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ABSTRACT

A 2275-marker genetic map of rice (Oryza sativa L.) covering 1521.6 cM in the Kosambi function has
been constructed using 186 F, plants from a single cross between the japonica variety Nipponbare and the
indica variety Kasalath. The map provides the most detailed and informative genetic map of any plant. Cen-
tromere locations on 12 linkage groups were determined by dosage analysis of secondary and telotrisomics
using >130 DNA markers located on respective chromosome arms. A limited influence on meiotic recom-
bination inhibition by the centromere in the genetic map was discussed. The main sources of the markers
in this map were expressed sequence tag (EST) clones from Nipponbare callus, root, and shoot libraries.
We mapped 1455 loci using ESTs; 615 of these loci showed significant similarities to known genes, includ-
ing single-copy genes, family genes, and isozyme genes. The high-resolution genetic map permitted us to
characterize meiotic recombinations in the whole genome. Positive interference of meiotic recombination
was detected both by the distribution of recombination number per each chromosome and by the distribu-

tion of double crossover interval lengths.

ICE (Oryza sativa L.) is not only an important food
crop but also a model plant (Havukkala 1996;
Izawa and Shimamoto 1996) because of its small ge-
nome size (Arumuganathan and Earle 1991), its
high synteny to other monocots (Ahn and Tanksley
1993; Kurata et al. 1994a; Moore et al. 1995), its effi-
cient transformation system (Shimamoto et al. 1989;
Hiei et al. 1994; Song et al. 1995), the availability of
large-scale analyses of expressed sequence tags (ESTS;
Sasaki et al. 1994) and dense molecular genetic maps
(McCouch et al. 1988; Saito et al. 1991; Causse et al.
1994; Kurata et al. 1994b; reviewed by Nagamura et al.
1997), large-insert libraries (Umehara et al. 1995), and
abundance of genetic resources. Dense linkage maps
are essential for key organisms. Such maps facilitate
high-resolution genetic mapping and positional clon-
ing of important genes, allow genetic dissection of
guantitative trait loci, assist in local comparisons of syn-
teny, and provide an ordered scaffold on which com-
plete physical maps can be assembled. The usefulness
of genetic maps thus largely depends on their density.
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The Rice Genome Research Program in Japan (RGP)
has been developing a rice molecular linkage map using
186 F, plants derived from a single cross between the
japonica variety Nipponbare and the indica variety Kasalath.
We previously reported a 300-kb interval genetic map
with 1383 molecular markers including 883 ESTs (Ku-
rata et al. 1994b). Using the 1383-marker map, we have
investigated synteny between rice chromosomes and
those of hexaploid bread wheat (Kurata et al. 1994a),
identified duplicated segments between rice chromo-
somes 11 and 12 (Nagamura et al. 1995), detected seg-
regation distortions in an indica—japonica rice cross
(Harushima et al. 1996), compared genetic distance and
order of DNA markers in five japonica—indica crosses
(Antonio et al. 1996b), mapped quantitative trait loci
conferring heading time (Yano et al. 1997), and con-
structed the first-generation physical map with an ordered
yeast artificial chromosome (YAC) library (Umehara et al.
1996, 1997; Antonio et al. 1996a; Saji et al. 1996; Wang
et al. 1996; Koike et al. 1997; Shimokawa et al. 1996;
Tanoue et al. 1997; reviewed by Kurata et al. 1997).

The genome coverage with YACs using all the 1383
markers in the first-generation physical map was about
half of the rice genome (Kurata et al. 1997). Higher
marker density was needed to construct a more com-
plete physical map of the rice genome and to clone
genes for important traits.
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To construct a more dense genetic map, additional
molecular markers have been produced at either tar-
geted sites (Monna et al. 1995, 1997) or random sites.
As a result, 934 new markers have been added to the
map. To determine the centromere positions on the 12
rice chromosomes, 139 markers were assigned to re-
spective chromosome arms through dosage analysis, as
described in Singh et al. (1996). The main source of
the markers mapped at random sites were ESTs in rice
(Sasaki et al. 1994; reviewed by Yamamoto and Sasaki
1997). Two types of ESTs were mapped: randomly se-
lected ESTs and those showing similarity to interesting
genes such as ribosomal protein genes (Wu et al. 1996)
and aspartate aminotransferase genes (Song et al.
1996).

One of the aims of this mapping study was to eluci-
date situations of 3532 randomly selected ESTs from
Nipponbare callus, root, and shoot libraries. The poly-
morphism frequency of ESTs between japonica and in-
dica cultivars, redundancy of ESTs, and copy number of
each EST were determined, and a similarity search of
mapped ESTs was made. We scored genotypes of mark-
ers with care to avoid map inflation. Only a high-resolu-
tion and marker-dense genetic map constructed from a
single cross would permit us to characterize positions
and frequencies of meiotic recombination events in the
entire genome in detail.

