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ABSTRACT
This article considers a demographic model where a population varies in size either linearly or exponen-

tially. The genealogical history of microsatellite data sampled from this population can be described using
coalescent theory. A method is presented whereby the posterior probability distribution of the genealogical
and demographic parameters can be estimated using Markov chain Monte Carlo simulations. The likeli-
hood surface for the demographic parameters is complicated and its general features are described. The
method is then applied to published microsatellite data from two populations. Data from the northern
hairy-nosed wombat show strong evidence of decline. Data from European humans show weak evidence
of expansion.

IT is widely believed that the results from genetic sur- hood. A general method for estimating this likelihood
veys may be used to infer the demographic history was described by Griffiths and Tavaré (1994a,b,c).

of populations (Avise 1994). This has stimulated many Other methods have been described by Lundstrom et
studies using a wide variety of markers and statistical al. (1992), Kuhner et al. (1995), and Wilson and Bal-
techniques in, for example, conservation biology and ding (1998; see also Felsenstein et al. 1999 for a de-
biological anthropology (Cavalli-Sforza et al. 1994; scription of the relationships between some of these
Roy et al. 1994). Before strong conclusions are drawn, methods).
and, in the case of conservation biology, before manage- An interesting problem on which to apply these meth-
ment decisions are taken, there is a need to better un- ods is the detection of population growth or decline.
derstand both the limitations and potentials of genetic Such studies have primarily been concerned with the
data analysis. human demographic expansion. For example, moment-

Traditionally most analyses in population genetics matching approaches have been taken by Slatkin and
have used methods whereby statistics calculated from Hudson (1991), Rogers and Harpending (1992),
genetic data, such as heterozygosity, are equated with Rogers (1995), and Reich and Goldstein (1998). Pop-
their theoretical expectations under some demographic ulation decline has tended to be analyzed as a separate
and mutational model, allowing parameters of the phenomenon from population growth (Cornuet and
model to be inferred. Since the advent of genealogical Luikart 1996). However, Weiss and von Haeseler
modeling (Hudson 1991; Donnelly and Tavaré (1998) have studied a model where decline and growth
1995), this moment-matching approach has been im- are described within the same framework. Likelihood-
proved by the use of Monte Carlo simulations of the based approaches to the detection of past changes in
coalescent process to compare statistics calculated from population size have been described by Griffiths and
a data sample, such as the average number of pairwise Tavaré (1994b) and Kuhner et al. (1998).
differences between sequences, with the distribution of These studies have primarily used models of exponen-
the statistics in simulated samples (Rogers 1995; Weiss tial growth. An alternative that has been neglected is
and von Haeseler 1998). This extension is sometimes gradual linear growth or decline. While it is reasonable
called a likelihood analysis because the probability of to suppose that on a short timescale the magnitude of
obtaining the statistic within a given range is estimated fluctuations in population size is proportional to the
as a function of the parameters in the model. However, population size, and hence more accurately modeled by
as pointed out by Felsenstein (1992), statistics calcu- an exponential function, average changes in population
lated from the genetic data do not capture all the infor- size over long periods are more likely to be functions
mation present, and are therefore less efficient in com- of environmental and evolutionary factors and may be
parison with methods that estimate the probability of

more linear. One aim of this article is to see how infer-
obtaining the sample configuration itself, the true likeli-

ences differ depending on which model is used.
A method is described here whereby it is possible

to draw random samples from the Bayesian posterior
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MCMC, a Markov chain is simulated whose equilibrium not appearing within the brackets. A related distribu-
tion, p({S0, Gn}|n0, F), has been described by Wilsondistribution is the required probability distribution. The

methods is applied to microsatellite data assumed to be and Balding (1998), where Gn is a genealogical history
consisting of a sequence of coalescent events marginalevolving by a stepwise mutation model sampled from a

population that has varied in size. The performance of to all possible mutation events, where the mutational
states at each coalescent node are recorded. This latterthe method on small test data sets is described, where

the results can be compared with likelihoods estimated density is different from the former in that it explicitly
requires the branch length information recorded in theby Monte Carlo (MC) integration. The method is then

applied to larger simulated data sets to see how well the Si, whereas that for G does not.
The probability distribution of S0, given n0 and F,original parameters can be inferred. Finally data sets

from two natural populations are analyzed. In one case, p(S0|n0, F), is the marginal distribution over G (or Gn).
Given this distribution, which need only be estimatedthat of the northern hairy-nosed wombat (Taylor et

al. 1994), the population is believed to have declined up to a multiplying constant, k, likelihoods for F could
be obtained. A straightforward method for estimatingrapidly over the last 100 years. The other data set consists

of a subset from the survey of 60 tetranucleotide micro- p(S0|n0, F) might be to simulate from p({S0, G}|n0, F)
and count the proportion of times that a target S0* wassatellite loci among 15 human populations described

in Jorde et al. (1997). observed. This can be regarded as a MC integration
over G. For small n0 this can be quite effective, as demon-
strated later in this article. However, for most n0, S0THEORY
would never be observed in a practicable number of
simulations.Background: A sample of size n0 chromosomes is

taken from a closed panmictic population. The genea- One approach to overcome this problem is to note
that for purposes of inference we are often more in-logical history of the sample can be considered as a

sequence of mutation and coalescent events going back terested in the posterior distribution, p(F|n0, S0), which
is proportional to the product of the likelihood, p(S0,in time until a coalescent event occurs that is the most

recent common ancestor (MRCA) of the sample (Grif- n0, F), and the prior, Pr(F). Using Metropolis-Hasting
simulation (Metropolis et al. 1953; Hastings 1970),fiths and Tavaré 1994a). There are e events in the

genealogical history including the last coalescent event. a commonly used MCMC method, it is possible to draw
samples from p(G, F|n0, S0) for fixed S0, knowing onlyThe events occur at times T1, T2. . . Te going back into

the past, relative to the time when the sample was taken. p({S0, G}|n0, F) and Pr(F). The (marginal) posterior
distribution, p(F|n0, S0), can be estimated from theseFollowing Griffiths and Tavaré (1994b), the Ti are

scaled in units of the current population size. At each simulated samples using standard density estimation
techniques. It is also straightforward to estimate theevent the state of the sample configuration changes,

either because two lineages coalesce or because the marginal posterior densities for components of F and
G. In the approach of Wilson and Balding (1998),mutational state of a lineage changes. For example the

state of the sample configuration at the ith event could samples are taken from p(Gn, F|n0, S0), while in this
article, samples are taken from p(G, F|n0, S0).be represented as Si 5 {ni, (l1, l2, . . . , lni)}, where ni is

the number of lineages at the ith event, and the lj are a Demographic model: The modeling approach follows
that taken by Griffiths and Tavaré (1994b). The pop-set of labels for each lineage recording their mutational

state and genealogical relationships, commonly repre- ulation is of size N0 chromosomes when the sample is
taken. Time is measured in units of N0 generations. Thesented as a tree. When each event occurs, the state

changes from Si to Si11. The observed sample can be population is sampled at time t 5 0 with time increasing
into the past. The size of the population and breedinggiven state S0. Thus we can represent the genealogical

history as a sequence structure is assumed to be such that the genealogical
history is well approximated by standard coalescent the-

