal model

while the Sturt model is not. (1 2 p0)b/2 5 1 2 e2bL. (2)
Sturt and truncated Poisson models: The formation

Conversely, count-location models can be expressed as renewalof at least one chiasma per chromatid bundle seems to
models only if they have probabilities of this form.be essential for correct disjunction of chromatids at

In this family of models, the probability, p0, of no chiasmatameiosis. As a result, several chiasma process models have
can take any value between zero and one. But by definition ofbeen proposed that ensure at least one chiasma per
genetic length (genetic length, in morgans, equals expectedchromatid bundle. The Sturt (1976) and truncated
number of crossovers per meiosis, which equals half the expectedPoisson (Lange 1997) models are both count-location
number of chiasmata on the chromatid bundle), L 5 E(N)/2,models, with the locations of chiasmata distributed uni-
so L and p0 must satisfy L $ (1 2 p0)/2 since E(N) $formly and independently along the chromosome given
P(N $ 1) 5 1 2 p0.N, the number of chiasmata.

The models are mixtures of scaled truncated Poisson andFor a chromosome of genetic length L M, the Sturt
point mass at zero. Let X1 be the genetic distance to the firstmodel has the number N of chiasmata distributed as 1
(leftmost) chiasma (if there is no chiasma on the chromosome,

1 Poisson(2L 2 1)—that is, the model places one chi-
we consider X1 . L), and let X2 be the genetic distance betweenasma at a uniformly chosen random location on the
the first chiasma and the second (X2 . L 2 X1 if there is onlychromatid bundle and then superimposes a Poisson
one chiasma). Write fX1(x) for the probability density of X1,chiasma process with mean 2L 2 1 so that the overall
and FX2(x) 5 P(X2 # x) for the cumulative distribution func-number of chiasmata has mean 2L as required. (Note
tion of X2. On 0 , x , L, fX1(x) 5 2e2bx for these models,that a genetic length of L M implies an average of L
and FX2(x) 5 1 2 e2bx. Thus fX1(x) 5 2(1 2 FX2(x)), ascrossovers or 2L chiasmata per meiosis). The probability
expected for a stationary renewal process of rate 2. The renewaldistribution of N under this model is, for n $ 1,
distribution on x $ L is in general not uniquely determined
by the count-location model.

P(N 5 n) 5
(2L 2 1)n21e2(2L21)

(n 2 1)!
.

Proof of Theorem 1 can be found in the appendix.

The truncated Poisson model has N, the number of Corollary 1. It follows immediately that the truncated
chiasmata, following a Poisson distribution conditional Poisson model can be expressed as a stationary renewal model
on N $ 1. The rate a of the distribution must be chosen and that the truncated Poisson model is the only count-location
such that the expected value of N 5 2L, hence a solves with P(N 5 0) 5 0 that can be expressed as a stationary
aL/(1 2 e2aL) 5 2L and thus a/2 5 1 2 e2aL. For the renewal model. In the appendix we show that the renewal
truncated Poisson model, the probability distribution distribution is uniquely determined on x $ L for this model
of N is, for n $ 1, and has FX2(x) 5 1 for x $ L.

Note that eL
0 fX1(x) dx 5 1 so that fX1 is a proper density

P(N 5 n) 5
(aL)ne2aL

n!(1 2 e2aL)
. with support on (0,L), which ensures at least one chiasma on

the chromosome. Also, the distribution of X2 has mass of e2aL

at L. This mass does not affect the process on [0,L] since weNote that under these two models, all chromosomes
observe X2 only in the interval [X1, L], with X1 . 0.must have L $ 0.5. The requirement of at least one

chiasma per chromatid bundle guarantees that at least
Corollary 2. The Sturt model cannot be expressed as a

half of the resulting chromatids show at least one cross-
stationary renewal model.

