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ABSTRACT
The properties and limitations of maximum likelihood (ML) inference of genome-wide mutation rates

(U) and parameters of distributions of mutation effects are investigated. Mutation parameters are estimated
from simulated experiments in which mutations randomly accumulate in inbred lines. ML produces more
accurate estimates than the procedure of Bateman and Mukai and is more robust if the data do not
conform to the model assumed. Unbiased ML estimates of the mutation effects distribution parameters
can be obtained if a value for U can be assumed, but if U is estimated simultaneously with the distribution
parameters, likelihood may increase monotonically as a function of U. If the distribution of mutation
effects is leptokurtic, the number of mutation events per line is large, or if genotypic values are poorly
estimated, only a lower limit for U, an upper limit for the mean mutation effect, and a lower limit for the
kurtosis of the distribution can be given. It is argued that such lower (upper) limits are appropriate
minima (maxima). Estimates of the mean mutational effect are unbiased but may convey little about the
properties of the distribution if it is leptokurtic.

MUTATIONS that affect fitness are usually deleteri- coding regions per zygote per generation (Drake et al.
ous and rarely become fixed in large populations. 1998). Protein coding sequences are under moderate

However, deleterious mutations may occur at a suffi- constraint, so this rate is similar to the deleterious muta-
ciently high rate to play an important role in several tion rate specific to such sequences (A. Eyre-Walker

key evolutionary phenomena, such as the evolution and and P. D. Keightley, unpublished results). The esti-
maintenance of sex. Some evolutionary theories require mate refers to fitness-altering mutations occurring on
estimates of the genomic rate of deleterious mutations, an evolutionary time scale, but does not tell us about the
U, but not necessarily of the distribution of their selec- magnitudes of the effects upon which natural selection
tive effects [e.g., to test the “deterministic mutation” acted (except that fitness effects were greater than the
theory for the evolution of sex (Kondrashov 1993)], reciprocal of the effective population size), or about
while others require information both on U and the the effects of large-scale molecular changes such as dele-
distribution of selective values [e.g., to infer the probabil- tions or transposable element (TE) insertions.
ity of “mutational meltdown” (Lande 1995; Lynch et A second general approach to indirectly infer U and
al. 1995)]. mutation parameters is from a comparison of the distri-

There are several ways to obtain information on U butions of fitnesses of outbred (or inbred) individuals
and distributions of selective values. One approach, pro- sampled from a natural population to their inbred (or
posed by Kondrashov and Crow (1993), is to compare outbred) progeny. A method developed by Deng and
between-species nucleotide substitution rates at a sam-

Lynch (1996) for outbreeding populations allows esti-
ple of regions in the genome to rates in regions evolving mation of U and the mean mutant effect and degree
unconstrained by natural selection. If selection has op- of dominance. However, with this method deleterious
erated to remove new mutations in the sampled regions, mutation-selection balance is assumed to be the only
the rate of nucleotide substitution will be lower than in mechanism maintaining variation for fitness, and biased
the unconstrained regions. By combining the relative estimates will result if any other mechanisms, such as
substitution rates with estimates of between-species di- balancing selection or migration, lead to the mainte-
vergence times and generation intervals, it is possible, nance of variation (Drake et al. 1998). For example,
in principle, to estimate U. For example, the rate of negative genetic correlations between major compo-
nucleotide substitution in human pseudogenes implies nents of fitness can lead to the maintenance of additive
that about three point mutations occur in amino acid and nonadditive genetic variation for the major compo-

nents and fitness, respectively (Rose and Charles-

worth 1980; Rose 1982; Falconer and Mackay 1996,
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outcrossed progeny can provide an estimate of U changes in its parameters produce distributions with a
wide range of properties. Numerical techniques involv-(Charlesworth et al. 1990). As with the method ap-

plied to outbreeders, it is assumed that genetic variation ing maximum likelihood (ML; Keightley 1994) or
minimum distance (Garcia-Dorado 1997) have beenis maintained solely by a balance between mutation and

selection. Charlesworth et al.’s (1990) method pro- applied to find values for U and the parameters of the
assumed distribution that best fit phenotypic data fromvides estimates for U, but not of mutation distribution

parameters such as the mean mutation effect. the MA experiment. Fit is measured either in terms of
R log likelihood of data or distance between the fittedA third direct way to study effects of deleterious muta-

tions is the mutation accumulation (MA) approach in and empirical distributions of line means. Following
the nearly neutral model (Kimura 1983; Ohta 1992),the laboratory. Mutations are allowed to randomly accu-

mulate in benign conditions in sublines derived from gamma distributions of mutation effects have mostly
been assumed. The gamma distribution has two parame-an inbred base population. The sublines are maintained

by close inbreeding or as replicated chromosomes pro- ters, a and b, specifying scale and shape, respectively.
With small values of b, the distribution is leptokurtic:tected by a balancer chromosome, so drift will tend to

dominate selection. After many generations of mutation most mutations have effects close to zero; larger effects
occur with diminishing frequency and contribute mostaccumulation, fitnesses of the MA lines or chromosomes

