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ABSTRACT
To avoid a loss in statistical power as a result of homozygous individuals being selected as parents of a

mapping population, one can use multiple families of line crosses for quantitative trait genetic linkage
analysis. Two strategies of combining data are investigated: the fixed-model and the random-model strate-
gies. The fixed-model approach estimates and tests the average effect of gene substitution for each parent,
while the random-model approach treats each effect of gene substitution as a random variable and directly
estimates and tests the variance of gene substitution. Extensive Monte Carlo simulations verify that the two
strategies perform equally well, although the random model is preferable in combining data from a large
number of families. Simulations also show that there may be an optimal sampling strategy (number of fam-
ilies 

 

vs.

 

 number of individuals per family) in which QTL mapping reaches its maximum power and mini-
mum estimation error. Deviation from the optimal strategy reduces the efficiency of the method.

 

and allow the detection of QTL with reasonable power.

 

Muranty

 

 (1996) introduced the idea of multiple-fam-
ily QTL mapping by using an ideal situation in which
the genotype of the QTL is known without error. In ac-
tuality, the QTL genotype cannot be observed, so the
statistical method demonstrated by 

 

Muranty

 

 should
be modified before it is applied to genome scanning us-
ing real data.

In this paper, I propose two strategies for combining
data from multiple families of line crosses: the fixed-
model and the random-model approaches. I then con-
duct Monte Carlo simulations to show that both the
fixed- and the random-model approaches work as ex-
pected.

 

METHODOLOGY

 

Linear model:

 

Consider 

 

t

 

 independent F

 

2

 

 families each de-
rived from cross of two inbred lines (a total of 2

 

t

 

 independent
inbred lines are involved). The phenotypic value of a quanti-
tative character can be described by the following linear
model:

(1)

where 

 

y

 

ij

 

 is the phenotypic value of a trait under consideration
for the 

 

j

 

-th individual in the 

 

i

 

-th family, 

 

m

 

 is the overall mean,

 

b

 

i

 

 is an unknown family-specific effect, 

 

a

 

i

 

 and 

 

d

 

i

 

 are the re-
spective effect of allelic substitution and the dominance devia-
tion at the QTL of interest, and 

 

ε

 

ij

 

 is the residual error distrib-
uted as 

 

N

 

(0, ). The variables 

 

z

 

ij

 

 and 

 

w

 

ij

 

 are defined as follows:

(2)

and

yij µ βi zijα i wijδi εij+ + + +=

s2
ε

zij

11  if Q1Q1

 0  if Q1Q2

21  if Q2Q2
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INE crossing is a common experimental design for
mapping quantitative trait loci (QTLs) in plants

and laboratory animals. Statistical methods are well de-
veloped for QTL mapping using line-crossing data
(

 

Lander

 

 and 

 

Botstein

 

 1989; 

 

Haley

 

 and 

 

Knott

 

 1992;

 

Martínez

 

 and 

 

Curnow

 

 1992; 

 

Jansen

 

 1993, 1994; 

 

Zeng

 

1994). Methods developed by these authors are mainly
designed to handle a single cross, 

 

e.g.

 

, a single F

 

2

 

 family.
Under these methods, the effects of gene substitution
(the first moments) are tested and estimated. Because
of this, the methods are classified by 

 

Xu

 

 and 

 

Atchley

 

(1995) as the fixed-model approach. The sampling
strategy (using a single family) and the statistical meth-
odology (the fixed model) consequently restrain the
inference space of the parameter estimation to the par-
ticular cross. This is undesirable if the two lines initiat-
ing the cross are not segregating at a QTL, for then no
matter how many offspring are sampled in the F

 

2

 

 or
backcross population, the QTL cannot be detected. If a
QTL is present, but is not detected because of fixation
to the same allele in both lines, then a type of type II er-
ror has occurred. This type II error, referred to as ge-
netic drift error by 

 

Xu

 

 (1996a), has largely been ig-
nored in the QTL mapping literature.

A type II error of this kind can be reduced or even
prevented by using multiple families of line crosses. At
the low end, 

 

Muranty

 

 (1996) claims that QTL detec-
tion in a population derived from two parents is often
less powerful than one derived from more parents. He
then demonstrates that if QTL heterozygote frequency
in the base population is high enough, a mating design
with six parents should give a good sample of variance

 

L
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(3)

where Q

 

1

 

 Q

 

1

 

, Q

 

2

 

 Q

 

2

 

 and Q

 

1

 

 Q

 

2

 

 represent genotypes of the two
parental lines and the F

 

1

 

 hybrid, respectively, for the 

 

i

 

-th fam-
ily at the candidate QTL. The maximum number of alleles at
each locus (QTL or markers) is two in each F

 

2

 

 family, but this
number can be arbitrary in the whole population where the
inbred lines are sampled. Since the genotype of a QTL is not
observable, 