over. Thus the genetic length in morgans (the expected
number of crossovers per meiosis) of a chromosome is Characterization of interference: A traditional mea-

sure of chiasma interference is the coincidence coeffi-at least 0.5.
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cient, C, which is, for two disjoint intervals on a chromo- If M corresponds to a stationary renewal model, this
nondifferentiability at L arises when the interevent dis-some, the ratio of the probability of recombination in

both intervals to the product of the marginal probabili- tribution has mass at L, as is the case for the renewal
representation of the truncated Poisson model. Theties of recombination in each of the intervals. Equiva-

lently, map function for the truncated Poisson model is

M(d) 5
1
211 2 o

∞

n50

pn(1 2 d/L)n2 5
1
211 2

e2ad 2 e2aL

1 2 e2aL 2C(I1, I2) 5
1⁄4P(NI1

. 0 and NI2
. 0)

1⁄2P(NI1
. 0)1⁄2P(NI2

. 0)

(see Lange 1997). It has M(L) 5 1⁄2 and limd↗L M9(d) 5(Risch and Lange 1979), where NI1 and NI2 are the
1⁄2ae2aL/(1 2 e2aL) 5 e2aL . 0, and hence M does notnumbers of chiasmata in the two intervals. If C , 1, we
satisfy (B) or (B)9.say that chiasma interference is positive, while if C . 1,

Thus, if one is willing to consider only stationary re-we say that chiasma interference is negative. Risch and
newal processes for which the interevent distribution isLange (1979) give a partial characterization of interfer-
absolutely continuous on [0,∞) [and thus has a densityence for count-location models.
on [0, ∞), as the statement of the theorem implicitly

Theorem 2. For the family of models given in Theorem 1, assumes], the theorem is correct, although it would be
C 5 b/2 for any pair of disjoint intervals on a chromosome. best to replace M9(L) by limd↗L M9(d). However, while
Hence C increases monotonically as a function of p0, with C , it is, for biological plausibility and computational sim-
1 for p0 , e22L, and C . 1 for p0 . e22L. plicity, reasonable to require the interevent distribution

to have a density on [0,L), it seems unnecessary to re-Proof of Theorem 2 can be found in the appendix.
quire the interevent distribution to be absolutely contin-
uous on [L,∞) as this part of the distribution has no

COMPARISON WITH THE RESULTS relevance or practical application for chromosomes of
OF ZHAO AND SPEED length L.

Zhao and Speed (1996) investigate properties of ge-
netic mapping functions corresponding to stationary

DISCUSSIONrenewal chiasma processes. According to Theorem 2
of their article, the truncated Poisson model does not In some cases, the crossover process model has a
correspond to a stationary renewal model, which contra- simple form and is as easy to work with as the chiasma
dicts Corollary 1 of this article. process model, while in other cases, it is simplest to

We reproduce Zhao and Speed’s theorem and then work directly with the chiasma process. In Monte Carlo
resolve the discrepancy. methods that sample possible realizations of either the

chiasma process or the crossover process underlyingFor a map function M defined on [0, L], where L , ∞,
the observed data (such as in Browning 1999), Montewe say that M satisfies condition (B) if

M(0) 5 0 (B1), M9(d) $ 0, Carlo error is reduced by sampling the crossover process
for all d (B2), M9(0) 5 1 (B3), M″(d) # 0, rather than the chiasma process. Assuming NCI, the
for all d (B4), M9(L) 5 0 (B5), M(L) 5 1⁄2 (B6). crossover process corresponding to a count-location chi-
We say that M satisfies condition (B)9 if it satifies (B1)–

asma process is also a count-location process. Let M be(B4) and
the number of crossovers on a chromosome. For the

M9(L) . 0 (B5)9, M(L) , 1⁄2 (B6)9. truncated Poisson,
Theorem [Zhao and Speed (1996)]. Let M be the map
function for a stationary renewal chiasma process satis-
fying NCI on a chromosome arm of finite length. Then
M satisfies (B) or (B)9 for any L. Conversely, suppose that

P(M 5 0) 5
e2aL/2

1 1 e2aL/2

and

P(M 5 m) 5
e2aL/2(aL/2)m

m!(1 2 e2aL)
for m $ 1.

a function M from [0, L] into [0, 1⁄2] satisfies (B) or (B)9.
Then there is a stationary renewal chiasma process whose
map function is M and whose renewal density is 2M″
when d # L.