MATERIALS AND METHODS

Plant DNA, Southern hybridization, and map construc-
tion: The 186 F, plant mapping population used was derived
from rice cultivars Nipponbare and Kasalath as described pre-
viously (Kurata et al. 1994b; Nagamura et al. 1995). To con-
tinue construction of the rice genetic map using the same
progeny, genomic DNA of F, plants from ~100 F, seedlings
was retrieved. The quality of the retrieved DNA was con-
firmed by Southern blot analysis using seven RFLP markers
(C198, C582, C1135, and R1925 on chromosome 3, R3011 on
chromosome 6, S779 on chromosome 8, and R2316 on chro-
mosome 11). DNA extraction, electrophoresis, blotting, probe
labeling, and detection were performed as described previ-
ously (Kurata et al. 1994b; Nagamura et al. 1995). Linkage
analysis was performed using MAPMAKER/EXP 3.0 (Lander
et al. 1987) as described in Kurata et al. (1994b). Preferred
orders of markers with different positions on entire chromo-
somes were checked by the “ripple” command with window
size 5 and an LOD threshold of 2.0.

Markers: The sources of polymorphic DNA markers for
map construction were cDNAs from Nipponbare callus (C
numbers), cDNAs from Nipponbare root (R numbers), ran-
domly selected Nipponbare genomic clones (G numbers),
Notl-linking Nipponbare genomic clones (L numbers), Nip-
ponbare YAC-end clones (Y numbers), Nipponbare subtelo-
mere clones (TEL numbers), and wheat clones (W numbers),
as described previously (Kurata et al. 1994a,b; Ashikawa et
al. 1994). Four additional types of polymorphic DNA markers
analyzed in this study were cDNAs from Nipponbare shoot (S
numbers), cDNAs from shoot of a near-isogenic line, “LR,”
for photoperiod sensitivity-1 gene (Yokoo and Kikuchi, 1978;
F numbers), barley clones from the North American Barley
Genome Mapping Project and Andreas Graner (B num-

bers), and maize clones from the University of Missouri (M
numbers). Nipponbare shoot cDNA libraries were prepared
from etiolated shoot (S with numbers <10,000) and green
shoot (S with numbers >10,000) with the SuperScript Plas-
mid System (Bethesda Research Laboratories, Gaithersburg,
MD), as described in Sasaki et al. (1994). The cDNA inserts of
C, R, and S were sequenced from the 5" end for 300-400 bp,
and were searched for sequence similarities in both the PIR
(Rel. 48.0) and SWISS-PROT (Rel. 33) protein databases with
version 2.0u5 of the FASTX program (Pearson and Lipman
1988). The BLOSUMS50 matrix was used as a substitution ma-
trix for scoring similarity (Henikoff and Henikoff 1992). Af-
ter a similarity search, clones showing the best score with the
expected value <0.0001 were considered as functionally iden-
tical clones. We used random amplified polymorphic DNA
markers (P numbers) and sequence-tagged site markers (T
numbers) as described previously (Fukuoka et al. 1994; Ku-
rata et al. 1994b; Monna et al. 1994, 1995; Miyao et al. 1996).
Forty-three P markers were converted to RFLP markers by
cloning the amplified polymorphic fragment. Markers de-
noted with V and other symbols are clones developed by
other research groups. Morphological markers of phenol
staining (Ph), brown pericarp (Rc), and alkali digestion (alk)
were examined phenotypically using the F; seeds from 186 F,
plants (Lin et al. 1994).

Determination of location of RFLP markers on chromo-
some arms and centromere mapping: The locations of RFLP
markers were determined by dosage analysis in F, primary
and secondary trisomics of IR36 and MaHae, as described in
Singh et al. (1996). The positions of the centromeres were
mapped as being between the nearest two markers located on
the short and long arms of a chromosome.

Analysis of recombination: The positions of recombina-
tion in the 186 F, plants were estimated from the interval be-
tween the marker positions in homozygous and heterozygous
genotypes, respectively; the number of recombinations and
the segment length of each genotype were analyzed by the 4t
Dimension Macintosh relational database.

RESULTS AND DISCUSSION

Genetic map: We have mapped a total of 2275
markers with 1174 discrete positions on the rice ge-
nome, covering 1521.6 cM in the Kosambi function as
shown in Figure 1. If we assume that this map covers
the whole genome (haploid 4.3 X 108 bp; Arumuga-
nathan and Earle 1991), then the markers are lo-
cated every 190 kb on average. The orientation of seven
linkage groups (chromosomes 1, 2, 3, 4, 8, 11, and 12)
has been reversed from our previous map (Kurata et
al. 1994b), following the conclusions of Singh et al.
(1996) on centromere mapping.