G 5 ({S1, T1}, {S2, T2} . . . {Se, Te}).
ory (see Donnelly and Tavaré 1995). Looking back-
ward in time, the population size, N(t), changes deter-The shape of the tree, and the position and types of

mutations on it, represented by the sequence G, depend ministically to an ancestral size N1 at time tf and then
remains constant at N1 for t . tf. Two models are consid-on parameters describing the mutation rate, mutation

model, and how the population size varies in time. These ered: a linear change in population size with time; and
an exponential change. To make coalescent modelingparameters are denoted here by a list, F, and the specific

parameters used in this article are introduced later. easier, population size in the demographic models is
expressed in units of N0 generations with v(t) 5 N(t)/From standard coalescent theory, it is possible to cal-

culate a probability distribution, p({S0, G}|n0, F). In the N0. In addition, it is useful to define the quantity r 5
N0/N1. If r , 1, the population has declined; if r 5 1,following, “density” and “distribution” are used inter-

changeably, and p(x|y) indicates a density (distribution) the population has remained stable; and if r . 1, the
population has expanded. In the case of the linearof x conditional on a particular y. The density is assumed

to be marginal to (integrated over) any other variables model,
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Figure 1.—Both graphs
show the scaled population
size, v(t), against scaled time,
t. Time has been reversed to
make it flow in the standard
direction on the graphs. Tra-
jectories for exponential
change (curved lines) and lin-
ear change (straight lines) are
shown in each graph for a
growing (a) and declining (b)
population.

where u 5 2N0m with mutation rate m. When an event
occurs, the probability that it is a coalescence is

v(t) 5





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and the probability that it is a mutation is
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The genealogical model is a function of the three pa-
(as in Weiss and von Haeseler 1998). rameters F 5 {u, r, tf}.Growth trajectories for the two different models in For an event occurring at time Ti11, Pr(Ti11 . ti11|growing and declining populations are shown in Figure Ti 5 ti) is
1. The two demographic parameters, r and tf, are com-
ponents of F in the coalescent model described below. C(ti, ti11) 5 exp(2#

ti11

ti
g(u)du) (4)

Later in this article a reparameterization of the model is
considered, where the interval over which the population (Griffiths and Tavaré 1994b). Expressions for C(ti,
size varies is measured in units of generations (ta 5 N0t f). ti11) for the two demographic models considered in this

Calculation of likelihoods: The aim of this section is article are given in appendix a.
to show how p({S0, G}|n0, F) can be obtained for the The conditional density of Ti11 given Ti is
demographic model using the theory in Griffiths and
Tavaré (1994b). As described earlier, the genealogical

p(ti11|ti) 5
d

dti11

(1 2 C(ti, ti11))history of a sample can be considered as a sequence of
events occurring at times T1, T2, . . . Te. The joint density

5 g(ti11)C(ti, ti11). (5)of these times can be calculated from coalescent theory.
At each time there is a set of possible outcomes, and Each event is either a coalescence or a mutation, involv-
the joint probability of the observed sequence of events ing either two or one lineages, respectively. Let d(ti,ti11)
can be calculated. The distribution p({S0, G}|n0, F) is denote the conditional probability density of obtaining
the product of the joint density of times and the joint the observed event at Ti11 given Ti. If the event is a
distribution of events. coalescence involving a particular pair of lineages,

For convenience, l(t) is defined to be the reciprocal
of the scaled population size at time t, l(t) 5 1/v(t),
where v(t) is given by (1, 2) above. Events occur at rate

d(ti, ti11) 5
1ni

22l(ti11)

g(ti11)
2

ni(ni 2 1)
p(ti11|ti)

g(t) 5 1ni

22l(t) 1
niu

2
, (3)

5 l(ti11)C(ti, ti11).
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The equivalent expression for a mutation occurring at of G) strongly influences the early dynamics of F 5 {u,
a particular lineage, with a probability 0.5 that the length r, tf} in the simulations, and therefore the choice of
is longer/shorter by one unit, is starting values of F has little effect on the initial trajec-

tory taken by F. In some simulations the initial demo-
graphic and mutational parameters were the samed(ti, ti11) 5

u

4
C(ti, ti11).

among independent runs and were different in others.
The trajectories of F tended to diverge rapidly amongSummarizing,
independent runs in both cases, and no differences in
the rate of convergence was observed among either case.

d(ti, ti11) 5





l(ti11)C(ti, ti11) if event is coalescence

uC(ti, ti11)/4 if event is mutation.
Updating the parameters: The parameters that need

to be updated are the sequence of events in the genea-
(6) logical history, the times of the events, Ti, and the com-

ponents of F: u, r, and tf. The general scheme is outlinedBecause the events are conditionally independent of
first, followed by the details. The components of F areeach other, the joint density for {S0, G} is the product
parameterized on the log10 scale. The parameters areof the d(ti, ti11) over all e events in the genealogical
updated in a random order with (conditional) probabil-history. When the MRCA is reached, the joint density
ities given in parentheses below. This scheme was de-must be multiplied by the probability that the MRCA
vised by trial and error to obtain good rates of conver-has the observed mutational state, p(Se) (i.e., the number
gence.of repeats in microsatellites), giving

(0.95) Update sequence of events.
p({S0, G}|n0, F) 5 p(Se) p

i5e21

i50

d(ti, ti11). (7) (0.05) Update some of Ti, log10(u), log10(r), log10(tf).

(0.5) Ti only.It is assumed in this article that p(Se) is a constant inde-
(0.5) Some of Ti, log10(u), log10(r), log10(tf).pendent of length.

(1/12) log10(u); (1/12) log10(u), Ti.
(1/12) log10(r); (1/12) log10(r), Ti.METHOD
(1/6) log10(tf), Ti.In the Metropolis-Hastings simulations described
(1/12) log10(u), log10(r); (1/12) log10(u),

here, a starting point is taken within the domain of the
log10(r), Ti.density L1 5 p({S0, G}|n0, F)Pr(F), where S0 is fixed.

(1/6) log10(u), log10 (tf), Ti.New candidate values {G, F} → {G9, F9} are chosen, while
(1/6) log10(u), log10(r), log10(tf), Ti.keeping S0 unchanged. The values are chosen from

some known distribution (the proposal distribution) so Updating the sequence of events: There are many possible
that relative frequency of choosing (new values) from proposal distributions for updating the sequence of
(old values), Pf, and the relative frequency of choosing events in the genealogical history, G. The scheme de-
(old values) from (new values), Pr, are both known. The scribed below was devised from two considerations. First,
new density is calculated as L2 5 p({S0, G9}|n0, F9)Pr(F9) the Metropolis-Hastings acceptance step depends on
and then L2/L1 3 Pr/Pf. Although the L2/L1 term is straightfor-

ward to calculate, it is important to have proposal distri-
P 5

L2

L1

3
Pr

Pf

. (8) butions for which Pr/Pf can be easily calculated. Second,
it is necessary to have an updating scheme that can

If P $ 1 the new value is accepted; otherwise it is ac- be demonstrated to explore all possible sequences of
cepted only with probability P. If it is not accepted, the events. As shown in appendix c, both these require-
original is retained. This process is repeated many times. ments are met by the following scheme.
Provided certain conditions are met (see appendix c),

1. Addition of two mutations within a lineage. Two mu-the equilibrium distribution of this Markov chain is the
tations are added at points chosen uniformly ran-density p(G, F|n0, S0). Thus Metropolis-Hastings simula-
domly along a lineage. Because a stepwise mutationtion serves two purposes: it allows us to convert a density
model is assumed here, these are canceling pairs thatfrom p({S0, G}|n0, F)Pr(F) to p(G, F|n0, S0), and it allows
shorten (21 mutations) and lengthen (11 muta-us to estimate p(F|n0, S0) (information on G is ignored
tions) the microsatellite by one unit.in the MCMC output).

