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ABSTRACT
Evolutionary biologists have long sought a way to determine whether a phenotypic difference between

two taxa was caused by natural selection or random genetic drift. Here I argue that data from quantitative
trait locus (QTL) analyses can be used to test the null hypothesis of neutral phenotypic evolution. I
propose a sign test that compares the observed number of plus and minus alleles in the “high line” with
that expected under neutrality, conditioning on the known phenotypic difference between the taxa.
Rejection of the null hypothesis implies a role for directional natural selection. This test is applicable to
any character in any organism in which QTL analysis can be performed.

TO determine if a genetic difference is adaptive, we difference did not convince us of a role for natural
typically consider its phenotypic consequences. We selection, the necessary existence of some plus alleles

might ask, for instance, if different alleles at PGI in in the high line cannot do so either. Instead, we must
Colias affect flying time or if AdhF survives better than ask if the ratio of plus-to-minus alleles in the high line
AdhS among Drosophila in wine cellars. Here I consider is more extreme than expected under neutrality given
the reverse possibility: Can we show that a phenotypic the known phenotypic difference.
difference is adaptive by looking at the genes involved? The problem can be restated as follows. Under neutral

The idea is simple. Imagine that two plant varieties evolution, we predict some distribution of phenotypic
differ in height by 50 mm and that (an unusually power- differences between taxa after a period of divergence
ful) quantitative trait locus analysis reveals that this dif- (Lande 1976, 1977; Lynch and Hill 1986). But the
ference is due to 50 quantitative trait loci (QTL). QTL cases chosen for QTL analysis are not a random sample
analysis also reveals the direction and magnitude of each of these neutral divergences: we perform QTL analysis
factor’s phenotypic effect. Although many QTL in the only when differences are fairly pronounced, and such
tall line are likely to be plus (“tall”) factors, some may cases tend to involve a fair number of plus alleles in the
be minus (“short”). Indeed, QTL studies have shown high line. Thus, any unbiased test of neutrality must ask
that mixtures of plus and minus factors in the high line if the number of plus-to-minus alleles is more extreme
are common (Tanksley 1993). If our analysis revealed than expected in that subset of neutral divergences
that the tall line carries 30 plus factors and 20 minus showing a phenotypic difference as large as that seen.
factors, we might entertain the possibility that the varie- I sketch such a test here. As we will see, given the
ties arrived at different heights by chance: during diver- phenotypic difference separating two taxa, the number
gence, the tall line happened to accumulate a few more of QTL, and the approximate distribution of QTL ef-
plus than minus factors by genetic drift. But if all 50 fects, we can find the probability that the observed num-
QTL in the tall line are plus, it becomes very difficult ber of plus factors would show up in the high line under
to believe the height difference reflects chance. Instead, the null hypothesis of neutrality.
the phenotypic difference likely reflects a history of
directional natural selection. Thus, as Coyne (1996)
and Laurie and colleagues (Laurie et al. 1997; True

THE NULL MODEL
et al. 1997) have hinted, an unusual concentration of
plus alleles in the high line might serve as a footprint Our null hypothesis is that the observed phenotypic
for directional natural selection. difference between two taxa is neutral. In particular, we

The problem, however, is more subtle than it first assume that all phenotypes in the neighborhood of the
appears. Because one variety is taller than the other, it observed two populations have equal fitness (e.g., Lande

is obvious that the tall line must contain some plus fac- 1976) and thus that we can picture evolution as a ran-
tors. But because the mere existence of the phenotypic dom walk over a flat fitness surface.

The phenotypic difference between our two taxa is
due to n loci. At any locus, genotypic values, G, are
assigned as follows:Author e-mail: haorr@urhep.pas.rochester.edu
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n1 5 1, 2, . . ., n plus factors will show up in the highGenotype: BB Bb bb

G: a d 2a line under neutrality conditioned on a line difference
of R. Our critical probability, P, is just the total probabil-

The quantities a and d can take different values at differ- ity of observing at least n1obs plus factors in the high
ent loci. When d 5 0, there is no dominance, and the line by chance given R. In symbols,
heterozygote is intermediate between the homozygotes.
The test described below makes no assumption about P 5 o

n

i5n1obs

P(n1 5 i | 2oG 1 $ R). (1)
dominance.