 

z

 

ij

 

 and 

 

w

 

ij

 

 are missing. Let 

 

p

 

(kl)j

 

 be the conditional
probability that the individual is of genotype Q

 

k

 

 Q

 

l

 

 given in-
formation of marker genotypes. This conditional probability
is derived based on genotypes of the nearest flanking markers
(

 

Haley

 

 and 

 

Knott

 

 1992).
Let E(

 

z

 

ij

 



 

I

 

M

 

) and E(

 

w

 

ij

 



 

I

 

M

 

) be the conditional expecta-
tions of 

 

z

 

ij

 

 and 

 

w

 

ij

 

 given marker information (I

 

M

 

). The linear
model can be approximated by substituting 

 

z

 

ij

 

 and 

 

w

 

ij

 

 by their
conditional expectations (

 

Haley

 

 and 

 

Knott

 

 1992; 

 

Martínez

 

and 

 

Curnow

 

 1992),

(4)

where E(

 

z

 

ij

 



 

I

 

M

 

) 

 

5
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1

 

1) 

 

p

 

(11)
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 (0) 
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p
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(11)
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(22)

 

j

 

 and E(

 

w

 

ij

 

)

 

I

 

M
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5

 

 (

 

1

 

1) 

 

p

 

(12)

 

j

 

 

 

1

 

 (

 

2

 

1) [

 

p

 

(11)

 

j

 

 

 

1

 

 

 

p

 

(22)

 

j

 

]. The
residual variance is

(5)

where Var(

 

z

 

ij

 



 

I

 

M

 

)  is the variance of the QTL effect that is
not explained because of uncertainty in 

 

z

 

ij

 

, Var(

 

w

 

ij

 



 

I

 

M

 

)  is
the variance of the QTL effect that is not explained because
of uncertainty in 

 

w

 

ij

 

, and Cov(

 

zijwij IM)aidi is the covariance
because of uncertainty in both zij and wij. All three additional
components in the residual variance will vanish if the geno-
type of the QTL is actually observed, i.e., Var(zij IM) 5
Var(wij IM) 5 Cov(zij wij )IM) 5 0. Otherwise, Var(zij  IM) 5
p(11)j[1 2 p(11)j] 1 p(22)j[1 2 p(22)j] 1 2p(11)j p(22)j, Var(wij  IM) 5
4p(12)j[1 2 p(12)j] and Cov(zij wij )IM) 5 p(22) j[1 2 p(22)j] 2
p(11)j[1 2 p(11)j] 1 p(12)j p(22)j 2 p(12)j p(11)j.

Fixed model strategy: The first strategy of combining sev-
eral different line crosses is to estimate and test Hai di J for i 5
1, . . ., t. The null hypothesis is H0: ai 5 di 5 0 ;i. This ap-
proach is analogous to the nested design for multiple-family
analysis (Weller et al. 1990; Knott et al. 1996); i.e. it treats
QTL effects as nested within families. Because the first mo-
ments are estimated, the method is called the fixed-model
strategy. Let ni be the number of individuals in the i-th family
and

be the overall sample size and define y as an N 3 1 vector of
the data. The model can be expressed in matrix notation by 

(6)

where X is an N 3 (t 1 1) known design matrix, b 5 [m b1, . . .,
bt ]T are non-QTL effects, Z is an N 3 t design matrix filled by
E(zij )IM) at the appropriate positions, a 5 [a1 . . . a t]T is a vec-
tor of gene substitution effects, W is an N 3 t design matrix
filled by E(wij )IM) at the appropriate positions, d 5 [d1 . . . dt]T

is a vector of dominance deviations and e is an N 3 1 vector of
residuals. Under a fixed model, the expectation and variance

wij

11 if Q1Q2

21 if Q1Q1 or Q2Q2



=

yij µ βi E zij IM( )α i E wij IM( )δi eij+ + + +=

Var eij( ) Var zij IM( )α i
2 Var wij IM( )δi

2

2Cov zijwij IM( )α iδi sε
2

+ +

+

=

ai
2

di
2

N ni
i 1=

t

∑=

y X β Zα W δ e+ + +=

matrix of y conditional on the marker information are E(y  IM)
5 X b 1 Z a 1 W d and Var(y  IM) 5 Var (e) 5 R , where R is
a diagonal matrix with the element corresponding to yij being

(7)

where lai 5 / , ldi 5 /  and laidi 5 aidi/ .
Under the fixed model, parameters are estimated via an it-

eratively reweighted least-squares algorithm described below.
Given an initial guess of lai, ldi and laidi, matrix R is consid-
ered as known. Under the pretense of known R, the solutions
of u 5 Hb, a, dJ and  are obtained via the following equa-
tions:

(8)

and

(9)

Note that these solutions are maximum likelihood estima-
tions (MLEs) under Model 6. If N in the denominator of
Equation 9 had been replaced by N 2 3t, as done in regres-
sion analysis, the solutions would no longer be MLEs.
Whether N or N 2 3t is used to estimate  does not affect the
test statistic. Because R depends on the unknown parameters,
it must be updated by the estimates of a, d and , and the es-
timation is then repeated until convergence.