2. Removal of two mutations within a lineage. The re-Definition of initial state: For each independent
verse of (1).MCMC simulation the trees were constructed by coalesc-

3. Addition of three mutations around a coalescenting lineages and adding mutations to produce genealog-
node. A mutation of the same sign [either (11) orical histories consistent with data, but differing between

simulations. The initial tree topology (i.e., initial value (21)] is added to each of the two descendent lin-
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eages, and a mutation of opposite sign is added to and Vb is the variance of the means among chains (Gel-
man and Rubin 1992). Gelman et al. (1995) suggest thatthe ancestral lineage.

4. Removal of three mutations around a coalescent values ,1.1 (i.e., where Vb is z5% of Vw) are adequate.
In the analysis of simulated data sets, unless otherwisenode. The reverse of (3).

5. Interchange of lineages. Two temporally adjacent stated (see description below), five independent chains
were run, with different starting genealogical histories.events occurring on separate lineages are chosen and

the ancestral portions of the lineages are swapped. The Gelman-Rubin statistic was monitored for log10(u),
log10(r), and log10(tf), and the run length was deter-6. Nearest-neighbor interchange of lineages. See ap-

pendix b. mined by the need to keep the statistic ,1.1. On the
basis of these simulations, when real data sets were ana-7. Swapping the order of events. Two temporally adja-

cent events are chosen and the order of occurrence lyzed, as described in results, the number of simula-
tions was reduced to a single long run for some datais swapped.
sets, and the Raftery-Lewis statistic was monitored for

While classes (1) and (3) are always available irrespec- the 0.025 quantile.
tive of the state of the system, there can exist states of In general the first 1% of sampled points for each
the system in which the other classes of update cannot run were discarded to ensure that the distributions were
be applied. For example, class (2) cannot be applied not influenced by unrepresentative initial values. A total
when there are no lineages with pairs of 11/21 muta- of 10,000–50,000 points were collected from each run.
tions. Probabilities (R1, . . . , R7) 5 (0.1, 0.1, 0.2, 0.2, Approximate densities have been calculated from the
0.1, 0.2, 0.1) give the chance that each class of update sampled parameters using the program Locfit (Loader
is chosen in the ideal case that all classes of update are 1996) implemented in R (http://stat.auckland.ac.nz/r/
possible. A set of weights Ej is then defined such that r.html), and contours corresponding to the 0.1, 0.5,
Ej 5 Rj if the transformation can be applied to at least and 0.9 highest posterior density (HPD) limits are plot-
one transformable element of that class, Ej 5 0 other- ted. The HPD limits are values of the variate that have
wise. Then, with probability Ej/REj the jth class is chosen the same density and define a region within which the
at each update step. The details of the proposal distribu- probability is some critical value (e.g., 0.9).
tions associated with these classes of updates, and the
calculation of Pr/Pf, are given in appendix b.

SIMULATION STUDIESUpdating Ti and F: Candidate values of Ti were ob-
tained by generating a uniform random variable, substi- To check that the MCMC method performs correctly,
tuting this for C(ti, ti11) in (4), and solving for ti11, given a number of tests were carried out using simulated data
ti. Pr/Pf can be calculated from (5). In the case of popula- sets. Samples were simulated from growing, declining,
tions that are not changing in size the updates are always and stable populations. The method of simulating ge-
accepted because L2/L1 3 Pr/Pf 5 1. netic samples is based on that of Hudson (1991). The

Values of log10(u), log10(r), or log10(tf) were updated intervals between coalescent events are first simulated
by adding normal random deviates with mean 0 and by inverting (4) as described earlier, with u 5 0 (i.e.,
standard deviation 0.5. As shown later, in some regions with no mutation). Lineages have equal probabilities
of parameter space, log10(u) and log10(r) can be posi- of coalescing. The number of mutations, mj, occurring
tively correlated, whereas log10(u) and log10(tf) can be down the jth lineage of length tj is simulated as a Poisson
negatively correlated. Therefore, when any of log10(u), random variable with parameter mtj. The ancestral
log10(r), or log10(tf) were updated jointly, as shown in length is taken to be 0. mj additions of 11 or 21 are
the general scheme given earlier, the same random successively applied down each lineage. The resulting
deviate was used for each updated parameter, but of sample is then centered by subtracting the length of
differing sign for log10(tf). For all these cases Pr/Pf 5 1. the shortest chromosome from all chromosomes.

Determination of run length and assessing output A sample of size 108 chromosomes was generated
from MCMC simulations: It is important to determine with parameter set MOD1 5 {u 5 2000.0, r 5 1000.0,
whether the simulations have been run for a sufficient tf 5 0.0005} (growing, Figure 1a) from the linear model.
number of iterations to give an adequate estimate of This was then subdivided into two samples of sizes 100
P(G, F|n0, S0). The two most widely used approaches and 8. The smaller sample was then used to make com-
are either to run one long chain (Raftery and Lewis parisons between likelihood surfaces calculated by di-
1996) or several shorter chains with widely dispersed rect simulation with those obtained by the MCMC
starting points (Gelman et al. 1995). The former method. In addition a sample of 100 was generated
method gives the number of iterations required to esti- from MOD2 5 {u 5 0.2, r 5 0.01, tf 5 1.0} (declining,
mate quantiles from the posterior distribution of a mon- Figure 1b) using the exponential model. Also a sample
itored parameter to a specified degree of precision. The was simulated from a stable population MOD3 5 {u 5
latter method estimates the quantity √Vw 1 Vb)/Vw, 10.0}. These were then analyzed with the MCMC method

to assess how accurately the parameters were estimated,where Vw is the variance of the parameter within a chain
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as described below. The frequency distribution of cen-
tered lengths in order of increasing size in each of these
models was

MOD1 8 (1, 4, 3)
MOD1 100 (3, 23, 41, 28, 4, 1)
MOD2 100 (3, 0, 0, 0, 0, 33, 46, 10, 8)
MOD3 100 (4, 26, 9, 7, 6, 28, 18, 2).

Another test of the MCMC method is to examine the
joint posterior distributions when the method is applied
to data from a star genealogy, where all lineages have
equal length, radiating from the MRCA. This approxi-
mates the genealogy expected in a population growing
so rapidly that all coalescent events after the first occur
within an interval negligibly small in comparison to the
time over which the population has been growing. In
this case, a sample size of 100 was simulated by drawing
100 Poisson random variables, xi with mean 2. xi random
increments of 11 and 21 were added to an initial length
of 0 to generate a distribution of lengths: (1, 3, 10, 27,
27, 21, 7, 4). This corresponds to a star genealogy with
utf 5 2mta 5 4.