Populations P1 (the high line) and P2 (the low line) If P , 0.05, we reject the null hypothesis.
are assumed to be homozygous at all n loci. The ith locus By Bayes’ theorem, the probability of finding n1 5 i
in P1 might carry a plus allele (of effect G1i 5 a) or a plus alleles in the high line is
minus allele (G1i 5 2a). With no epistasis, the mean

P(n1 5 i | 2oG 1 $ R)phenotypes are P1 5 Rn
i51G li and P2 5 Rn

i51G2i and the
phenotypic difference between populations is P1 2

5
P(2RG 1 $ R | n1 5 i) P(n1 5 i)

Rn
j50 P(2RG 1 $ R | n1 5 j) P(n1 5 j)

, (2)P2 5 2 RnG 1i.
Because QTL analysis is imperfect, detecting only a

subset of the genes causing a phenotypic difference, in where P(n1 5 j) is the probability that j plus factors
practice n will refer to the number of factors detected appear in the high line by chance. This is given by the
in an actual QTL analysis of two particular lines. Simi- binomial P(n1 5 j) 5 (n

j ) 1⁄2n.
larly, we will usually replace P1 2 P2 with R , the pheno- The probability P(2RG1 $ R | n1 5 j) is slightly more
typic difference between two lines that are homozygous difficult to find and is derived in the appendix. It is
for the appropriate alleles at the n loci actually found

P(2 oG 1 $ R | n1 5 j)in QTL analysis: R 5 2RnG 1i.
Assume that the absolute value of QTL effects, |a|, 5 0 (for j 5 0)

for a trait are drawn from some probability density f(|a|).
The choice of distribution does not matter for our pur- 5 #

0

2∞
31 2 F( j )1 1R 2 2 (n 2 j ) G2

2j 24 f(n2j )2 (G2) d(G2)
poses, as long as it can be written down. In practice,
the distribution used will be decided by best fit to the (for 0 , j , n)
data.

Under our null hypothesis of neutrality, note that: 5 1 2 F( j )1 1 R
2n2 (for j 5 n). (3)

• At each locus, each line has a 1⁄2 chance of fixing the
G1 and G2 give the mean effects of the j plus factors andplus allele by genetic drift.
n 2 j minus factors, respectively, residing in the high• The distribution of fixed allelic effects reflects the
line. f( j )1 (G1) and f(n2j )2 (G2) are the sampling dis-distribution of mutations available. If alleles of small
tributions of these means, and F( j )1(G1) is the cumula-effect are more common than those of large effect,
tive distribution function of f( j )1(G1).that is because small mutations arise more often than

Substituting into Equation 1, the critical probabilitylarge ones.
P is

These two facts let us model neutral phenotypic evolu-
tion as an unbiased random walk in which some step
sizes are more common than others. P 5

o
n

i5n1obs
1

n

i
2 #

0

2∞




1 2 F( i )1 3R 2 2(n 2 i)G2

2i 4



f(n2i )2(G2) dG2

o
n

j51
1

n

j
2 #

0

2∞




1 2 F( j )13R 2 2(n 2 j )G2

2j 4




f(n2j )2(G2) dG2

.

QTL SIGN TEST
(4)

General model: Our question is simple: Given all the
The sampling distributions in Equations 3 and 4 de-ways of neutrally evolving a phenotypic difference of R

pend on the distribution of QTL effects. If, for instance,or more when drawing QTL from our distribution of
QTL effects are gamma distributed—as often assumedeffects, how often does one see the observed number
(Zeng 1992)—the sampling distributions are related toof plus factors or more in the high line? (We consider
the x2. In particular, with gamma distributed effects,differences of R or more because, presumably, we would
that is, f(|a|) 5 a e2a|a| (a|a|)b21/G(b), the density ofhave performed QTL analysis in either case.) If cases
sample means isof neutral evolution yielding differences of R or more

usually involve the observed number of plus factors, we
f( j)1(G1) 5

( ja)jb e2jaG1 G1
jb21

G( jb)
, (5)have no reason to reject the null hypothesis. But if

differences of R or more rarely involve such an extreme
number of plus factors, we reject the null hypothesis. where j is the number of plus factors drawn from our

gamma (Hendricks 1956, p. 100). (The density of sam-To build our test, we must find the probability that
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ple means when drawing n 2 j minus factors can be In the fortunate case where n is large, we can use a
found by replacing j with n 2 j and taking G2 to refer normal approximation:
to the absolute value of the mean of the minus factors.)
With gamma distributed QTL effects, one can therefore P ≈ 2 31 2 F1n1obs 2 n/2

√n/4 24. (7)
calculate the critical probability P exactly by numerical
integration.