are compared to controls. The approach was pioneered of the between-line variance. Special cases are b 5 1 (the
exponential distribution) and b 5 1⁄2 (the chi-squareby Mukai (1964) who used a Cy balancer chromosome

as a control to study the viability effects of mutation distribution with 1 d.f.). Gamma distributions with
higher values of b approach symmetry about the meanaccumulation in Drosophila melanogaster second chromo-

somes. In contrast to the indirect approach outlined (b/a). The case of b → ∞ corresponds to equal mutation
effects, the model that is generally used to obtain BMabove, mutation should be the only source of evolution-

ary divergence between the lines under test, but the estimates.
ML or minimum distance methods have been appliedmethod is restricted to laboratory populations. Infer-

ence of U and properties of the distribution of mutation to data from several MA experiments (Keightley 1994,
1996; Garcia-Dorado 1997; Keightley and Cabal-effects are made by comparing the distribution of phe-

notypes of MA and control lines. The method of Bate- lero 1997; Keightley and Ohnishi 1998). The algo-
rithms to fit the mutation parameters have previouslyman (1959), which was taken up by Mukai [1964; the

Bateman-Mukai (BM) method], compares the rate of relied on highly computer-intensive Monte Carlo meth-
ods, and only limited investigations of the performanceincrease in among-MA line variance per generation, Vm,

with the rate of change of fitness or fitness component, of the procedures have been possible (Keightley 1994;
Garcia-Dorado 1997). Recently, an improved versionDM. Under the assumption that mutations have equal

deleterious effects, an estimate of U is obtained from of the ML procedure has been developed with algo-
rithms z2 orders of magnitude less demanding of com-

Û 5 DM 2/Vm, (1)
puter time based on numerical integration (Keightley

and Ohnishi 1998). An extensive study of the propertiesand an estimate of the mean mutation effect comes
from of ML estimation of mutation parameters is now fea-

sible.
E(a) 5 Vm/DM. (2)

l

The purpose of this article is to explore the properties
and limitations of ML inference of mutation parametersIf mutation effects vary, Û is underestimated and E(a)

l

is overestimated. This is analogous to the estimation by simulation. Simulated rather than real MA data are
analyzed, because the true parameter values are known,bias for the effective number of factors influencing a

quantitative trait (Falconer and Mackay 1996, chapter the model assumptions are not violated, and replication
to detect significant deviations from expectation is pos-12). Furthermore, if the distribution of mutation effects

is strongly leptokurtic, the mean mutation effect conveys sible.
little about the properties of the distribution. Genomes
contain sites that vary greatly in functional significance,

MATERIALS AND METHODSso the distribution of selective values of new mutations
is of central interest. Model and simulation of data: The data available for analysis

To infer U and distributions of mutation effects from are assumed to be phenotypic means from a set of control
MA experiments, an alternative approach is to assume lines (generation 0 of the MA experiment) and a set of MA

lines (from generation t). In principle, data from several timethat the true distribution of mutation effects follows
points could be analyzed simultaneously, and an algorithmsome family of distributions. Theoretically, the distribu-
has been proposed (Keightley 1994). The power of the pro-tion of effects of all mutations that occurred in an exper-
cedure can also be improved by making use of within-MA

iment could be estimated, but in practice there are line replicate information ( J. D. Fry, P. D. Keightley, S. L.

insufficient degrees of freedom, so a family of distribu- Heinsohn and S. V. Nuzhdin, unpublished results). Control
line phenotypic values were random normal deviates withtions must be assumed. The family is chosen so that
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TABLE 1

Comparison of BM and ML procedures in which fixed values of b (b*) are assumed, with r 2
g/r 2

e 5 20

Simulated values Estimated values
Estimation

Model U E(a) procedure b* Û SD E(a) SD log L SD

l

Equal effects (b → ∞) 0.5 6.32 BM → ∞ 0.50 (0.079) 6.35 (0.68) — —
ML → ∞ 0.50 (0.047) 6.32 (0.095) 0 —

2 0.61 (0.093) 5.36 (0.35) 248 9.3
1 0.80 (0.13) 4.12 (0.34) 255 10.0
0.5 1.15 (0.20) 2.94 (0.27) 261 10.6
0.25 1.85 (0.34) 1.85 (0.18) 265 11.1

b 5 0.5 0.5 3.65 BM → ∞ 0.17 (0.034) 11.1 (2.13) — —
ML → ∞ 0.32 (0.071) 5.49 (0.86) 232 12

2 0.28 (0.044) 6.45 (1.25) 21.2 1.8
1 0.36 (0.057) 5.14 (1.07) 20.0 0.8
0.5 0.51 (0.086) 3.65 (0.78) 0 —
0.25 0.83 (0.14) 2.31 (0.53) 20.3 0.5

Equal effects (b → ∞) 2.5 2.83 BM → ∞ 2.52 (0.29) 2.83 (0.29) — —
ML → ∞ 2.53 (0.20) 2.80 (0.17) 0 —