Comparison of conditional posterior distributions
with likelihoods estimated from MC integration: For
these studies the sample of size 8 from MOD1 was used.
Posterior distributions were estimated separately for
log10(u), log10(r), and tf (in each case, the other parame-
ters were fixed at the values used to simulate the sam-
ple). Five independent MCMC simulations were made
for each parameter and the results are illustrated in
Figure 2, a–c. The general updating scheme given ear-
lier was modified to take into account that only one
parameter was allowed to vary. The value of tf was up-
dated using lognormal deviates. Flat (improper) priors
were used for log10(u) and tf. In the case of log10(r),
because the likelihood function asymptotes, a rectangu-
lar prior with limits (0–7) was used in the MCMC simula-
tions. Each chain was run for 107 iterations. The curves
were obtained by joining the midpoints in histograms Figure 2.—(a) Estimated posterior density of log10(u). The
constructed from the MCMC output. These were nor- solid lines are estimated by the MCMC method. The solid
malized so that the area under the histograms between circles are the relative likelihoods estimated by the direct

method, scaled to enclose a unit area. Plots for log10(r) andthe two endpoints sums to 1.
tf are given in b and c. The densitites for each parameter areThese curves can be compared with likelihoods esti-
conditional on the following values: u 5 2000, r 5 1000, andmated by MC integration. In this method a large num- tf 5 0.0005 (1, 4, 3).

ber of data sets are simulated as described in the pre-
vious section. The likelihood is estimated as the
proportion of simulated samples whose distribution of MCMC likelihoods with simulated likelihoods over the

three parameters jointly, the MCMC simulation waslengths is the same as that of the target sample. The
process is repeated for different parameter values to performed using a rectangular prior on the log scale.

The limits for log10(r) and log10(u) were (25–5) andobtain a likelihood surface. The likelihoods were esti-
mated using 107 simulations. These were then normal- for log10(tf) were (25–1). This volume was binned into

20 3 20 3 20 cells. Five replicate runs were performed.ized so that the resulting curves could be compared
with the MCMC histograms. There is a good fit between Based on examination of the output of the MCMC simu-

lation, 48 bins were selected for comparison with thethe two approaches.
Comparison of joint posterior distributions with simu- likelihoods estimated directly from simulations. The

bins were chosen both to have a wide spread of likeli-lated likelihoods: The tests described above only con-
sider conditional univariate distributions. To compare hoods and to sample the parameter space widely. Each
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Figure 3.—A plot of the
estimated frequencies in 48
bins from the joint poste-
rior distribution of log10(u),
log10(r), and log10(tf) against
the likelihood estimated by
the direct method. The like-
lihood is averaged within
the bin, as described in the
text. The vertical lines indi-
cate 2 standard errors esti-
mated from the 5 replicate
MCMC simulations.

bin was subdivided into 10 3 10 smaller bins, and likeli- depends on N1 only—i.e., a nonvarying population with
mutation parameter u/r, independent of tf. Thus inhoods were estimated from 104 simulations within each

small bin and summed over all small bins to give a value Figure 4a the points lie around the line log10(u) 2
log10(r) 5 log10(2N1m) 5 k.proportional to the volume of the larger bins. Figure 3

shows the volume (proportion of points observed) of Region B corresponds to the case when tf is sufficiently
long that the shape of the genealogy depends on N0each chosen bin from the MCMC simulations, averaged

over the five runs, plotted against the volumes estimated only, independent of tf and r. In this example, region
B does not extend substantially below log10(r) 5 0 infrom direct simulation. It can be seen that there is a

good correspondence between the two methods. Figure 4a, but this is not generally the case.
Region C corresponds to star genealogies. Within re-The joint posterior distribution for data simulated

from a star genealogy: The MCMC simulation was run gion C, the likelihood becomes independent of log10(r)
and is strongly ridged along a line log10(tf) 1 log10(u) 5for 108 steps with the sample simulated from a star gene-

alogy, using the same rectangular prior as discussed log10(2mta) 5 k. In this case, because the data were simu-
lated from a star genealogy and 2mta is twice the ex-earlier. The 0.025, 0.5, and 0.975 quantiles of the distri-

bution of mutations were 65, 143, and 228, respectively, pected number of mutations within a lineage, we may
expect k to be close to log10(4). The existence of a modecompatible with the expected number of 200. Figure 4,

a–c, shows the three bivariate marginals for the demo- within the body of region C in Figure 4b, rather than
at the edges as in Figure 4, a and c, is a consequencegraphic parameters. The 0.1, 0.5, and 0.9 HPD limits

are plotted. Also plotted is a sample of 10,000 points of this being the marginal distribution over r, which
restricts tf: if log10(r) is extended beyond 5, the ridge in(2000 from the 50,000 recorded in each independent

chain). Using statistics summarizing the shape of the Figure 4b extends toward the lower corner of the graph
(results not shown).genealogy as a guide (results not shown), a number of

different regions can be identified in these figures. It is useful to assess how accurately the expected num-
ber of mutations within a lineage can be recovered fromRegion A corresponds to genealogies that arise when

tf is sufficiently short that the shape of the genealogy the analysis. A posterior distribution for log10(2mta) (con-
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ditional on r . 1) can be obtained from the distribution by dividing the fitted density by the density of the trape-
zoid. This is most easily done in Locfit by weightingof the sum of log10(u) and log10(tf) evaluated at each

sample point. In this case, however, the prior is no each point by the reciprocal of the density of the trape-
zoid, and is a special case of the important samplinglonger uniform because it is the distribution of the sum
method described in Tanner (1993, p. 34) for alteringof two uniform variates. It is a trapezoid distribution
the output of MCMC simulations to reflect differentwith bounds (210, 6). It is possible to correct for this
priors. It should be noted, however, that, despite this
correction, the posterior distribution, especially in its
tails, still depends on the original priors for the three
parameters. In the particular case here, the posterior
distribution is hardly affected by the correction. For
these data the estimated mode is 0.62 with 0.9 HPD
limits 0.23–0.84, which agrees well with the expected
number of log10(4) ≈ 0.602.

The lower limit of the 0.9 HPD region for log10(r) is
1.82. The proportion of sample points with log10(r) .
0 is 0.96. This corresponds to a Bayes factor of 26.8
favoring growth vs. contraction where the Bayes factor is
the posterior odds divided by the prior odds (O’Hagan
1994). Thus in this artificially extreme example a sin-
gle microsatellite locus can provide strong support for
growth.

The effect of the demographic model: The joint pos-
terior distributions of the demographic and mutational
parameters were estimated using the samples of size 100
generated for MOD1, MOD2, and MOD3. The samples
from MOD1 and MOD2 were analyzed assuming both
linear and exponential population change. The sample
from a stable population, MOD3, was analyzed assuming
a model of linear population change. In each case the
MCMC simulation was run for 108 updates. This was
replicated with different starting trees five times for sam-
ples from MOD1 and MOD2, and twice for the samples
from MOD3. The same rectangular prior as described
earlier was used for the growing and stable populations.
In the case of the contracting population the bounds
on log10(tf) were (23–3). The main aim of this test was
a qualitative comparison of the two models. A detailed
separation of the effects of sampling error in the MCMC
output from small differences between the two models
has not been performed. The parameters analyzed here
are log10(r), log10(tf), and the reparameterized quantity,
log10(2 mta) 5 log10(tf) 1 log10(u), introduced in the
previous section.