If P , 0.05, we reject the neutral null hypothesis. AThe biologically important point is simple. Knowing
minimum of n 5 6 factors must be detected by QTLonly the phenotypic difference separating two taxa, the
analysis to reject the null hypothesis.number of QTL, and the approximate distribution of

Although this test ignores all information from QTLQTL effects, we can find the probability that some num-
analysis about the actual sizes of the factors involved,ber of plus factors would show up in the high line by
generously allowing factors to assume whatever G is re-chance. The ratio of plus-to-minus factors residing in
quired to explain R (for a given j ), it has one obviousthe high line, in other words, can serve as a footprint
merit: it requires only that we know n and n1obs. Al-for natural selection.
though this test is not as biologically realistic as the oneAlthough we assumed for illustration that QTL effects
described above, it is preferable to—and more conserva-are gamma distributed, the QTL sign test can be per-
tive than—a simple sign test, which fails to conditionformed for any distribution of QTL effects. Exact calcu-
on the necessary existence of plus factors in the highlation of P is possible whenever the sampling distribu-
line.tion of means is known (Lindgren 1976). But even if

the observed distribution of QTL effects is exotic—and
thus the corresponding sampling distributions un-

EXAMPLESknown—P can always be found by Monte Carlo simula-
tion. I now consider three QTL data sets to demonstrate

A C program that calculates P for gamma distributed the use of the QTL sign test.
QTL is available from the author (see appendix). This Tomato fruit mass: In one of the best-known QTL
program also remedies a potential problem with the analyses, Paterson et al. (1991) dissected several pheno-
above simple approach: it allows one to set a threshold typic differences distinguishing the domestic tomato Ly-
for QTL detection. Thus, although QTL are drawn from copersicon esculentum from its wild relative, L. cheesmanii.
a distribution having estimated scale (a) and shape (b) They detected 11 QTL contributing to the large differ-
parameters, factors having an effect smaller than T are ence in fruit weight between these varieties. All 11 acted
assumed to be undetectable and so are ignored. Use in the expected (plus) direction. Lines homozygous for
of a truncated distribution surely better captures the the appropriate alleles at these 11 QTL would pheno-
realities of QTL mapping. Although I ignore all parame- typically differ by R 5 R2a 5 2.27 [units are log10
ter estimation problems in this note, this program can (grams)]. [I have averaged across the two California
also obviously be used to assess the effect on P of varia- environments considered by Paterson et al. (1991)
tion in a and b about their estimated values. when estimating a as differences due to environment

Equal effects: It is worth considering a variation on were typically small; see their Table 2.]
the above model that might be appropriate in certain Looking across the several characters studied, Pater-

cases. Imagine that evolution is constrained to build
son et al. (1991) found that factors of large phenotypic

phenotypes from factors of equal effect (cf. Wright effect were rarer than those of small effect. The distribu-
1968). Thus, G2 5 G1. For any combination of j plus tion of QTL effects appears roughly exponential, that
factors and n 2 j minus factors, we can obtain the ob- is, a gamma distribution with b 5 1 (see their Figure
served R only if Gj 5 R/[2(2j 2 n)]. But R . 0 only 6). (Because of the fairly small number of QTL found
when j . n/2. In other words, one cannot obtain the in this and the following example, it seems best, for
observed phenotypic difference of R unless most plus

purposes of illustration, to simplify our estimation prob-
factors reside in the high line. lem by letting f(|a|) be exponential.) We will assume,

Thus, the probability of seeing n1obs or more plus then, that fruit mass QTL were drawn from an exponen-
factors in the high line conditioned on R . 0 equals

tial distribution having a mean heterozygous effect of
the probability of seeing n1obs or more plus factors condi-

about 1/a ≈ 0.10.
tioned on the majority of plus factors residing in the

When evolution is neutral and involves factors of
high line, and

mean effect of 1/a ≈ 0.10, there is a small probability
of finding all 11 plus alleles in the high line by chance

P(n1 $ n1obs | n1 $ n/2) 5 o
n

i5n1obs

(n
i )@ o

n

j .n/2
(n

j ) , (6) alone: P 5 0.02. We thus reject the neutral null hypothe-
sis. This probability remains essentially unchanged for
similar values of mean QTL effect and for any realisticwhere it is understood that j . n/2 refers to the smallest

integer .n/2. QTL effect threshold (0 , T , 0.025, where 0.025 is
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close to the heterozygous effect of the smallest QTL the equal-effects test with these data. Equation 6 shows
that, conditioning on a majority of plus factors residingactually seen).