2 3.66 (0.39) 1.97 (0.18) 23.0 2.1
1 4.77 (0.51) 1.51 (0.14) 24.3 2.6
0.5 6.99 (0.76) 1.04 (0.10) 26.0 3.2
0.25 11.4 (1.27) 0.64 (0.062) 27.5 3.7

b 5 0.5 2.5 1.63 BM → ∞ 0.84 (0.12) 4.92 (0.71) — —
ML → ∞ 1.29 (0.17) 3.14 (0.33) 218 6.2

2 1.37 (0.18) 2.99 (0.32) 21.8 1.9
1 1.76 (0.24) 2.35 (0.26) 20.3 0.9
0.5 2.54 (0.35) 1.64 (0.19) 0 —
0.25 4.10 (0.57) 1.02 (0.12) 20.3 0.6

mean m and variance s2
e. Phenotypic values of MA lines were here. Parameter estimates are based on “profile likelihoods,”

computed by maximizing the likelihood for a series of fixedsums of independent random normal deviates, mean m, vari-
ance s2

e as above, plus mutational effects generated by sum- values of one parameter. Likelihood surfaces often become
very flat, so maximization could fail if all parameters are fittedming n random deviates from a gamma distribution, parame-

ters a and b. Epistasis between mutations was not modeled. simultaneously. ML estimates were obtained from profile like-
lihoods, typically involving 10–20 points, by fitting a quadraticn was sampled from a Poisson distribution with parameter U

(or n 5 1 as a special case, where the absolute number of curve to the highest likelihood point and the nearest points
on either side. Tests in which additional points were addedmutation events was assumed to be known). Here, U is the

mean number of mutations accumulated per MA line, and about the ML did not significantly change the results. C com-
puter code to carry out the likelihood calculations is availablewould be divided by t to estimate the mutation rate per genera-

tion for a real experiment. Following Garcia-Dorado (1997), on request.
to compare simulations with different b and U, the variance
of genotypic values s2

g 5 Ub(b 1 1)/a2 was set at a fixed
multiplier of the among-line error variance (s2

e), often 5 or RESULTS
20. Precision levels (expressed as s2

g/s2
e) achieved in some

previous large-scale MA experiments are, for example, as fol- Comparison to the Bateman-Mukai method with
lows: Mukai et al. (1972) z7 (one replicate); Ohnishi (1974) shape of the distribution of mutation effects assumed:
z8; Keightley and Ohnishi (1998) mean 12 for nine traits,

In principle, the shape of the distribution of mutationrange 1.0–56.
effects will always need to be estimated. However, it isML analysis: The numerical integration procedure to esti-

mate mutation parameters is fully described elsewhere useful to compare the fit of models with different fixed
(Keightley and Ohnishi 1998). The same model was as- values of b to explore the behavior of the ML procedure.
sumed as was used to generate the simulated data. The parame- By assuming equal mutation effects in the ML analysis
ters estimated in the model were m, s2

e, U, a, and b. Distribu-
(b → ∞), the performance of the ML and BM proce-tions reflecting about zero, with a parameter P, the proportion
dures can also be compared. Tables 1 and 2 show meansof positive mutant effects, have been investigated previously

(Keightley 1994; Keightley and Ohnishi 1998), but are and standard deviations (SDs) for estimates of U and
not investigated here. The a and b parameters fully specify the E(a) from 30 replicate simulations (1000 replicates for
properties of the distribution of mutation effects. Traditionally b → ∞). Two values of U were simulated, with equal
the mean mutational effect has been estimated from MA ex-

mutation effects, or a gamma distribution with b 5 0.5periments. If the distribution is leptokurtic, it is most logical
(corresponding to a strongly leptokurtic distribution).to estimate a and b, but the mean mutant effect is likely to

be of continued interest, so b and E(a) 5 b/a are given The genetic variance was 20s2
e (Table 1) or 5s2

e (Table
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TABLE 2

Comparison of BM and ML procedures with r 2
g/r 2

e 5 5

Simulated values Estimated values
Estimation

Model U E(a) procedure b* Û SD E(a) SD log L SD

l

Equal effects (b → ∞) 0.5 3.16 BM → ∞ 0.50 (0.10) 3.21 (0.44) — —
ML → ∞ 0.51 (0.064) 3.15 (0.19) 0 —

2 0.79 (0.14) 2.13 (0.25) 26.1 3.2
1 1.08 (0.19) 1.60 (0.20) 28.2 3.8
0.5 1.62 (0.29) 1.08 (0.14) 210.2 4.3
0.25 2.71 (0.49) 0.65 (0.090) 211.7 4.7

b 5 0.5 0.5 1.83 BM → ∞ 0.18 (0.056) 5.46 (1.41) — —
ML → ∞ 0.20 (0.058) 4.08 (0.81) 211.3 5.8

2 0.24 (0.049) 3.64 (0.79) 20.9 1.4
1 0.33 (0.067) 2.75 (0.63) 20.2 0.6
0.5 0.51 (0.10) 1.86 (0.46) 0 —
0.25 0.85 (0.18) 1.14 (0.29) 20.0 0.4