The least-squares method of Knott et al. (1996) simply ig-
nores the correction for the residual variance, i.e., assuming
R 5 I. When densed markers are used or the QTL effect is
small or both, this assumption will have little effect on the re-
sults (Xu 1995).

Compared with the EM algorithm under a mixture model,
this algorithm is extremely fast—only two to three cycles of it-
eration are required. However, three additional parameters
are added to the model for each additional family, so the
number of parameters to estimate grows quickly as the num-
ber of families increases.

Under the null hypothesis, H0: a 5 d 5 0, the maximum
likelihood is

Under the alternative hypothesis, H1: at least one of ai or di is
not zero ; i, the maximum likelihood is

s2
ε

Rij Var zij IM( )λα i Var wij IM( )λδi
2Cov zijwij IM( )λα iδi 1,

+ +
+

=

ai
2 s2

ε di
2 s2

ε s2
ε

s2
ε

β̂
α̂

δ̂

XTR 1– X  XTR 1– Z  XTR 1– W

ZTR 1– X  ZTR 1– Z  ZTR 1– W

WTR 1– X  WTR 1– Z  WTR 1– W

1–

XTR 1– y

ZTR 1– y

WTR 1– y

Cβ  Cβα Cβδ

Cαβ Cα   Cαδ

Cδβ  Cδα Cδ

=
XTR 1– y

ZTR 1– y

WTR 1– y

=

σ̂ε
2 1

N
---- y X β̂– Zα̂– W δ̂–( )

T
R 1– y Xβ̂– Zα̂– Wδ̂–( ).=

s2
ε

s2
ε

L0 σ̂ε
2( )

N 2⁄–
R 1 2⁄– Exp 1

2σ̂ε
2

---------– y Xβ̂–( )
T

R 1– y Xβ̂–( )
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L1 σ̂ε
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N 2⁄–
R 1 2⁄–
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The test statistic is taken as 

(10)

In QTL mapping with multiple families, effort is directed
from a single family into multiple families. As a consequence,
one is no longer interested in the a and d of any particular
family, but rather in a and d from all families. However,  and

 are first moment estimations and their magnitudes are only
meaningful when reported relative to the size of the residual
variance. As a result, they must be converted into variances
before being considered for publication. In traditional QTL
analysis for a single F2 family, the variance explained by a QTL
is reported with the F2 family as the reference population.
The QTL analysis with multiple families, however, is inter-
ested in the variance of QTL allelic effects among different F2
families. This variance differs from the within family variance
by one generation. The additive QTL variance among the
sampled families is expressed by

(11)

where

Similarly, the dominance variance is

(12)

where

To estimate  from , assume that the estimation is unbi-
ased so that E( ) 5 a and denote Var( ) by . Rewrite Equa-
tion 11 in matrix notation by  5 aTAa and define the ob-
served variance of the estimated a’s among families as  5

TA , where

It is known (Seber 1977) that E( TA ) 5 Tr(A ) 1 aTAa,
where Tr() represents the trace matrix operation (the sum of
all diagonal elements). Therefore, an unbiased estimator of

 5 aTAa is

(13)

The estimation is only asymptotically unbiased because E( ) 5
a is true only asymptotically. The variance covariance matrix
of the estimated parameters are obtained by  5 Ca ,
where Ca is a submatrix in the coefficient matrix given in
Equation 8.

An asymptotically unbiased estimate of  is analogously
derived:

(14)

where  5 Cd .

Λ 2– ln L0( ) ln L1( )–[ ] .=

â
d̂

σα
2 1

t 1–
---------- α i α–( )2

i 1=

t

∑=

α 1
t
--- α i.

i 1=

t

∑=

σδ
2 1

t 1–
---------- δi δ–( )

2

i 1=

t

∑=

δ 1
t
--- δi.

i 1=

t

∑=

sa
2 â

â â Vâ

sa
2

2sâ

â â

Aii
1
t
---  and Aij

1–
t 1–( )t

-----------------.==

â â Vâ

sa
2

σ̂α
2 α̂T

Aα̂ Tr AVα̂( ).–=

â

Vâ ŝε
2

sd
2

σ̂δ
2 δ̂

T
Aδ̂ Tr AV

δ̂
( )–=

Vŝ ŝε
2

Two special situations may be noted. When only a single
family is analyzed (the traditional QTL mapping strategy), A
is only a scalar of value 1, which leads to  5 a2 and  5 d2.
Alternatively, when there are an infinite number of families, A
approaches