Derivation of this result, along with corresponding prob-There is a difficulty with this theorem as M is only
abilities for the Sturt model, can be found in Browningdefined on [0, L] and thus M9(L) is not actually defined.
(1999). By thinning, the truncated Poisson crossoverEven if M can be extended beyond L (as will be the
process is a stationary renewal process and has inter-case when there is a stationary renewal chiasma process
event densitywhose map function is M), the extension may not be

differentiable at L. In particular, if M satisfies (B), then,
g(x) 5

a

2
e2ax/2 for x , L.assuming NCI, the only possible extension is M(L) 5

1⁄2 for d $ L, and thus if limd↗L M9(d) ? 0, then M is not
differentiable at L. The truncated Poisson and Sturt models, along with
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Sturt, E., 1976 A mapping function for human chromosomes. Ann.other count-location models that require at least one
Hum. Genet. 40: 147–163.

chiasma per chromosome, are useful models because of Zhao, H., and T. P. Speed, 1996 On genetic map functions. Genetics
142: 1369–1377.the biological requirement that they satisfy. As renewal

Zhao, H., M. S. McPeek and T. P. Speed, 1995a Statistical analysismodels have received more attention in the recent statis-
of chromatid interference. Genetics 139: 1057–1065.

tical genetics literature than count-location models, and Zhao, H., T. P. Speed and M. S. McPeek, 1995b Statistical analysis
of crossover interference using the chi-square model. Geneticsthus methods for working with chiasma process models
139: 1045–1056.may be described only for renewal models, it is helpful

to be able to express the truncated Poisson model as a Communicating editor: S. Tavaré
renewal model and to be aware that other models, such
as the Sturt model, cannot be expressed in this way.

Count-location models do have a severe drawback, in
APPENDIXthat they cannot incorporate chiasma interference in

any meaningful way since the locations of the chiasmata Chiasma process probabilities for count-location mod-
are assumed to be independent given the number of els: Let pn, X1, and X2 be as in Theorem 1. For count-
chiasmata. An ideal model would incorporate the re- location models, P(X1 # x|N 5 n) 5 1 2 (1 2 x/L)n

quirement of at least one chiasma, along with a pattern (for x , L), so
of chiasma interference that fits the available data, such
as is found in the Kosambi map function (Kosambi

P(X1 # x) 5 o
∞

n50

P(N 5 n)P(X1 # x|N 5 n)
1944) and in the chi-square model (for example, see
Zhao et al. 1995b). Goldgar and Fain (1988) present
one approach to constructing such a model. The proba- 5 o

∞

n50

pn31 2 11 2
x
L2

n

4
bility distribution for the number of crossovers is mod-
eled as for a count-location model, but the locations of

5 1 2 o
∞

n50

pn11 2
x
L2

n

the crossovers are not assumed to be independent but
to follow a distribution that allows for crossover interfer-
ence. The model does seem to fit data well, but has and the density for X1 is
several drawbacks, which are discussed in Zhao et al.
(1995b). fX1

(x) 5 o
∞

n51

npn

L 11 2
x
L2

n21

. (3)
I am grateful to Elizabeth Thompson for many helpful discussions

and to Terry Speed, Hongyu Zhao, and the referees for their com- Let fX1|N(x|n) be the probability density of X1 at x given
ments. This work was supported in part by the Burroughs Wellcome
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P(N 5 n|X1 5 x) 5 fX1|N(x|n)P(N 5 n)/fX1
(x)

5
n
L11 2

x
L2

n21

pnYo
∞

m51

mpm

L 11 2
x
L2

m21
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5 e2b(L2Ri
j51xj)(e b(L2Ri

j51xj) 2 e b(L2Ri11
j51xj))fX1

(x) 5 o
∞

n51

(1 2 p0)
ne2bL(bL)n

Ln!(1 2 e2bL) 11 2
x
L2

n21

5 1 2 e2bxi11

5 (1 2 p0)
be2bL

1 2 e2bL o
∞

n51

bn21(L 2 x)n21

(n 2 1)! so that Xi11 is independent of {Xj : j # i}, and the density
of Xi11 is fXi11(x) 5 be2bx as required. Hence the station-

5 (1 2 p0)
be2bL

1 2 e2bL
eb(L2x) ary renewal model with interevent distribution FX2(x) 5

1 2 e2bx for x , L is a representation of the count-
location model in Equation 1.5 2e2bx since (1 2 p0)b/2 5 1 2 e2bL.