Equal effects (b → ∞) 2.5 1.41 BM → ∞ 2.51 (0.36) 1.42 (0.18) — —
ML → ∞ 2.52 (0.36) 1.42 (0.18) 0 —

2 3.75 (0.41) 0.96 (0.092) 20.7 1.1
1 4.98 (0.54) 0.72 (0.070) 21.4 1.7
0.5 7.46 (0.82) 0.49 (0.047) 22.1 2.1
0.25 12.4 (1.37) 0.29 (0.029) 22.8 2.5

b 5 0.5 2.5 0.82 BM → ∞ 0.85 (0.16) 2.44 (0.39) — —
ML → ∞ 0.92 (0.16) 2.22 (0.30) 24.5 3.8

2 1.25 (0.24) 1.64 (0.27) 20.8 1.4
1 1.66 (0.32) 1.25 (0.21) 20.2 0.6
0.5 2.49 (0.47) 0.84 (0.15) 0 —
0.25 4.13 (0.79) 0.51 (0.091) 20.1 0.4

2), and 200 control and MA lines were simulated. The the b value corresponding to the simulated distribution.
data for each replicate were analyzed by ML as described (2) If a model corresponding exactly to the data is
above, and by the BM method (Equations 1 and 2), assumed, ML provides more accurate estimates than
with Vm estimated as the difference between the among- BM (i.e., coefficients of variation for the estimates are
MA line and control line variances. Tables 1 and 2 illus- lower). This effect is particularly apparent for the case
trate a number of interesting results: (1) When the of few mutations with equal effects measured with low
data conform to the model assumed (i.e., simulated and error (Table 1), presumably because the MA line data
assumed b are the same), the ML and BM procedures tend to fall into discrete classes. (3) If the model does
give mean estimates very close to the simulated values. not correspond to the date (e.g., b 5 0.5 simulated,
ML provides good mean parameter estimates if the but b → ∞ assumed), ML provides mean parameter
model conforms with the data irrespective of the shape estimates closer to the values simulated than BM. ML
of the distribution, i.e., the mean log L is highest for is therefore more robust to deviations from the true

distribution than BM. (4) For the U values simulated,
ML can distinguish better between distributions if thereTABLE 3
are few mutations per MA line. (5) ML can distinguish

Parameter estimates from analysis of simulated data sets better between different distributions if the true distri-
with the expected number of mutation events (U*)

bution is platykurtic (i.e., with b → ∞ simulated, thefitted as a fixed parameter
average change in log L between fitted distributions is
very large). If the true distribution is leptokurtic, littleSimulated values Estimated values
information can be obtained on b, beyond inferring

U* b E(a) b̂ SD E(a) SD

l

that the model of equal effects gives a poor fit.
Number of mutation events known: In certain experi-0.5 0.5 3.65 0.59 (0.23) 3.99 (0.81)

1.0 4.46 1.16 (0.43) 4.34 (0.55) mental situations the number of mutation events per
2.0 5.16 2.52 (1.05) 5.26 (0.60) genome is known. In Drosophila, mobilization of P ele-

5.0 0.5 1.16 0.54 (0.11) 1.17 (0.079) ments has been used to generate lines with single inde-
1.0 1.41 1.04 (0.22) 1.42 (0.066) pendent insertions (Lyman et al. 1996), and in Esche-2.0 1.63 2.09 (0.78) 1.64 (0.054)

richia coli, strains with fixed numbers of Tn10 insertions
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TABLE 4

Analysis of simulated data where simulated values are favorable.

Simulated values

Estimated values

U b E(a)

Û b̂ E(a)

l

Min ML Max Min ML Max Min ML Max

2.5 1.0 4.46 1.74 2.87 → ∞ 0.37 1.20 3.04 2.22 4.38 6.19
(0.75) (1.32) (0.31) (0.70) (1.71) (1.42) (1.25) (0.80)

[4] [4] [4]

The variance of genotypic values was 100s 2
e.

Standard deviations of estimates are shown in parentheses; numbers of runs (out of 30) for which a minimum
or maximum estimate occurs at a boundary of 0 or ∞ are shown in brackets.

have been generated (Elena and Lenski 1997; Elena agree reasonably closely with their simulated parameter
values. Frequency distributions of the estimates (Figureet al. 1998). Effects of TE insertion on the distribution
1) show, however, that distributions are skewed upwardof quantitative trait phenotypes can then be measured
in the case of Û, and downward in the case of E(a).

l

relative to nonmutagenized control lines. Analysis of
The presence of skew turns out to be a consistent featuresimulated data with exactly one mutation per MA line
where U is estimated as an unknown parameter. A smallshowed that mean parameter estimates are very close
number of Û are very much larger than the simulatedto the values simulated, with no directional bias, and
value, while E(a) for the corresponding simulations

l

that the mean mutation effect is estimated with consid-
erably higher accuracy than the distribution shape pa-
rameter (data not shown).