Random-model strategy: The second strategy of QTL map-
ping is to directly test and estimate the variances of the QTL
effects, and because of this it is called the random model ap-
proach. Consider each ai and di as randomly sampled from a
large hypothetical population with a means of zero and vari-
ances of  and , respectively. Under the null hypothesis
that there is no QTL segregating,  5  5 0. The model
stays the same as (6), although now with different expectation
and variance matrices. Under the random model, E(y  IM) 5
Xb and Var(y  IM) 5 V 5 ZZ T  1 WW T  1 R  where R is a
diagonal matrix with the element corresponding to yij equal
to

(15)

where la 5 /  and ld 5 / .
Derivation of (15) is based on the assumption that a and d

are uncorrelated. If the indicator variables, Z and W, were ob-
served, then the variance of y would be Var(y  ZW) 5 V 5
ZZ T  1 WW T  1 I . When Z and W are replaced by their
conditional expectations given marker information, this vari-
ance matrix becomes

Var(y )IM) 5 E[Var(y \ ZW )]
5 E(ZZ T)  1 E(WW T)  1 I
5 [E(ZZ T) 2 E(Z)E(Z T) 1 E(Z)E(Z T)]  1

[E(WW T) 2 E(W )E(W T) 1 E(W )E(W T)]  1
I

5 [Var(Z ) 1 E(Z )E(Z T)]  1 [Var(W ) 1
E(W )E(W T)]  1 I

5 E(Z )E(Z T)  1 E(W )E(W T)  1 [Var(Z )  1
Var(W )  1 I ]

5 E(Z )E(Z T)  1 E(W )E(W T)  1 [Var(Z )la 1
Var(W )ld 1 I]

5 E(Z )E(Z T)  1 E(W)E(W T)  1 R

where R 5 Var(Zla 1 Var(W )ld 1 I. Recall that E(Z) is in fact
E(Z IM) and has been denoted by Z for notational conve-
nience.

Note that the definitions of la and ld are different from
those of the fixed model. It should be noticed that the family-
specific effects, bs, have been treated as fixed effects, al-
though they can be considered as random effects with a mean
of zero and a common variance s .

Given the expectation and the variance of the model and
under the pretense of a normal distribution of y, we have the
following likelihood function:

(16)

The MLE of u 5 [bT  ]T is solved using any convenient
numerical algorithm. The log likelihood ratio is used as the
test statistic.

The random-model strategy involves inverting and deter-
minating V, an N 3 N block diagonal matrix, which can be
time consuming for large blocks (each block is of n 3 n di-
mension). A simple algorithm developed in random mating
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designs (S. Xu , unpublished data) can be adopted here. The
algorithm provides the following matrix equivalencies:

(17)

and

(18)

where U 5 W TR21Wld 1 I, H 5 R21 2 R21 WU21W TR21ld

and B 5 Z THZla 1 I. Matrices R and U are diagonal while
matrix B can be expanded as

Since each of Z TR21Z, Z TR21W and U21 is diagonal, B must
also be diagonal. Solving for the inverses and determinants of
diagonal matrices is trivial.

NUMERICAL COMPARISON

Design of simulations: In this section, the two statistical
methods are verified and compared numerically via Monte
Carlo simulations. The criteria of verification are standard er-
rors of the parameter estimation and the statistical powers.
Factors considered include (1) marker heterozygosity; (2) rel-
ative position of QTL; (3) mode of QTL inheritance; (4) QTL
variances; (5) distribution of the QTL allelic effect and (6)
sampling strategy (family number vs. family size). Only a sin-
gle chromosome segment of length 100 cM covered by 11
evenly spaced codominant markers is simulated. The total
number of individuals [N 5 family number (t) 3 family size
(n)] is set at <500 in all simulations. Under each condition,
the simulation is repeated for 100 times. The standard devia-
tion of an estimated parameter among the 100 replicates pro-
vides a measure of the standard error of parameter estima-
tion. The statistical power is determined by counting the
number of runs (over the 100 replicates) that have test statis-
tics greater than an empirical threshold. The empirical
threshold value under each condition is obtained by choosing
the 95th percentile of the highest test statistic over 1000 addi-
tional runs under the null model (no QTL is segregating).

Marker heterozygosity in the population in which the in-
bred lines are sampled is simulated at three levels: (1) two al-
leles, (2) four alleles and (3) eight alleles. All alleles are
equally frequent so that the marker heterozygosities repre-
sented by the three situations are one half, three quarters and
seven eighths, respectively.

A single QTL is located at one of the three possible posi-
tions (measured from the left end of the chromosome): 0 cM
(overlapping with the first marker), 25 cM (between markers
3 and 4) and 50 cM (in the middle of the chromosome). The
estimated QTL location takes the point of the chromosome
segment that has the highest test statistic value.