We now show that count-location models can be ex-
From Equation 4, pressed as renewal models only if they have probabilities

following the form in Equation 1. We do so by showing
P(X2 # x|X1 5 y) 5 1 2

R∞
n51(bL)n(1 2 (x 1 y)/L)n21/(n 2 1)!

R∞
n51(bL)n(1 2 y/L)n21/(n 2 1)! that for any given value of p1, there can be at most one

count-location model that can be expressed as a renewal
model—and hence for any given value of p0 the same5 1 2 exp




bL11 2

x 1 y
L 2 2 bL11 2

y
L2



 is true.

For a stationary renewal chiasma model,
5 1 2 e2bx.

fX1
(x) 5 2(1 2 FX2

(x)). (5)Since P(X2 # x|X1 5 y) does not depend on y, we have
FX2(x) 5 1 2 e2bx. Also, for a stationary renewal process, X2 is independent

We can check that the probability distribution of the of X1, so that FX2(x) 5 P(X2 # x|X1 5 y) (and this expres-
distance Xi11 between the ith and (i 1 1)st chiasmata sion does not depend on y). Hence for a count-location
(i $ 2) is the same as that for X2, and does not depend chiasma model that can be expressed as a stationary
on {Xj : j # i}, by induction. Suppose X1, X2, . . . , Xi are model, Equations 3, 4, and 5 imply that
independent, with probability densities fXj(x) 5 be2bx

for 2 # j # i and fX1(x) 5 2e2bx. Then o
∞

n51

npn

L 11 2
x
L2

n21

5
2R∞

n51npn(1 2 (x 1 y)/L)n21

R∞
n51npn(1 2 y/L)n21

f(X1 5 x1, . . . , Xi 5 xi|N 5 n)
and hence

5 f(X1 5 x1|N 5 n) f(X2 5 x2|N 5 n, X1 5 x1)

1o
∞

n51

npn11 2
x
L2

n21

2 1o
∞

n51

npn11 2
y
L2

n21

2 5 2L o
∞

n51

npn11 2
x 1 y

L 2
n21

.. . . f(Xi 5 xi|N 5 n, X1 5 x1, . . . , Xi21 5 xi21)

(6)
5

n
L11 2

x1

L2
n21

n 2 1
L 2 x1

11 2
x2

L 2 x1
2

n22

Write

φ(s) 5 o
∞

n51

npn(1 2 s)n21. (7). . .
n 2 i 1 1
L 2 Ri21

j51xj
11 2

xi

L 2 Ri21
j51xj

2
n2i

Then Equation 6 can be written
5

n!(L 2 Ri
j51xj)n2i

(n 2 i)!Ln

φ1xL2φ1y
L2 5 2Lφ1x 1 y

L 2and, writing Xi for {Xj : j # i},

P(Xi11 # xi11|X1 5 x1, . . . , Xi 5 xi) and this holds for all {(x,y) : x $ 0, y $ 0, x 1 y , L}.
Hence,

5 o
∞

n5i

P(Xi11 # xi11|N 5 n, Xi 5 xi)P(N 5 n|Xi 5 xi)
φ(s)φ(t) 5 2Lφ(s 1 t) (8)

5 o
∞

n5i

P(Xi11 # xi11|N 5 n, Xi 5 xi) for all {(s,t) : s $ 0, t $ 0, s 1 t , 1}. Now φ(0) 5
E(N) and hence φ(0) 5 2L by the definition of genetic
distance. Also lims↗1φ(s) 5 p1.3

f(Xi 5 xi|N 5 n)P(N 5 n)
f(Xi 5 xi) Suppose p1 is set at some value, while the {pn, n ? 1}

can take any values. Then we can show that φ is uniquely
5 o

∞

n5i
11 2 11 2

xi11

L 2 Ri
j51xj

2
n2i

2n!(L 2 Ri
j51xj)n2i

(n 2 i)!Ln determined by Equation 8. To show this by induction,
suppose that for some n the value of φ(i/2n) is deter-
mined for i 5 0, 1, . . . , 2n (for fixed L and p1 this holds