There are certain experimental situations where the
expected rather than absolute number of mutation
events can be estimated. For example, rates of accumu-
lation of spontaneous TE insertions and base pair sub-
stitutions can be used to indirectly estimate the per
genome mutation rate in Drosophila, albeit imprecisely
(Keightley 1994; Drake et al. 1998). Table 3 compares
estimates of b and E(a) for simulations with “low”
(U 5 0.5) and “high” (U 5 5) numbers of mutations.
The number of mutation events per line was Poisson
distributed. In the analysis the expected number was
fitted as a known parameter. Mean estimates of b are
close to the simulated values, but there is a slight but
consistent upward bias. The bias, which is explored
more fully in the next sections, implies that the parame-
ters in the model are confounded with one another.
There does not appear to be any directional bias for
estimates of E(a), which is again estimated much more
precisely than b.

Unknown numbers of mutation events, “favorable”
data: Highly precise measurement of genotypic values
is unrealistic in an experimental setting, but should be
favorable for disentangling the parameters. To model
such a situation, 30 data sets were independently gener-
ated with the among-line variance of genotypic values,
s2

g 5 100s2
e. Two hundred control and MA lines were

simulated with U 5 2.5 and b 5 1. Table 4 shows mean
ML parameter estimates along with mean lower and
upper support limits based on loge likelihood drops of

Figure 1.—Frequency distributions of ML estimates of mu-
2 from the MLs (asymptotically approximately equiva- tation parameters from the favorable data sets. Simulated pa-

rameter values are indicated by “`.”lent to 95% confidence limits). Mean ML estimates
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are very much smaller than their true values. For such
data sets, the b̂ tend to be close to zero. An explanation
for this behavior can be found in the moments of the
distribution of genotypic values.

The wide range for the mean lower and upper support
limits for Û and b̂ (Table 4) implies wide confidence
intervals, even for the “favorable” parameter values. The
upper support limit for Û → ∞ because in 4 of the 30
simulations, log likelihood leveled out at a value ,2
different from the ML. The criterion for the confidence
interval is a drop in log likelihood of 2, and is based
on asymptotic properties, which, presumably, are not
being met. In these 4 pathological cases, no upper limit
for U can be given. In the same 4 simulation runs, the
lower support limits for both b̂ and E(a) approached

l

zero, so only upper limits can be given. The data would
be consistent, therefore, with an extremely high muta-
tion rate, with effects sampled from a strongly leptokur-
tic distribution having a mean effect close to zero.

Behavior of the moments of the distribution of geno-
typic values: Previous investigations of the ML proce-
dure have shown that estimates of b and U tend to
be strongly confounded with one another (Keightley

1994; Keightley and Ohnishi 1998). Likelihood often
becomes flat if the fitted value of U is increased while,
for constant a, b is simultaneously decreased. Since
E(a) 5 b/a the estimated mean mutant effect also de-
creases as the fitted value of U increases. The correla-
tion between the parameters generates characteristic-

Figure 2.—Profile likelihoods as a function of U, b, and
ally shaped profile likelihoods. Profile likelihoods for E(a) for one of the favorable data sets. The stimulated parame-

ter values are indicated by “`.”one data set investigated in the previous section are
shown in Figure 2. In Figure 2a (the likelihood profile
for U), the ML is close to the U value of 2.5 simulated,
but log likelihood quickly becomes flat as a function of 1

6
U 3b

1
11

U 3b2
1

6
U 3b32. (7)

increasing U. This behavior can be explained as follows:
The moments of the distribution of genotypic values, Under ML the moments of the fitted distribution will
X, are given by be close to those of the empirical distribution. The mean

of the fitted distribution, E(X), is the most important
E(Xn) 5 o

∞

i50

p(i|U)
ib(ib 1 1) . . . (ib 1 n 2 1)

an
. (3) constraint determining the fit. With a fixed E(X) and

a large value of U, the higher order moments can be held
constant by increasing U while adjusting b downward inThe first four moments are therefore
a compensatory manner. The important terms are 1/
Ub, 2/U 2b2, 6/U 3b3, etc., in which U and B are of the

E(X) 5
Ub

a
, (4) same order in the denominator, while the terms where

U is of higher order than b become small (i.e., 1/U, 1/
U 2, 3/U 2b, etc.). The behavior of the moments of theE(X 2) 5 E 2(X)11 1

1
U

1
1

Ub2, (5)
genotypic distribution implies that increasing U can
eventually always lead to an essentially unchanging fittedE(X 3) 5 E 3(X)
distribution, and to flat profile likelihoods.

With the favorable simulated data sets, there were3 11 1
3
U

1
3

Ub
1

1
U 2

1
3

U 2b
1

2
U 2b22,(6)

always maxima in the likelihood profiles. However, less
favorable situations, such as a strongly leptokurtic distri-

E(X 4) 5 E 4(X)11 1
6
U

1
6

Ub bution of mutation effects, a large number of mutations
per MA line, or poorly estimated genotypic values, often
give no likelihood maxima, so only lower or upper sup-1

7
U 2

1
18

U 2b
1

11
U 2b2

1
1

U 3 port limits for the parameters can be given.
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TABLE 5

Effect of changes in U and b on parameter value estimates

U b E(a)