Figure 5, a–d, shows the joint distribution of log10(r)
and log10(tf), marginal over u for the two different pa-
rameter sets, analyzed using MOD1 and MOD2. The
estimated 0.1, 0.5, and 0.9 highest posterior density re-

Figure 4.—Plots of 10,000 simulated points from the joint
distribution of log10(u), log10(r), and log10(tf) estimated by the
linear model using data simulated from a star genealogy. The
three bivariate marginal distributions are shown. The labeled
regions A, B, and C are described in the text. The contours
correspond to estimated 0.9, 0.5, and 0.1 HPD intervals.



2021Detecting Changed Population Size

Figure 5.—(a and b) 10,000
simulated points from the mar-
ginal posterior distributions of
log10(r) and log10(tf) estimated
from data simulated from a lin-
early growing population
(MOD1). (c and d) Distribu-
tions estimated from data simu-
lated from an exponentially de-
clining population (MOD2). a
and c assume a linearly varying
population. b and d assume an
exponentially varying popula-
tion. The contours correspond
to estimated 0.9, 0.5, and 0.1
HPD intervals.

gions are indicated. A sample of 10,000 points is also is clearly different between the two models. In the
exponential model, the 0.1 HPD region lies aroundplotted. As can be seen from the distribution of points,
log10(tf) 5 0, independent of log10(r), whereas in thethe density is very flat outside the modes, and estimation
linear model it appears to lie around a line log10(r) 1of the 0.9 HPD limit in two dimensions is imprecise.
log10(tf) 5 log10(ta/N1) 5 k, i.e., where time is scaled byThe sample simulated from a linearly growing popula-
ancestral population size.tion (Figure 5, a and b) seems to contain good evidence

The results from the data simulated from a stablethat it is from a growing population. The 0.9 HPD limit
population (MOD3) are summarized in Table 1. Plots ofon log10(r) is greater than 0 (Table 1). The posterior
the joint marginal distributions for the three parametersodds for a growing vs. declining population are 9.2 when
are very similar to those given in Figure 4 except thatanalyzed under the linear model and 9.8 under the
the region C has very low density. The Bayes factor forexponential model (this difference is commensurate
a growing vs. declining population is 0.61. The distribu-with sampling error). The sample simulated from a de-
tions for tf and 2mta are strongly bimodal. Because theclining population (Figure 5, c and d) does not provide
HPD region is split around the two modes, both valuesequally strong evidence of decline, with an HPD limit
are reported. The bimodality arises because region C ison the marginal distribution of r that is substantially
absent. A qualitative explanation for the shape is that.0. The posterior odds for a declining vs. growing popu-
the mode at smaller times arises from density in regionlation are 4.4 in the exponential model and 4.8 in the
A, and the mode at larger times arises from density inlinear model.
region B.With data from a growing population the posterior

distributions are very similar when analyzed assuming
linear (Figure 5a) or exponential (Figure 5b) growth.

EXAMPLESThe modes and 0.9 HPD limits are similar under the
two models (Table 1). In the case of data simulated from Northern hairy-nosed wombat: The data are from 16
a contracting population it can be seen from Figure 5, microsatellite dinucleotide repeat loci scored from 28

northern hairy-nosed (NHN) wombats by Taylor etc and d, that the joint distribution of log10(r), log10(tf)
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TABLE 1

Summary statistics for simulated data analyzed using different models

Linear model Exponential model

Growing
log10(r) (3.0) 0.082 (5) (5) 0.257 (5) (5)
log10(tf)1 (23.3) 24.64 21.97 20.58 24.74 22.24 20.49
log10(2mta)1 (0.0) 20.51 0.27 0.66 20.42 0.38 1.10

Stable
log10(r) (0.0) (25) 0.12 2.58
log10(tf)1a (25) (25) 22.06
log10(tf)1b (20.84) (1) (1)
log10(2mta)1a 22.41 20.36 0.22
log10(2mta)1b 0.44 1.29 2.09

Declining
log10(r) (22.0) 25.00 22.41 1.70 25.0 21.88 1.53
log10(tf)2 (0.0) 21.68 1.74 (3) 22.45 0.07 1.86
log10(2mta)2 (20.70) 25.59 20.6 0.8 25.86 22.72 3.10

The lower 0.9 HPD limit, mode, and upper 0.9 HPD limit for three parameters, analyzed using the linear
model and exponential model. The data have been simulated from growing, stable, or declining populations,
as described in the text. The symbols 1 and 2 indicate whether the summary statistics have been calculated
by conditioning on positive or negative log10(r). Disjunct HPD regions are indicated by a and b. Parameter
values with which the samples were simulated are given in the first column.

al. (1994), from which the following details have been The frequencies for the polymorphic loci are
obtained. The range of these wombats is restricted to

L1 5 (28, 0, 0, 0, 0, 0, 0, 20)a single locality (Epping Forest National Park, Queens-
L2 5 (11, 0, 0, 29)land, Australia) from which the individuals were sam-
L3 5 (12, 14, 6)pled. The species is believed to have suffered an extreme
L4 5 (50, 0, 6)population decline in the past 120 years from a popula-
L5 5 (42, 14)tion size of many thousands to 20–30 individuals in 1981.
L6 5 (33, 2, 0, 0, 0, 0, 0, 21)The population size was around 70 when the individuals
L7 5 (16, 0, 18, 22)were genotyped. Seven of the loci are monomorphic.
L8 5 (10, 0, 0, 0, 46).One locus has repeat length variation among the NHN

wombats that is not a consistent multiple of 2, and was Each polymorphic set and a monomorphic set were
not used in this analysis. Taylor et al. (1994) also pres- analyzed separately. Based on the results for simulated
ent data for the southern hairy-nosed (SHN) wombat, data sets, one single run of length 6 3 107 updates was
which has not suffered the same decline, and for some simulated for each set. Because the decline was believed
museum specimens of the NHN wombats collected to be recent, an exponential model was considered ap-
around 1884, but these are not used in this analysis. propriate. The Raftery-Lewis method indicated that the
However, these data show that the loci that are mono- 0.025 quantile was estimated to 60.0125 for the three
morphic in the NHN wombats are either polymorphic parameters in all loci, and to 60.005 for all parameters
or (in the case of one locus) have a fixed difference in six loci.
between the two species. The generation time is believed To combine information across loci it is assumed that
to be 10 years. r and tf are the same for all loci but u differs among