This result is, of course, hardly surprising. Tomato in the high line, the chance of finding all eight plus
factors in the high line (i.e., D. simulans) by chance isfruit mass has obviously been subjected to strong direc-

tional artificial selection. only P 5 0.011. We therefore reject the null hypothesis.
True et al. (1997) similarly conclude that the concentra-Maize grain weight: Factors affecting grain weight

between two inbred lines of maize were studied by tion of plus factors in one species seems too striking to
reflect random divergence. Instead, the male posteriorEdwards et al. (1987, 1992). These lines dramatically

differ in many characters. Although this study suffers lobe is probably subject to directional sexual selection.
This conclusion is supported, of course, by the rapidsome problems (e.g., true interval mapping was not per-

formed), it enjoys one strength: a very large number evolution of male genitalia in insects generally (Eber-

hard 1985).of F2 progeny were scored and genotyped. Edwards et
al. (1987) thus had the power to detect a fair number
of QTL, some of small effect. Perhaps most impressive,

CONCLUSIONS
13 QTL affecting grain weight were found (Edwards et
al. 1992). Of these, 11 acted in the expected (plus) Evolutionary biologists have long desired some meth-

od for determining if a phenotypic difference betweendirection and two did not (minus). Unfortunately,
Edwards et al. (1987) presented QTL effects only in taxa reflects adaptation or neutrality. Ironically, quanti-

tative trait locus analysis was never intended as such aunits of percent of F2 variance explained. Although
these values are strictly proportional to a only in the method. It is clear, however, that QTL data do provide

information on the roles of natural selection vs. geneticabsence of dominance, I will assume this popular mea-
sure of phenotypic effect is nearly proportional enough drift in phenotypic evolution. Here I have suggested a

test to extract this information. Although the power ofto a for purposes of illustration.
The magnitude of QTL effects is approximately expo- the test is obviously constrained by the present power

of QTL analyses, there is every reason to believe thatnentially distributed for most traits studied (see Figure
3 in Edwards et al. 1987), including grain weight. QTL future analyses will uncover more factors as well as pro-

vide less biased estimates of their effects. In principle,affecting grain weight have a mean heterozygous effect
of 1/a ≈ 3.33. (This value is computed using only those then, QTL analyses may routinely provide the informa-

tion required to test for the action of directional naturalQTL of significant effect; if all QTL are used, a slightly
different value is obtained.) selection.

It is important to understand what the QTL sign testConditioning on the phenotypic difference explained
by the QTL, n1 5 11 or more factors would result by does not test. In particular, we do not ask if a phenotypic

difference can or cannot be explained by natural selec-chance alone P 5 0.19 of the time. This result does not
qualitatively depend on the precise value of the mean tion. As Lande (1976) emphasized in a similar context,

any pattern of morphological change can be explainedof QTL effects nor on any realistic threshold value
(0 # T # 1.5). We cannot, therefore, reject the neutral by the right form of selection acting at the right time.

Instead, we must ask a tractable question: can the ob-null hypothesis.
Posterior lobe area in Drosophila: True et al. (1997) served phenotypic difference be plausibly explained by

random change? If not, we infer a role for directionalrecently analyzed several male secondary sexual traits
that distinguish Drosophila simulans from its close relative natural selection.

To see why failure to reject the null hypothesis doesD. mauritiana. Although this study was small (only 200
F2 males were scored), True et al. (1997) were able to not imply no role for selection, imagine that natural

selection “built” the high line by fixing a major plusmap eight QTL affecting the area of one of the genital
structures distinguishing these taxa, the posterior lobe. factor (which overshoots the optimum somewhat), fol-

lowed by several smaller compensatory minus factors.All eight factors act in the same (plus) direction. To-
gether, the eight detected QTL explain R ≈ 86% of the It is very unlikely that we can reject the neutral null

hypothesis in this case. Such a pattern is simply toospecies difference in the posterior lobe area. (I have
assumed no dominance and have re-expressed True et common under neutral evolution. Regardless of any

intuitions we may have about how selection acts, it willal.’s (1997) data in units of the whole species difference;
their data were originally expressed in units of half the always be easier to reject the null hypothesis when more,

rather than fewer, plus factors reside in the high line.species difference. I have also taken into account the
fact that one locus is X-linked; this distinction matters Intuitively, it might also seem that selection would some-

times fix minus factors in the high line: linked minusbecause the trait is expressed only in males.)
All eight QTL have roughly similar effects, ranging factors could hitchhike to fixation during strong selec-

tion for a major plus factor. Although this could wellbetween |a| 5 2.5% and 8% of the species difference
(see also Laurie et al. 1997). Given the large error on occur, it should not complicate the present test: if natu-

ral selection could not separate the undesirable minusthese measures, it does not seem unreasonable to use
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factor from the linked desired plus factor, it seems very must specify some distribution giving reasonably good
fit to observed QTL effects, the QTL sign test can beunlikely that our F2 QTL analysis could do so.