Û b̂ E(a)

l

Min ML Max Min ML Max Min ML Max

0.5 0.5 3.65 0.22 0.95 → ∞ 0.056 0.52 2.00 0.39 3.27 7.52
(0.03) (1.24) (0.18) (0.52) (0.93) (1.22) (1.49) (0.60)

1.0 4.46 0.33 0.59 → ∞ 0.19 1.18 3.59 1.25 4.20 6.53
(0.09) (0.27) (0.19) (0.64) (1.76) (1.16) (1.25) (1.11)

2.0 5.17 0.40 0.65 → ∞ 0.45 1.66 4.44 2.25 4.50 6.26
(0.09) (0.26) (0.36) (0.84) (2.06) (1.42) (1.10) (0.92)

2.5 0.5 1.63 1.33 3.11 → ∞ 0.23 0.71 → ∞ 0.21 1.65 3.09
(0.23) (1.56) (0.52) (0.81) (0.57) (0.70) (0.62)

1.0 2.00 1.57 4.05 → ∞ 0.10 0.98 → ∞ 0.28 1.77 3.11
(0.26) (2.75) (0.25) (0.98) (0.61) (0.62) (0.39)

2.0 2.30 1.85 3.38 → ∞ 0.45 2.37a → ∞ 0.83 2.00 3.01
(0.36) (1.94) (0.58) (2.32) (0.84) (0.70) (0.48)

5.0 0.5 1.15 2.21 5.93 → ∞ 0.059 1.05 → ∞ 0.11 1.28 2.58
(0.29) (4.05) (0.18) (1.45) (0.33) (0.52) (0.37)

1.0 1.41 2.87 7.83 → ∞ 0.18 1.70b → ∞ 0.32 1.36 2.48
(0.49) (6.90) (0.28) (2.34) (0.44) (0.63) (0.45)

2.0 1.63 3.24 7.70 → ∞ 0.16 2.98a → ∞ 0.27 1.42 2.40
(0.43) (6.17) (0.22) (3.52) (0.38) (0.50) (0.27)

The variance of genotypic values was 20s 2
e. Means and standard deviations are from 10 simulation runs

except for U 5 2.5, b 5 1, for which there were 30 runs.
a One run gave an ML estimate → ∞ and was not included.
b Two runs gave ML estimates → ∞ and were not included.

U unknown, more realistic data: To investigate ML “effort” in the experiment, simulation runs were com-
pared for constant N 3 s2

g (Table 6). Two levels ofwith more realistic data, simulations in which s2
g 5

20s2
e were analyzed. Mean ML estimates of U (Table 5) experimental precision were investigated: 50 or 200

lines with s2
g set to 80 or 20, respectively (the upper twoare of the correct order, and individually nonsignifi-

cantly different from the values simulated, but there sets of parameters in Table 6), or the same numbers of
lines with s2

g set to 20 or 5, respectively (the lower twoappears to be a general upward bias in the estimated
values. The bias is more serious than noted for simula- sets of parameters in Table 6). An exponential distribu-

tion of mutation effects with U 5 2.5 was simulated.tions with U fixed. Individual simulation runs usually
allow upper support limits for U to be obtained, but The results suggest that a higher number of lines with

reduced effort per line leads to proportionally narrowereach set included at least one with an upper support
limit → ∞. Lower support limits for U tend to be closer bounds for E(a), and fewer runs in which minimum,

ML, or maximum parameter estimates were 0 or ∞.to the simulated values for platykurtic distributions. Ta-
ble 5 shows that information on the shape of the distri- Table 6 also illustrates that it is generally possible only

to obtain lower support limits for U and b, and an upperbution of mutation effects is difficult to obtain. In some
cases, likelihood increased monotonically as a function limit for E(a) (cf. Table 5).
of b, hence the mean ML estimate → ∞. In contrast
to the other parameters, estimates of E(a) seem to be

DISCUSSION
unbiased, but individual runs give lower support limits
for E(a) of zero. Figures 3 and 4 compare results for The development of methods to infer distributions

of mutation effects has been motivated by the crucialmutation rates of 0.5 and 5, respectively, under a platy-
kurtic distribution of mutation effects (b 5 2). The importance of these distributions for evolutionary mod-

els. This article has investigated ML as an approach tolower U gives steeper likelihood profiles, so more infor-
mation on the mutation parameters can be obtained. obtain estimates of U and mutation distribution parame-

ters. One key parameter estimated by ML, but not esti-As U increases, the distribution of genotypic values will
become increasingly normal, presumably increasing the mated by the BM procedure, is a distribution shape

parameter. The ML procedure behaves well if the num-difficulty in disentangling the parameters.
Trade-off between number of lines and precision for ber of mutation events per MA line is known, but if U

has to be estimated simultaneously with the distributionindividual lines? To investigate the effect of varying the
number of lines (N), while maintaining the same total parameters, the mutation parameters become strongly