In the analysis, rectangular priors on the log10 parame- loci. A combined joint posterior distribution for r and
ter values have been used. The limits for N0, N1, m, and tf (marginal over u) can be obtained by estimating the
ta, broadly reflecting the imformation given above, were joint density (proportional to the likelihood over the
taken to be (200–400), (2000–200,000), (1022–1027), interval) for each locus separately and then multiplying.
and (5–100), respectively. From this, taking the most The 0.9, 0.5, and 0.1 HPD regions for the combined
extreme combination of parameter values and round- density from the 8 polymorphic loci are given in Figure
ing outward to the nearest whole number on a log10 6. Also shown is the combined density for all 15 loci. It
scale the limits for log10(u) are (26–1), for log10(r) are can be seen that there would be an appreciable bias
(24–0), and for log10(tf) are (22–1). The prior limits had only the results from the polymorphic loci been
for m were considered reasonable even for the mono- reported.
morphic loci, based on the knowledge that these are The effect of adding the monomorphic loci appears

counterintuitive in that they support a shorter timescalepolymorphic within the NHN/SHN clade.
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European humans: In this study a subset of 10 tetranu-
cleotide loci was taken from a much wider set of 60 loci
scored from 15 populations described in Jorde et al.
(1995, 1997). The Northern European and French sam-
ples were combined. The 10 tetranucleotide loci were
chosen uniformly randomly from the 60 kindly provided
by Dr. Jorde, and have the following length distribu-
tions:

L1 5 (1, 0, 0, 2, 7, 16, 16, 16, 18, 48, 27, 15, 9, 5)
L2 5 (5, 19, 7, 12, 41, 20, 29, 33, 12, 2)
L3 5 (1, 34, 24, 55, 53, 7)
L4 5 (65, 115)
L5 5 (2, 4, 1, 65, 26, 49, 13, 2)
L6 5 (6, 12, 107, 5, 3, 12, 6, 14, 3)
L7 5 (8, 12, 31, 56, 39, 19, 7)
L8 5 (3, 1, 127, 39, 2)
L9 5 (1, 25, 108, 33, 3)
L10 5 (7, 0, 7, 61, 38, 24, 12, 14, 10, 1).

Figure 6.—Plot of the marginal posterior distribution of The following limits for N0, N1, m, and ta were consid-log10(r) and log10(tf) for the northern hairy-nosed wombat data
ered: (105–109), (103–108), (1022–1027), and (25,000–described in the text. The dotted lines give the 0.9, 0.5, and
106), respectively. Taking the same approach as for the0.1 HPD limits estimated from the polymorphic loci. The solid

lines give the same HPD limits for both polymorphic and wombats, the limits for log10(u) are (22–7), for log10(r)
monomorphic loci. are (23–6), and for log10(tf) are (26–0).

Run lengths and number of independent runs were
determined individually for each of the 10 loci, usingover which the contraction has happened and a less
the Gelman-Rubin statistic as a guide. For most locisevere contraction. The explanation is that, over the
three independent runs were carried out. The runrange of log10(tf) considered here, the number of muta-
lengths varied from 108 to 2 3 108 updates. A single runtions within the genealogy is determined by u/r 5
of 108 updates for the locus 2 sample takes z6 hr on a2N1m, small values of which have higher posterior den-
standard 333 Mhz Pentium II PC under Linux.sity. Thus, on average, larger values of r will have higher

To combine information across loci it is assumed, asdensity. Because the joint density for log10(r) and
with the example above, that in the joint likelihoodlog10(tf) is ridged, smaller values of log10(tf) also have
funtion for the 10 loci, the demographic parametershigher density. In fact larger values of log10(tf) appear
are the same for all loci but u differs among loci. Thusto have higher density than might be expected from
to obtain a marginal posterior density for tf and r, thethis argument. This can be explained by observing that,
joint marginals for tf and r are estimated for each locuswhen u/r 5 2N1m is large, the bulk of mutations occur
and then multiplied together. The marginals for log10(tf)in the genealogy for t . tf. However, a larger value of
and log10(r) are obtained by integrating over this func-tf makes the genealogy length Te , tf, and hence long
tion. Note that, in general, this will give a different resulttf has higher density.
from the case of multiplying the marginals for, e.g.,In conclusion, the analysis of the wombat data sug-
log10(tf) across loci, which assumes that both log10(r) andgests that the population has been declining over a
log10(u) differ among loci, but log10(tf) is the same acrosslonger period and has suffered a sharper decline than
loci.the historical data imply. The wombat data also high-

The mean numbers of mutations within the genealo-light the biases inherent in reporting data from only
gies of the 10 loci were estimated as 270, 118, 38, 2, 40,polymorphic loci. Inferences about the decline have to
38, 187, 12, 51, and 83, respectively. Two out of the 10be treated cautiously, however, because the simulation
loci (numbers 7 and 9) show strong evidence of havingresults in the previous section suggest that parameter esti-
been drawn from a growing population with lower 90%mates are strongly affected by model assumptions. Taylor
HPD limits for the marginal distribution of log10(r) ofet al. (1994) assumed that the ancestral population had
0.98 and 1.95, respectively. The proportions of sampledheterozygosity levels comparable with present-day levels
points with log10(r) . 0 were 0.93 and 0.97 for the twoin the SHN wombat. On this basis, they calculated that
loci, giving Bayes factors in favor of growth vs. declineNe would need to be ,10 over the entire 120-year period.
of 6.6 and 16.2, respectively. However, combined overIt is possible that if a step model of decline were used,
loci, the marginal posterior distribution of log10(r) hasthe results may be consistent with their conclusions. An
one mode at 0.45 with 90% HPD limits of 22.2–3.27.additional caveat is that the single-step mutation model

is unlikely to be correct. This mode is relatively sharp, but with very thick tails,
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as a proportion of the sum of all branch lengths within
the tree. A value close to 1 indicates a star genealogy,
while a value close to 0 indicates an “etiolated” geneal-
ogy. Figure 8 shows the distribution of this statistic for
the MOD1, MOD2, and MOD3 data, each analyzed with
the linear model (with, however, the prior limits for the
examples in Figure 5, which are less biased toward star
genealogies). Plotted alongside is the distribution for
the 10 human loci. It can be seen that 5 of the loci have
distributions very similar to that of MOD3 and to each
other. The 2 loci showing high values of this “distal
branch index” are loci 7 and 9 identified earlier. The
reason for the higher density near 1 in comparison with
the simulated example probably reflects the different
prior limits used with the latter.

In conclusion, the 10 loci so far studied for the human
European data show conflicting evidence of past popula-
tion growth. Two loci show strong evidence of growth
with the lower 90% HPD limit greater than log10(r) .

Figure 7.—The marginal posterior distributions of log10 0. Yet the mode estimated from all loci is only 0.45, with
(2mta) estimated from the 10 loci sampled from European wide bounds. The taller peaks for the posterior densityhumans.