3 (1 2 p0)
(bL)ne2bL

n!(1 2 e2bL)Y(2bi21e2bRi
j51xi) for n 5 0). Then trivially φ(0/2n11) 5 φ(0/2n), which

is determined. From Equation 8, φ(1/2n11)φ(1/2n11) 5

2Lφ(1/2n); thus φ(1/2n11) 5 √2Lφ(1/2n) is determined.
5 e2b(L2Ri

j51xjo
∞

n5i
1b

n2i(L 2 Ri
j51xj)n2i

(n 2 i)!
2

bn2i(L 2 Ri11
j51xj)n2i

(n 2 i)! 2 Further, applying Equation 8 multiple times, [φ(1/
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2n11)]i 5 (2L)i21 φ(i/2n11) and hence φ(i/2n11) 5 (1/ a chromosome of length L. Let NI be the number of
chiasmata in I. Then, for the models in Equation 1,2L)i21 [φ(1/2n11)]i is determined for i 5 2, 3, . . . , 2n11.

Thus by induction, φ(i/2n) is determined for all n and
P(NI 5 0) 5 o

∞

n50

pn11 2
d
L2

n

i 5 0, 1, . . . , 2n. By continuity of φ (see the definition
of φ in Equation 7), φ(s) is determined for all 0 # s , 1.

Note that pn 5 lims↗1 φ(n21)(s)/n!, where φ(i)(s) is the 5 p0 1 o
∞

n51

(1 2 p0)
bnLn(1 2 d/L)ne2bL

n!(1 2 e2bL)ith derivative of φ at s, for n $ 1 and p0 5 1 2 R∞
n51pn.

Thus for a given value of p1, Equation 5 uniquely deter-
5 p0 2

(1 2 p0)e2bL

1 2 e2bL
1 o

∞

n50

(1 2 p0)
bnLn(1 2 d/L)ne2bL

n!(1 2 e2bL)mines pn for all n ? 1. Equivalently, given a value of p0,
Equation 5 uniquely determines pn for all n ? 0.

5 1 2
1 2 p0

1 2 e2bL
1

(1 2 p0)e2bd

1 2 e2bLHence we have demonstrated that, for a given value
of p0, there is only one count-location model that can
be expressed as a renewal model. In fact, for a given 5 1 2

(1 2 p0)(1 2 e2bd)
1 2 e2bLvalue of p0, the unique count-location model that can

be expressed as a renewal model has the form given in 5 1 2 (2/b)(1 2 e2bd),
Equation 1.

substituting Equation 1 for pn in the second line and
Proof of extension in Corollary 1: We show that for the applying condition (2) in the last line.

Hence, for two disjoint intervals with genetic lengthstruncated Poisson model, FX2 has a unique extension to
d1 and d2,[0, ∞). First, we require limx→∞FX2(x) 5 1. We have

limx↗LFX2(x) 5 1 2 e2aL, thus we have probability e2aL

that X2 takes the value L or greater. Second, we require C 5
P(NI1

. 0 and NI2
. 0)

P(NI1
. 0)P(NI2

. 0)E(X2) 5 1⁄2 since chiasmata occur at rate 2/M. Let
1{X2 ,L} equal one if X2 , L and zero otherwise.
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5 b/2.
5

1 2 e2aL

a
2 Le2aL

Now, condition (2) gives us p0 5 1 2 2(1 2 e2bL)/b.
We can check that p0 increases monotonically with b
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2 Le2aL. (for b . 0) and hence that C increases monotonically
with p0. Let g(b) 5 1 2 2(1 2 e2bL)/b. The derivative
of g is g 9(b) 5 2(ebL 2 (1 1 bL))/(b2ebL) . 0 for b .Thus E(X21{X2$L}) 5 E(X2) 2 E(X21{X2,L}) should equal
0, since ebL 5 R∞

i50(bL)i/i! . 1 1 bL, and hence p0 5Le2aL. The two conditions are met by giving the distribu-
g(b) is an increasing function of b for b . 0. The notion of X2 mass e2aL at L.
interference model has p0 5 e22L. Thus C , 1 for p0 ,

Proof of Theorem 2. Let I be an interval, or union of e22L (C → 0 as p0 → 1 2 2L) and C . 1 for p0 . e22L

(C → ∞ as p0 → 1).two disjoint intervals, with total genetic length d on