1290 P. D. Keightley

Figure 3.—Likelihood profiles as a function of U, b, and Figure 4.—As shown in Figure 3 with the simulated value
E(a) for simulations with U set at 0.5 and b at 2. The value of U set at 5 and b at 2.
of a was adjusted such that the variance of genotypic values
was 20s2

e. The simulated parameter values are indicated by
vertical broken lines. pears, and point estimates for U and E(a) can be ob-

tained (Tables 1 and 2). An alternative to ML, the BM
method, generally assumes that mutation effects are

confounded with one another, and profile likelihoods equal, and produces point estimates from the rate of
tend to be flat and asymmetrical about their maxima. change of mean and variance between MA and control
Often, ML estimates for U → ∞ and b → 0. The flatness lines. If the true distribution of mutation effects is
of the profile likelihoods can be explained by the behav- gamma, the BM method underestimates U by a factor
ior of the moments of the distribution of genotypic 1 1 1⁄b, and overestimates E(a) by the same factor:
values. The moments contain terms in the product b 3
U that can be held constant by making compensatory UBM 5 DM 2/Vm 5 U/ 11 1

1
b2 , (8)

changes in b and U. By assuming asymptotic properties
of likelihood (i.e., large sample size), lower support lim-

E(a)BM 5 Vm/DM 5 E(a)11 1
1
b2 . (9)its for U can be obtained (and sometimes upper limits

as well), but the tendency for profile likelihoods to be
asymmetrical suggests that the asymptotic properties are The BM method does not provide an obvious method
not being met. Further investigation of this aspect is to compare the fit of different distributions to the data,
needed. so the simplest model (i.e., equal effects) needs to be

By assuming a specific distribution of mutation effects assumed. By employing the BM method with bootstrap-
with a fixed shape, much of the difficulty in disentan- ping to obtain a confidence interval (Houle et al. 1992),

lower and upper limits for point estimates of U and E(a)gling the remaining parameters in the model disap-
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TABLE 6

Effect of change in number of lines measured (N) on parameter value estimates

Simulated values

Estimated values

N U b a E(a) r 2
g

Û b̂ E(a)

l

Min ML Max Min ML Max Min ML Max

50 2.5 1.0 0.25 4.0 80 1.47 2.58 → ∞ 0.19 1.97 → ∞ 0.82 4.04 7.01
(0.36) (1.14) (0.38) (1.71) (1.35) (1.85) (1.59)

[3] [19] [19] [1] [10] [19]
200 2.5 1.0 0.5 2.0 20 1.57 4.05 → ∞ 0.10 0.98 → ∞ 0.28 1.77 3.11

(0.26) (2.75) (0.25) (0.98) (0.61) (0.62) (0.39)
[16] [16] [1] [2] [16]

50 2.5 1.0 0.5 2.0 20 1.19 2.91 → ∞ 0.11 1.51 → ∞ 0.20 1.89 4.09
(0.33) (2.62) (0.31) (1.79) (0.57) (1.25) (0.90)

[6] [24] [24] [1] [14] [24]
200 2.5 1.0 1.0 1.0 5 1.16 2.37 → ∞ 0.072 1.92 → ∞ 0.10 1.14 2.12

(0.27) (1.22) (0.21) (1.77) (0.28) (0.48) (0.35)
[2] [23] [23] [1] [18] [23]

Standard deviations of estimates are shown in parentheses; number of runs (out of a total of 30) for which minimum or
maximum support limits appear to occur at a boundary of 0 or ∞, or ML estimates that occur at ∞ are shown in brackets. Runs
for which the ML estimate → ∞ were not included in the means.

can be obtained. These are asymptotically equivalent to point (or minimum) estimates of U by the BM or ML
the lower or upper support limits obtained by ML based methods must also be born in mind. They are condi-
on the properties of likelihood, if equal mutation effects tional on the form of the distribution of mutation effects
are assumed. The lower (or upper) support limits for assumed, equal for BM, and gamma for ML in the pres-
U and E(a) obtained by ML are not equivalent in a ent case. Mutations with tiny, but evolutionarily impor-
statistical sense to the point estimates obtained by the tant effects, could make up a substantial fraction of the
BM method. With ML there may be no point estimate genomic deleterious mutation rate, but a laboratory
because likelihood often increases monotonically as a experiment cannot hope to detect these by measuring
function of one parameter. A difficulty with the BM
method to estimate U is the denominator of Equation
1, Vm, which could approach zero (hence UBM → ∞)

l

if the experiment had low power. The problem is illus-
trated in Figure 5, where BM estimates and correspond-
ing coefficients of variation (CVs) for U are shown for
a range of simulated values. If Vm is poorly estimated
(corresponding to the lowest simulated values of U in
the figure), estimates can become meaningless because
the CV → ∞. A similar effect also occurs with BM estima-
tion of E(a), if DX could plausibly be zero (Equation
2). Other properties of estimation of mutation parame-
ters by the BM method have been investigated by Deng

and Fu (1998).
In principle, parameters that can be reliably estimated

by the MA approach with inbred sublines are the rates of
change of mean and variance from fixation of mutations
(Crow and Simmons 1983). Two experiments have esti-
mated rates of change of mean fitness in a recently
caught outbred population of Drosophila maintained Figure 5.—Ratio of estimated to simulated mutation rate