of log10(2mta) (conditional on log10(r) . 0) appear cen-
tered around 21–1. Assuming a point estimate of muta-
tion rate of 5 3 1024 and generation time of 20 years,hence the wide HPD limits. Thus there is little overall

evidence to suggest that the data are drawn from a this would imply that the population has been growing
over the last 2000–200,000 years. The best estimate ofpopulation that has been growing. The proportion of

this combined density with log10(r) . 0 is 0.8, giving a the amount that it has grown is around threefold. Such
calculations cannot be taken seriously at this stage until aBayes factor of 2 in favor of population growth. Condi-

tioning on log10(r) being positive, the marginal distribu- more complete analysis of the human data is performed,
using the natural parameters and more informative pri-tion of log10(tf) can be combined over loci. This has a

taller mode at 20.12 and a smaller mode at the 26 ors in the manner of Tavaré et al. (1997) and Wilson
and Balding (1998), and more loci.limit. The HPD region covers two intervals: 26–24.1

and 22.8–0. Thus the information on tf is very diffuse. There are three likely causes for the apparently dis-
crepant results between loci. First, it may be due toIt is also possible to consider the reparameterization,

log10(2mta) 5 log10(u) 1 log10(tf), conditional on sampling, and there is no discrepancy. This would imply
that there is little evidence of star genealogies in thelog10(r) . 0, as discussed earlier. The results are illus-

trated in Figure 7. Many of the loci exhibit the bimodal European data. Second, the discrepancies may arise
from making the strong assumption that ta, N0, and N1distribution noted in the data simulated from a stable

population. As noted earlier, the tails of these distribu- are the same for all loci. While strictly correct, selection
on nearby loci may tend to shrink or expand the geneal-tions depend on the priors for the three parameters

jointly. The two tall peaks come from the two loci show- ogies (Nordborg 1997). Thus it may make inference
more robust if a hierarchical Bayesian model were useding strong evidence of population growth. The distribu-

tion of modes is broad, with the taller modes centered in which the variance in demographic parameters be-
tween loci could be separately estimated. Third, as dis-around 21–1. This variation probably reflects different

mutation rates at different loci. The leftmost mode cor- cussed with the wombat example, the assumption of a
strict single-step mutation model may also contributeresponds to the locus with two alleles. Because a com-

mon mutation rate cannot be assumed, the posterior to discrepancies between loci.
distributions (proportional to likelihoods over the inter-
val) cannot be multiplied to give an overall posterior

DISCUSSION
distribution. These could be integrated over some distri-
bution of mutation rates to obtain distributions of ta, The introduction of general likelihood-based meth-

ods of inference by Griffiths and Tavaré (1994a)which could then be combined, but, because alternative
approaches are preferable (see discussion), this has and Kuhner et al. (1995) promises to revolutionize the

analysis of genetic data. However, the results of currentlynot been attempted here.
It is possible to summarize the shape of genealogies described methods (including this one) have to be

treated cautiously. The essential difficulty is that (1)by calculating the sum of the lengths of all branches
leading from each data point to its first coalescent node implementation is complicated and there is always the



2025Detecting Changed Population Size

Figure 8.—The distribution of the distal
branch index, defined in the text, for the
10 loci sampled from European humans.
Plotted alongside are distributions of the
distal branch index taken from the analysis
of the simulated data for declining, stable,
and expanding populations, assuming lin-
ear population growth (i.e., corresponding
to the first column of Table 1).

possibility of programmer error, and (2) all methods the posterior distribution for F has infinite volume.
Under various regimes the dimensionality of the likeli-depend on sampling. Although there are theorems that

state that the required result will be obtained if the hood function is reduced—i.e., the model becomes un-
derdetermined. When ta is very short or very long thesample is sufficiently large, there is no good way of

knowing, in practice, how large this should be. likelihood is a function of 2N0m or 2N1m. When r is close
to 1, the likelihood is a function of 2N0m 5 2N1m. WhenIn this article, the method has been applied to small

data sets where the likelihoods can be compared with r is very large it becomes a function of mta and 2N1m (an
assumption used by Rogers 1995).those obtained from MC integration. Likelihoods esti-

mated using MC integration should be unbiased, It would appear from the parameterization used here
that the most suitable summary statistic for detectingwhereas those estimated from MCMC may not be if the

chain has not yet converged. Although small, a sample population growth or decline is log10(r). In the case of
population decline, the joint distribution of log10(r) andof size 8 is not trivial, there being 1.6 3 106 distinguish-

able tree topologies. The posterior density estimates log10(tf) appears to be informative and useful as illus-
trated in the wombat example. In the case of growth,appear to be broadly accurate, especially in the tails of

the distribution (Figure 2). This is also shown in Figure a statistic that may be useful is the ratio of the posterior
odds for growth/decline against the prior odds. This3, where the absolute error appears to be proportional

to the likelihood. Checks such as these are useful in the can be regarded as a Bayes factor for testing whether the
data support a model of growth or decline. A criticism ofimplementation and validation of MCMC methods.

The method has then been applied to larger data sets Bayes factors is that they are very sensitive to the priors
(O’Hagan 1994; Gelman et al. 1995), especially whensimulated with known parameter values. Although the

data simulated assuming a star genealogy had no demo- they are quite vague as in the examples here. A sharply
peaked distribution of log10(2mta) appears indicative ofgraphic model, the MCMC analysis made reasonable

inferences about the number of mutations within the growth. However, unless it is sharply peaked, the shape
is likely to depend on the priors chosen, and broad,genealogy and the branch length multiplied by muta-

tion rate (equivalent to a notional mta, assuming a star bimodal distributions are compatible with stable or de-
clining populations. From the posterior distribution ofgenealogy). In addition, when applied to data simulated

from demographic models with known parameters, the genealogical histories, there are a large number of possi-
ble summary statistics that can be monitored. For exam-posterior distributions of these parameters were com-

patible with the known values. ple, the distal branch index appears to be a useful sum-
mary of tree shape.It is clear that the likelihood surface for growing popu-

lations is complex and, with a flat prior distribution, Taking a fully Bayesian approach, it is probably more
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Griffiths, R. C., and S. Tavaré, 1994a Simulating probability distri- Communicating editor: S. Tavaré
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change. These can be substituted into Equation 5 and
C(ti, ti11) 5 exp(2

ni

2
(u(tf 2 ti)6 to calculate the densities and likelihoods used in this

article.
Linear case: In this case 1

(ni 2 1)tf

log(r)
(r 2 r ti/tf)

1 (u 1 (ni 2 1)r)(ti11 2 tf))), (13)

and for ti, ti11 . tf, C(ti, ti11) is given by (11) above.l(t) 5






rtf

rtf 1 (1 2 r)t
, t # tf

r, t $ tf

;
Note that for both models, although (9, 10, 12, and

13) → (11) as r → 1, the equations cannot be evalu-
ated at r 5 1. Therefore, for computational conve-hence
nience, if |r 2 1| , 0.0001 (11) is used with r 5 1.

g(t) 5






1ni

22 rtf

rtf 1 (1 2 r)t
1

niu

2
, t # tf

1ni

22r 1
niu

2
, t $ tf

, APPENDIX B: UPDATING THE GENEALOGY

Addition and deletion of two mutations within lin-
eage: One set of reversible updates that can be made

giving for ti, ti11 # tf is to add or delete a pair of 11 and 21 mutations in a
lineage. A 11 mutation means that the length immedi-

C(ti, ti11) 5 exp12 ni

2 1u(ti11 2 ti) ately ancestral to the mutation event is one unit longer.
Hereafter, a prime (9) is used to denote variables whose
values may differ in candidate genealogies. Within a1

(ni 2 1)rtf

1 2 r
log 1rtf 1 ti11(1 2 r)

rtf 1 ti(1 2 r) 222, (9)
genealogy there are nc coalescent nodes (5 n0 2 1)
and 2nc lineages connecting either a sample node or a

for ti # tf and ti11 . tf coalescent to another coalescent node.
In the case of the addition of a pair of mutations,

C(ti, ti11) 5 exp(2
ni

2
(u(tf 2 ti) lineage i is chosen with probability wi/Rwj, where wi are

weights. If the lineages were given equal weight this
would correspond to 1/2nc. However, better conver-1