The mode of QTL inheritance is determined by the ratio of
 to : additive mode ( :  5 1:0); mixed mode ( :  5

1:1); dominance mode ( :  5 0:1).
The variance explained by the QTL is s  5  1 , which

is simulated at three levels: (1) s  5 0.11, corresponding to
h  5 s /(s  1 ) 5 0.10; (2) s  5 0.25, corresponding
to h  5 0.20; and (3) s  5 0.43, corresponding to h  5 0.30.
In all simulations, the parametric value of  is set at 1.

Three distributions of the allelic effect of the QTL are con-

V 1– σε
2– H HZ– B 1–( )ZTHλα[ ]=

V σε
2( )

N R

B 1– U 1–
------------------------=
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q
2 s2

ε q
2

q
2

q
2

q
2

s2
«

sidered. The first is uniform distribution with 10 equally fre-
quent alleles. Each allele is assigned a value between 0 and 9.
The F1 hybrid of each family is generated by randomly sam-
pling two from the 10 alleles with replacement. F2 individuals
are then generated by selfing the F1 hybrid. The additive
value of an F2 individual is the sum of effects of the two alle-
les. The dominance effect takes the product of the two paren-
tal alleles. These genetic values (additive and dominance) are
finally rescaled so that they have a mean of zero and the as-
signed variances. The second is normal distribution with infi-
nite number of alleles. An F1 hybrid is made of two random al-
leles, each being assigned a value sampled from N(0,1)
distribution. The dominance effect between any two sampled
alleles takes the product of the two allelic effects. When F2 in-
dividuals are generated, their genetic values at the QTL are
rescaled so that they have the appropriate assigned variances.
The third distribution is 10 alleles, each having a value be-
tween 0 and 9. The frequency of an allele, however, scales ex-
ponentially with its assigned effect. Let pj be the frequency of
the j -th allele for j 5 0, . . ., 9, then

where c 5 0.5. Again, the genetic values of an F2 individual
are rescaled. Note that the first distribution is a special case of
the third distribution with c 5 1.

The last but most important factor considered in the simu-
lations is the sampling strategy: family number vs. family size
(N 5 t 3 n 5 500). Eight levels are considered: (1) t 3 n 5 1 3
500; (2) t 3 n 5 3 3 167; (3) t 3 n 5 6 3 83; (4) t 3 n 5 10 3
50; (5) t 3 n 5 15 3 33; (6) t 3 n 5 20 3 25; (7) t 3 n 5 50 3
10; and (8) t 3 n 5 100 3 5.

Instead of performing simulations under all possible cases,
I simulated a situation in which the central level is chosen for
each factor considered. This particular situation is then re-
ferred to as the “standard,” which is described as follows: (1)
four equally frequent alleles for each marker locus; (2) the
QTL located at 25 cM; (3) mixed mode of QTL inheritance,
i.e.,  5  5 0.125; (4) the total QTL variance of s  5  1

 5 0.125 1 0.125 5 0.25, corresponding to h  5 0.20; (5)

pj c j ck

k 0=

9

∑⁄=

sa
2 sd

2
q
2 sa

2

sd
2

q
2

TABLE 1

Empirical threshold values for significance test at a 5 0.05, 
where a is the type I error rate

Method
Fixed
model

Random
model

Marker alleles Two 38.47 14.68
Four 41.01 15.05
Eight 41.68 16.28

Sampling strategy 1 3 500a 9.347 11.21
3 3 167 18.65 15.47
6 3 83 27.53 14.19

10 3 50 41.01 15.05
15 3 33 56.90 16.47
20 3 25 71.94 17.74
50 3 10 —b 21.02

100 3 5 — 24.62

a Number of families 3 number of individuals per family.
b Simulations are not conducted in these two cases.
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the QTL allelic effect normally distributed; and (6) 10 fami-
lies, each having 50 individuals, i.e., t 3 n 5 10 3 50. When
the influence of different levels of a factor on the perfor-
mances of the two statistical methods are examined, all other
factors are set to the standard levels.

Results of simulations: The empirical threshold values at a
type I error rate of 0.05 are given in Table 1. The number of
alleles per marker locus does not seem to have an influence
on the threshold values. As the number of families increases,
the threshold value increases under the fixed-model strategy
considerably more than it does under the random-model
strategy. This is expected because increasing the number of
families increases the number of parameters tested under the
fixed model while the number of parameters tested does not
change under the random-model strategy.

When each marker has two equally frequent alleles in the
population in which the parental lines are sampled, the two
models have similar estimation errors and statistical powers
(Table 2). The estimation of the QTL position, however, is bi-
ased and with large error in both methods. The statistical
powers are also low, with two marker alleles relative to more
marker alleles. The fixed-model strategy generally provides a
biased estimate for the residual variance, as shown in this and
subsequent tables.