[U(est)/U(sim)] and coefficient of variation of estimatein the laboratory (Gilligan et al. 1997; Shabalina et
[CV(U)] plotted against simulated mutation rate. Estimatesal. 1997), and apparently produced conflicting results,
were obtained by the BM method from analysis of 100,000but it has been argued that effects of genetic adaptation,
simulated data sets of 100 MA and control lines, with five

inbreeding depression, and an accumulation of deleteri- replicates in each line. The between-line variance was com-
ous mutations cannot be distinguished in outbred popu- puted by an ANOVA. Mutant effects were 0.2, and the between-

replicate environmental variance was 1.0.lations (Keightley et al. 1998). The meaning of the
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their “pressure” on the population mean phenotype lines, were about one order of magnitude smaller than
the original BM estimates, which used information fromor their contribution to the mutational variance. The

genomic mutation rate estimate, if it is a point estimate, the change of mean viability estimated by regression
from several generations of data. However, an ML analy-must for this reason also be a minimum estimate.

The strong correlation between the parameter esti- sis of Ohnishi’s (1977) data with the same model as
described by Garcia-Dorado (1997) does not providemates implies that global maximization of likelihood

is often problematical when all parameters are fitted a point estimate; instead, the ML estimate of U → ∞
(data not shown). This difference between ML and MDsimultaneously. This problem can be overcome by fixing

one parameter and generating profile likelihoods. The is probably due to the fact that ML takes into account
variation in the true population mean, while MD doesproperties of the multidimensional likelihood surface

can be explored in this way, and it is recommended not. An ML analysis of data from Mukai et al. (1972)
produces a similar point estimate of U as inferred bythat this is done for analysis of real data. A further

potential problem with very small simulated U values Garcia-Dorado (1997) if the same model is assumed
[about 10 times smaller than by Mukai et al.’s (1972)and high s2

g relative to s2
e (i.e., very large mutation ef-

fects) is that likelihood profiles may have multiple peaks. original analysis], but again, the ML analysis gives an
estimate of U → ∞ if a mixed distribution of mutationThe present version of the procedure makes use of

information from a “base population” (generation 0) effects (e.g., gamma 1 normal) is assumed (data not
shown). Garcia-Dorado’s (1997) analysis of data fromand from generation t. In principle, intermediate gener-

ations of data could also be utilized and may add greatly the MA experiment of Fernandez and Lopez-Fanjul

(1996) included information on the ancestral popula-to the power to distinguish the different mutation events
that occurred in the experiment. (Note that the present tion mean viability, so the estimates are, presumably,

less sensitive to the model assumed.simulations suggest that fewer generations of mutation
accumulation can give more precise estimates, but there The analysis presented here suggests that very large

MA experiments can give some insight into genomicwill be an optimum, which will depend on the true
mutation rate and distribution parameters.) T. Batail- mutation rates and distributions of mutation effects.

Small-scale experiments will have difficulty in detectinglon (personal communication) has devised an ML
method assuming equal mutation effects to obtain esti- significant mutation-induced changes in mean or vari-

ance, and estimates of the underlying mutation parame-mates of U and E(a) with more than one generation,
and found increased power from doing so. ters will therefore have little meaning. Analysis of the

results of MA experiments by ML allows the fit of differ-The confounded nature of the mutation distribution
parameters can be largely overcome if the number of ent distributions of effects to be compared, and some

kinds of distributions may be rejected. ML lower boundsmutation events is known. Artificial induction of inde-
pendent random TE insertions is one way to generate (or support limits) are appropriate minimum estimates

of U. Estimates of distribution parameters are oftenMA lines with known numbers of mutation events. Fit-
ness or quantitative trait assays have allowed estimates unbounded. The critical problem is that the estimates

depend on the model assumed for the distribution ofto be obtained for mean fitness effects of insertion in
Drosophila (Eanes et al. 1988; Mackay et al. 1992) and mutation effects and may not account for mutations

with small, but biologically important, effects. Analysisin E. coli (Elena et al. 1998). The latter study has shown
that the distribution of fitness effects of single of DNA sequence data in which estimates of U are ob-

tained by comparing the level of constraint in differentelements is discontinuous, with a preponderance of
roughly equivalent effects of z3%. A discontinuous dis- parts of the genome (Kondrashov and Crow 1993)

may ultimately be more informative, although a quan-tribution of mutation effects was also inferred by reanal-
ysis of mutation accumulation experiments involving tum leap in the understanding of the functional signifi-

cance of noncoding DNA will be needed.balancers in Drosophila, and it was argued that TE muta-
tions could be implicated (Keightley 1996). I thank Thomas Bataillon, Brian Charlesworth, Esther Davies, Jim

Recently, minimum distance (MD) methods to infer Fry, Mike Lynch, Andy Peters, Stuart West, Alexey Kondrashov, and
an anonymous reviewer for helpful comments, and the Royal SocietyU and mutation distribution parameters have been pro-
for support.posed in which data from a base population (generation

0) are not included in the analysis (Garcia-Dorado

1997). Instead, all the information comes from the MA
lines themselves, with an estimate of the between-MA LITERATURE CITED
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