(ni 2 1)rtf

1 2 r
log 1 tf

rtf 1 ti(1 2 r)2 gence is obtained by weighting the choice of lineages
by their squared length, (dti)2, where dti is the difference

1 (u 1 r(ni 2 1))(ti11 2 tf))), (10)
in time (measured in the same units as for which the
likelihoods are calculated) between the ancestral andand for ti, ti11 . tf

descendent node. The mutations are added indepen-
dently and uniformly randomly along the lineage. TheC(ti, ti11) 5 exp12ni

2
(u 1 r(ni 2 1))(ti11 2 ti)2. (11)

joint density of two points along the lineage is therefore
1/(dti)2. This gives

Exponential case: In this case
Pf 5

E1

REjRwj

.
l(t) 5





r t/tf, t # tf

r, t . tf Once the pair of mutations have been added, the
lengths of the microsatellite at intervening mutationsand
along the lineage are updated. Thus, for example, if a
11 mutation is added at the bottom of a lineage, 11
is added to all the lengths up to the 21 mutation. The

g(t) 5






1ni

22r t/tf 1
niu

2
, t # tf

1ni

22r 1
niu

2
, t . tf

variables describing the candidate genealogy are then
updated, and the transition probabilities for the reverse
operation, deletion of the mutations, are obtained. In
this case a lineage is chosen with probability 1/n9d, wheregiving for ti, ti11 # tf

n9d is the number of descendent lineages from which at
least one pair of 11 and 21 mutations can be deletedC(ti, ti11) 5 exp(2

ni

2
(u(ti11 2 ti)

in the candidate genealogy. Within a lineage there are
n9p distinguishable pairs of 11 and 21 mutations without

1
(ni 2 1)tf

log(r)
(r ti11/tf 2 r ti/tf))), (12) regard to order [i.e., (the number of 11 mutations in

lineage) 3 (the number of 21 mutations in lineage)].
Thusfor ti # tf and ti11 . tf
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Pr 5
E29

RE9j n9dn9p
. Pr 5

E95
RE9j n9l

This is reversible and E5 5 E95.
Nearest-neighbor interchange of lineages: A subset ofFor deletion of two mutations, the procedure is the

interior nodes (those that are not sample nodes) canreverse of that above. The expressions remain the same,
be chosen to be interchanged. A candidate node, N1,except that Pf and Pr and primed and nonprimed vari-
must be interior. It has two descendent lineages. Theables are interchanged.
node (N2) at the end of the shorter descendent lineageAddition and deletion of three mutations around the
(L2) must be interior. The longer branch, L1, must havecoalescent node: Three mutations are added/deleted
no mutations between the time of N1 and the time ofaround the coalescent node. With probability 1/2 a 11
N2. The value of N1 and N2 must be the same. One ofmutation is added to the upper lineage, and two 21
the descendent lineages from N2 is chosen with probabil-

mutations are added to the lower lineages, and with
ity 0.5 and swapped with L1.probability 1/2 the alternative is carried out. Node i is

A node is chosen with probability 1/nn, where nn is
chosen with probability wi/Swj, where wi 5 dtildtirdtiu (the

the number of nodes that satisfy the criteria given above.
indices refer to left, right, and upper lineages). This The two descendent lineages of N2 have equal probabil-
gives ity of being swapped, giving

Pf 5
E3

REj2Rwj
Pf 5

E6

REj2nn

and for the reverse process a node is chosen with proba- and
bility 1/n9t , where n9t is the number of nodes from which
at least one triplet of mutations can be deleted. A partic- Pr 5

E96
RE9j 2n9n

.
ular triplet is deleted with probability 1/n9r , where n9r
is the number of distinguishable triplets [(number of This is reversible and E6 5 E96. Nearest-neighbor inter-
11, upper) 3 (number of 21, left) 3 (number of 21, change of lineages has been used for updating tree
right) 1 (number of 21, upper) 3 (number of 11, topologies in MCMC by Yang and Rannala (1997).
left) 3 (number of 11, right)]. This gives Interchanging order of events: Two temporally adja-

cent coalescent or mutation events can be interchanged
Pr 5

E94
RE9j n9t n9r

. provided the succeeding event is not the ancestor of
the preceding event, or, if it is ancestral, both events
are mutation events.As in the previous section, deletion of three mutations

The first event is chosen with probability 1/ne, whereis the reverse of the above.
ne is the number of nodes that satisfy the criteria above:For the MRCA node, the same equations apply, but

with variables describing the upper lineage removed.
Pf 5

E7

REjne
Thus only pairs of either 11 or 21 mutations are added
to the two descendent lineages, and the value of the
node changes accordingly. and

Interchange of lineages: Two lineages can be inter-
changed, altering the branching structure of the geneal- Pr 5

E97
RE9j n9e

.
ogy, by choosing two succeeding events (mutation or
coalescent) according to the following criteria: the first This transformation is reversible and E7 5 E97.
event must not be a sample node; the two events must
have the same value; the succeeding event must not
be the ancestor of the preceding event. The lineage
descending from and including the first event is then APPENDIX C: STATIONARY DISTRIBUTION
attached to the ancestor of the second event and simi-

An important consideration is whether the proce-larly for the second event.
dures outlined here will yield serially correlated samplesThus a first event is chosen with probability 1/nl, from p(F, G|n0, S0) as desired. The conditions underwhere nl is the number of events that satisfy the criteria
which a Metropolis-Hastings simulation will convergegiven above, giving
to the required density have been well studied (see
Tierney 1996). Essentially it is necessary to demonstrate

Pf 5
E5

REj(i)nl(i) that (1) the required density is proper (has finite vol-
ume); (2) the Markov chain is reversible; and (3) the
Markov chain is irreducible.and
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Condition (1) is satisfied by using proper prior distri- 3. It should be possible for any pair of available lineages
butions, which ensures that the posterior distribution to be joined at each coalescent event.
is also proper.

Three of the update classes described earlier are suf-Because F has been updated using standard methods
ficient to ensure that these requirements are satisfied.it is reasonable to assume that conditions (2) and (3)
Condition 1 is satisfied by the addition/deletion of threehold for F. The proposal distributions for G are de-
mutations around a node, which change its value inscribed above, and are demonstrably reversible, satis-
steps of 61. Condition 2 is satisfied by the addition/fying (2). It is necessary to demonstrate that the Markov
deletion of a pair or 11 and 21 mutations within achain for G is irreducible (i.e., it is necessary to show
lineage. Condition 3 is satisfied by the lineage swappingthat starting at any Gi conditional on {n0, S0} any other
update class: if condition 2 is satisfied it follows thatGj can be reached in a finite number of update steps).

This is satisfied if the following hold: there is a finite probability that any pair of lineages will
have temporally adjacent mutation events with the same1. The interior coalescent nodes (including the MRCA)
value allowing them to be swapped, thereby allowingshould be able to take any value.
any pair of lineages to be joined. The remaining update2. In a single-step mutation model the minimum num-
classes, nearest neighbor interchange and swapping theber of mutations in the lineage between two interior
order of events, are therefore unnecessary but may im-coalescent nodes is given by the absolute difference
prove convergence.in length between two nodes. Otherwise there can

be an infinite number of pairs of 11/21 mutations.