The proportion of the phenotypic variance explained by
the QTL (h ) does not have an impact on the comparison of
the two methods (Table 3). Both methods produce biased es-

q
2

timates of the QTL position and low statistical powers when
h  is low.

Table 4 shows that when the QTL is located at one end of
the chromosome segment, estimation of the QTL position is
biased toward the center and also with large error in both
methods. There is little change in the power to detect a QTL
as the true QTL position varies.

Mixed mode of QTL inheritance (additive and domi-
nance) seems to have a higher statistical power than either of
the additive or the dominance mode of inheritance. The esti-
mation of the QTL position is biased and with large error un-
der the dominance mode of inheritance. Again, the two
methods do not show any major difference (see Table 5). 

Distribution of the QTL allelic effect does not affect the
comparison of the two methods (Table 6). It does, however,
have an effect on the statistical power and the estimation er-
rors of QTL parameters. The uniform distribution produces
results similar to (in fact, slightly better than) the normal dis-
tribution. The exponential distribution decreases the statisti-
cal power and increases errors of parameter estimation.

Finally, the sampling strategy has a major impact on the
performance (Table 7). First, there seems to be an optimal
sampling strategy (10 3 50) that leads to the highest statistical
power and smallest estimation errors of QTL parameters. Sec-
ond, the sampling strategy of a single family causes a severe
loss in power and huge biases and errors of QTL parameter
estimation. Third, the residual variance is underestimated as

q
2

TABLE 2

Estimates of QTL parameters and empirical powers (a 5 0.05) under different levels of marker polymorphism

Method
Marker
alleles cMA

Power
(%)

Fixed model Two 27.84 (10.32) 0.130 (0.099) 0.071 (0.202) 0.918 (0.061) 89
Four 24.99 (8.65) 0.130 (0.074) 0.142 (0.144) 0.931 (0.057) 94
Eight 25.76 (9.08) 0.123 (0.078) 0.143 (0.147) 0.922 (0.064) 93

Random model Two 27.08 (12.76) 0.128 (0.091) 0.104 (0.088) 0.979 (0.066) 89
Four 25.26 (8.46) 0.123 (0.067) 0.144 (0.154) 0.977 (0.063) 94
Eight 25.64 (8.88) 0.120 (0.075) 0.150 (0.144) 0.963 (0.068) 94

Standard errors of the estimates, given in parentheses, are calculated by the standard deviations among 100
replicated simulations.

cMA, estimated QTL position in cM; , estimated additive variance of the QTL, the true  being 0.125; ,
estimated dominance variance of the QTL, the true  being 0.125; , estimated residual variance, the true 
being 1.0.
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TABLE 3

Estimates of QTL parameters and empirical powers (a 5 0.05) under different levels of heritability of the QTL

Method hq2 cMA

Power
(%)

Fixed model 0.10 28.06 (15.23) 0.066 (0.061) 0.060 (0.049) 0.925 (0.057) 73
0.20 24.99 (4.65) 0.130 (0.074) 0.142 (0.144) 0.931 (0.057) 97
0.30 25.52 (5.11) 0.220 (0.128) 0.199 (0.224) 0.925 (0.060) 98

Random model 0.10 28.30 (15.91) 0.064 (0.057) 0.059 (0.057) 0.971 (0.061) 73
0.20 25.26 (4.46) 0.123 (0.067) 0.144 (0.154) 0.977 (0.063) 96
0.30 25.52 (5.23) 0.231 (0.132) 0.267 (0.614) 0.969 (0.067) 100

Standard errors of the estimates, given in parentheses, are calculated by the standard deviations among 100
replicated simulations. h , proportion of total phenotypic variance explained by the QTL.
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the number of families increases. This is especially so for the
fixed model. Overall, the two strategies of QTL mapping per-
form equally well, except that the fixed-model approach is dif-
ficult to implement for large number of families.

DISCUSSION

Unless it is known that the parents are heterozygous
at most QTLs for a trait of interest, it is generally rec-
ommended to use at least a few independent families
for QTL analysis. Using more than a single family for
QTL mapping may reduce a type II error caused by ho-
mogeneous parents being sampled. In traditional QTL
mapping using a single-line cross, little attention has
been paid to the type II error of this kind. This is be-
cause the two parental lines involved are not randomly
selected from a pool of available strains; instead, they
are selected to be at the opposite extremes for the trait
of interest. As a consequence, it is almost guaranteed
that most QTLs are heterozygous in the F1 parents, and
thus a type II error of this kind is likely avoided. A non-
random selection of parental lines can increase the sta-

tistical power for detecting QTLs responsible for the
trait used as the selection criterion, but it may not be
helpful in detecting QTLs responsible for other traits.
In addition, one must be careful about the statistical in-
ference space of the parameter estimation: because of
the nonrandom selection, estimation of the QTL effect
is biased and can only be inferred upon the two paren-
tal lines, not the pool of available strains where the two
lines were selected.