It is also worth noting that rejection of the null hy- performed no matter what distribution is deemed ap-
propriate.pothesis does not, strictly speaking, allow us to conclude

that the analyzed character was the direct target of selec- The most important assumption underlying the QTL
sign test involves epistasis. Because the crux of the testtion. One can never completely exclude the possibility

that the measured character changed as a correlated involves asking if a given combination of plus and minus
factors “adds up” to explaining the observed phenotypicresponse to selection (although this seems less plausible

for the larger, and sometimes dramatic, character differ- difference, we obviously assume no epistasis. It is diffi-
cult to see how this assumption could be relaxed. Toences often considered in QTL analysis). In any case,

rejection of the null hypothesis does demonstrate that the extent, then, that epistasis is common and strong,
the QTL sign test is limited. Fortunately, QTL analysesthe character’s evolution was not neutral.

Several previous tests of neutral phenotypic evolution often reveal little epistasis (Tanksley 1993). In any case,
we need not blindly make any assumption about additiv-have been proposed (Lande 1976, 1977; Lynch and

Hill 1986). The most popular of these are “rate” tests ity: in any particular case, QTL analysis itself will reveal
if epistasis between mapped factors is pronounced. Ifin which the observed phenotypic differences between

populations are compared with those expected under not, the test can be safely performed.
Of course, it may prove possible to build related testsneutrality (Lande 1976; Lynch and Hill 1986). The

present test differs from rate tests in two important of natural selection that are less sensitive to epistasis.
And it will surely prove possible to refine the simpleways. First, in rate tests, the distribution of phenotypic

differences expected under neutrality is inferred from test sketched here, increasing its biological realism and
addressing the complications of parameter estimation.quantitative genetic parameters. The parameters re-

quired varies with the individual rate test. In Lande’s But the underlying notion characterizing the test seems
sound. QTL data must contain information on the role(1976) test, for instance, one must know the effective

population size Ne and the heritability h2 of a character of natural selection in phenotypic evolution. Our task
is to devise biologically realistic tests to extract this infor-to predict the distribution of phenotypic differences. In

Lynch and Hill’s (1986) test, one must know Ne and mation.
the mutational variance Vm. In both cases, the number I thank J. A. Coyne, P. D. Keightley, D. Presgraves, and two
of generations separating populations must also be anonymous reviewers for very helpful comments. I especially thank

M. Turelli for his careful reading of the manuscript (as well as forknown, as larger phenotypic differences are expected,
catching an error). This work was supported by National Institutesgiven more time.
of Health grant GM-51932 and by the David and Lucile PackardThe present QTL test, however, does not require in-
Foundation.
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Communicating editor: P. D. Keightley
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as in the text.APPENDIX
Computer programs: A computer program that per-

Derivation of P(2RG1 $ R | n1 5 j): We find this forms the QTL sign test is available from the author.
probability as follows: f( j )1(G1) is the sampling distribu- This program assumes that QTL effects are drawn from
tion of means when drawing j plus factors from our a gamma distribution. Source code (in C) and a stand-
distribution of QTL effects. Similarly, f(n2 j )2(G2) is the alone program for the Power Macintosh are available
sampling distribution of means when drawing n 2 j and can be downloaded at http://www.rochester.edu/
minus factors. Assume that, in some particular case, the College/bio/orrlab/orrhome.html. The program is a
n 2 j minus factors in P1 have a mean effect of G2. Then

Monte Carlo, that is, it does not calculate probabilities
there is some probability that the mean of the j plus

by numerical integration. Although it is easy to calculatefactors will be large enough to give a line difference of
the critical P numerically, for example, via Mathematica,2RG1 $ R . This probability is
the Monte Carlo approach has the advantage of allowing
one to easily test the effects of different QTL detection1 2 F( j )13R 2 2(n 2 j)G2

2j 4, (A1)
thresholds.