Although the two strategies of consensus QTL map-
ping appear to perform equally well, the fixed-model
approach is generally less preferable for the following
reasons. With multiple-family QTL mapping, one is no
longer interested in the effect of gene substitution in
any particular family, but rather is interested in the vari-
ance of the substitution effect among different families.
In other words, the average effect of gene substitution
is considered to be a random variable with variance s .
Rather than estimating and testing s , the fixed-model
approach estimates and tests each observation of the
random variable. It is conceptually incorrect to esti-
mate and test values of a random variable. Further-

a
2

a
2

TABLE 4

Estimates of QTL parameters and empirical powers (a 5 0.05) under three different locations of the QTL

Method cMT cMA

Power
(%)

Fixed model 0 4.93 (15.28) 0.125 (0.080) 0.137 (0.115) 0.917 (0.063) 94
25 24.99 (4.65) 0.130 (0.074) 0.142 (0.144) 0.931 (0.057) 97
53 52.38 (5.57) 0.138 (0.080) 0.128 (0.104) 0.933 (0.066) 93

Random model 0 3.09 (9.83) 0.124 (0.074) 0.125 (0.096) 0.967 (0.067) 95
25 25.26 (4.46) 0.123 (0.067) 0.144 (0.154) 0.977 (0.063) 96
53 52.15 (5.25) 0.133 (0.079) 0.128 (0.104) 0.979 (0.072) 95

Standard errors of the estimates, given in parentheses, are calculated by the standard deviations among 100
replicated simulations. cMT, true position of the QTL measured in centimorgans from the left end of the chro-
mosome.
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TABLE 5

Estimates of QTL parameters and empirical powers (a 5 0.05) under different modes
of inheritance of the QTL

Method
Mode of

inheritance cMA

Power
(%)

Fixed model A 25.27 (8.02) 0.242 (0.135) 0.007 (0.017) 0.930 (0.064) 91
A 1 D 24.99 (4.65) 0.130 (0.074) 0.142 (0.144) 0.931 (0.057) 97

D 27.20 (12.49) 0.009 (0.028) 0.230 (0.208) 0.922 (0.060) 92

Random model A 25.23 (5.96) 0.250 (0.135) 0.007 (0.010) 0.973 (0.066) 92
A 1 D 25.26 (4.46) 0.123 (0.067) 0.144 (0.154) 0.977 (0.063) 96

D 27.49 (13.35) 0.012 (0.018) 0.250 (0.313) 0.965 (0.063) 93

Standard errors of the estimates, given in parentheses, are calculated by the standard deviations among 100
replicated simulations.

Abbreviations: A, additive; D, dominance; A 1 D, both.
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more, the fixed-model approach involves two steps: (1)
estimating the effects and (2) converting the effects
into a variance. Because of this, the fixed-model ap-
proach is computationally inferior to the random-
model approach when the number of families is large.

The random-model approach to QTL mapping was
originally developed in human genetic linkage analysis
in which a large number of small families are often in-
volved (Haseman and Elston 1972; Goldgar 1990;
Schork 1993; Olson and Wijsman 1993; Fulker and
Cardon 1994; Kruglyak and Lander 1995; Xu and
Atchley 1995). Because linkage phases of markers in
the parents are generally not known in small pedigrees,
the random-model approach is often implemented
through an identical-by-descent (IBD) based variance
component analysis. The IBD-based method does not
depend on information about linkage phases of the

parents; rather, it utilizes information on the number
of alleles IBD shared by two siblings. The random-
model approach proposed in this paper is closely re-
lated to the IBD-based method. Recall that the vari-
ance–covariance matrix of the data is Var(y  IM) 5 V 5
ZZ Ts  1 WW T s  1 Rs , which can be reformulated as
V 5 (ZZ T 1 Da)s  1 (WW T 1 Dd)s  1 Is  5 P s  1 D
s  1 Is , where Da 5 diag{Var(zij IM)}, Dd 5 diag{Var
(wij IM)}, P 5 ZZ T 1 Da and D 5 WW T 1 Dd. Matrices
P and D have been referred to as the IBD and double
IBD matrices, respectively, by Xu (1996b). Here, one is
able to partition the IBD matrix P into two compo-
nents, ZZ T and Da, because one knows the linkage
phases of the markers in the parents. Decomposition of
the IBD matrices allows one to apply the special algo-
rithms of matrix inversion (Equation 17) and determi-
nant calculation (Equation 18). As a consequence, this
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TABLE 6

Estimates of QTL parameters and empirical powers (a 5 0.05) under different allelic distributions of the QTL

Method Distributiona cMA

Power
(%)

Fixed model Uniform 24.87 (3.66) 0.125 (0.075) 0.131 (0.084) 0.946 (0.065) 98
Normal 24.99 (4.65) 0.130 (0.074) 0.142 (0.144) 0.931 (0.057) 97
Exponential 26.86 (9.68) 0.117 (0.088) 0.154 (0.255) 0.926 (0.064) 89

Random model Uniform 24.88 (3.78) 0.119 (0.066) 0.131 (0.084) 0.992 (0.067) 99
Normal 25.26 (4.46) 0.123 (0.067) 0.144 (0.154) 0.977 (0.063) 96
Exponential 26.18 (9.93) 0.115 (0.081) 0.163 (0.255) 0.969 (0.070) 88

Standard errors of the estimates, given in parentheses, are calculated by the standard deviations among 100
replicated simulations.

a Distribution of the QTL allelic effect.
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TABLE 7

Estimates of QTL parameters and empirical powers (a 5 0.05) under different sampling strategies
(number of families 3 number of individuals per family)

Method
Sampling
strategy cMA

Power
(%)

Fixed model 1 3 500 31.87 (20.04) 0.141 (0.240) 0.189 (0.489) 1.221 (2.415) 77
3 3 167 26.24 (9.85) 0.143 (0.151) 0.141 (0.329) 0.977 (0.060) 92
6 3 83 25.87 (10.23) 0.123 (0.092) 0.121 (0.126) 0.976 (0.064) 91

10 3 50 24.99 (4.65) 0.130 (0.074) 0.142 (0.144) 0.931 (0.057) 97
15 3 33 25.16 (9.51) 0.130 (0.074) 0.125 (0.074) 0.899 (0.059) 94
20 3 25 26.82 (12.58) 0.133 (0.069) 0.133 (0.085) 0.851 (0.058) 94

Random model 1 3 500 30.42 (19.83) 0.199 (0.456) 0.208 (0.518) 0.973 (0.084) 76
3 3 167 25.90 (10.51) 0.159 (0.170) 0.166 (0.508) 0.989 (0.063) 91
6 3 83 27.72 (13.54) 0.133 (0.095) 0.152 (0.228) 0.972 (0.074) 95

10 3 50 25.26 (4.46) 0.123 (0.067) 0.144 (0.154) 0.977 (0.063) 96
15 3 33 26.59 (6.48) 0.138 (0.083) 0.141 (0.132) 0.955 (0.078) 96
20 3 25 26.36 (11.39) 0.125 (0.067) 0.134 (0.100) 0.945 (0.062) 92
50 3 10 27.20 (10.41) 0.124 (0.073) 0.136 (0.072) 0.889 (0.081) 85

100 3 5 35.10 (21.00) 0.136 (0.113) 0.135 (0.074) 0.770 (0.084) 61

Standard errors of the estimates, given in parentheses, are calculated by the standard deviations among 100
replicated simulations.
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implementation of the random-model approach is
computationally much faster than the fixed-model ap-
proach, especially when the number of families is large.

In the random-model strategy, the family-specific ef-
fects, b, have been treated as fixed effects. When the
number of families is large, however, it is desirable to
treat b as random effects. By doing so, one only esti-
mates a single parameter, s , instead of a large array of
parameters. Assume that b are random effects so that
the expectation and variance matrices of the data are
E(y  IM) 5 1m and Var(y IM) 5 V 5 XX T s  1 ZZ T s  1
WW T s  1 Rs , respectively. The variance of family-spe-
cific effects, s , is contributed by both genetic and non-
genetic factors. Genetic factors include polygenic effects
and heritable maternal or paternal effects. Nongenetic
factors include common environmental effects shared
by members of the same families. Note that b or s  are
nuisances because they are not QTL parameters.
Therefore, they can be removed from the model using
the restricted maximum likelihood method (Patter-

son and Thompson 1971). Such a treatment will signif-
icantly reduce the large bias observed in the estimate of
the residual variance (see the last two rows of Table 7).

This paper demonstrates the algorithm of QTL map-
ping combining multiple F2 families as an example.
With the random-model approach, it is easy to extend
the algorithm to combine all types of line cross data,
e.g., backcrosses, double haploids, open pollinated
progenies. It is also not difficult to combine data from
multiple full-sib and half-sib families. The method pro-
vides a general tool for data updating; i.e., QTL linkage
analysis can be constantly updated as new data become
available.

I thank Damian Gessler for helpful comments on the manu-
script. This research was supported by the National Institutes of
Health grant GM55321-01 and the National Research Initiative Com-
petitive grants program/USDA 95-37205-2313.
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