We have added 934 new markers to the previous
map that was composed of 1383 markers covering 1575
cM using the same F, population (Kurata et al. 1994b),
and we omitted 42 markers for various reasons. The
main source of additional markers was cDNA from Nip-
ponbare shoot libraries. The map length was deter-
mined by the 1174 frame markers that were the most
informative among cosegregated markers at discrete
positions in the current map, and the average score of
genotypes for the frame markers was 182.5 out of 186
plants. There were 1090 codominant frame markers.



A High-Density Rice Genetic Map 481

There were only 19 sites where the best marker order
was not significantly higher than the second one at the
LOD threshold of 2.0, in the 1174 frame marker order.
Most of the second marker order of these sites was in-
versions between the two most proximal markers that
contain double crossovers. The decrease in the total
length of the current map is mainly caused by correc-
tions of genotypes associated with markers. Although
the map is shorter, the new markers have extended the
short arm ends of chromosomes 3, 6, 7, and 8 by 1.1,
0.9, 0.8, and 1.7 cM, respectively, and the long arm
ends of chromosomes 8 and 9 by 1.3 and 1.4 cM, re-
spectively. Our new genetic map appears to cover the
whole genome, because the extensions of the map ends
by the additional 934 markers were <2 cM. Our previ-
ous map was one of the densest molecular maps, and
the average distance between adjacent markers was
1.1 cM. The markers, however, were not evenly distrib-
uted. The marker-dense regions where the nearest
markers were <2 cM apart were composed only 33% of
the total, and there were 60 gaps where the distance be-
tween adjacent markers was >5 cM. The additional 934
markers have increased the coverage of the marker-
dense region to 46%, and they have decreased the
number of gaps to 39.

The first-generation physical map of the rice genome
was constructed with Nipponbare YAC clones by land-
ing on our previous genetic map; it covered half of the
rice genome (Umehara et al. 1996, 1997; Antonio et
al. 1996a; Saji et al. 1996; Wang et al. 1996; Koike et al.
1997; Shimokawa et al. 1996; Tanoue et al. 1997; re-
viewed by Kurata et al. 1997). We expect to constuct a
physical map with >70% genome coverage using the
current high density molecular genetic map.

To determine centromere positions on our genetic
map, 139 markers on 12 chromosomes were identified
to specific chromosome arms through dosage analysis
according to the previous work (Singh et al. 1996), and
tentative centromere locations on the 12 chromosomes
are shown in Figure 1. In chromosomes 1, 7, 9, and 11,
the centromere was located at one specific map posi-
tion where markers on opposite arms cosegregated at
73.5, 49.3, 0.8, and 55.5 cM from the ends of short
arms, respectively. For chromosomes 2-6, 8, 10, and 12,
centromere locations are defined by two flanking mark-
ers on opposite arms that span 0.3-, 6.8-, 3.6-, 1.4-, 1.1-,
3.5-, 5.5, and 3.3-cM lengths, respectively. Since the
maximum resolution of the genetic map in this popula-
tion using 186 F, plants is 0.3 cM, the centromere posi-
tion on chromosome 2 is either 48.6 or 48.9 cM from
the end of the short arm. Seventeen markers cosegre-
gated at the centromere position of chromosome 9.
Four nonoverlapping YACs were assigned by using 11
markers at the centromere position of chromosome 9;
the minimum tiling path for this region is estimated to
be 1.8 Mb (Antonio et al. 1996a). In chromosomes 1,
7, and 11, total lengths of nonoverlapping YACs as-

signed at the centromere are ~2.3, 1.9, and 1 Mb, re-
spectively (Wang et al. 1996; Koike et al. 1997; Tanoue
et al. 1997). Since the average physical length per centi-
morgan at this genome size (haploid; 4.3 X 108 bp)
(Arumuganathan and Earle 1991) and the total ge-
netic map length (1521.6 cM; see Table 2) is 280 kb, re-
combination in the centromeric region must be sup-
pressed. An inhibition of meiotic recombination by
centromeres was first suggested by Dobzhansky (1930)
and demonstrated through a cloned centromere in
yeast (Lambie and Roeder, 1986). There are marker-
dense positions on chromosomes 3-6, 8, 10, and 12,
where more than five markers cosegregated in every re-
gion between centromere-flanking markers (Figure 1).
Many markers at these positions cosegregated because
of the presence of the centromere.

Much more frequent recombination in regions of
chromosomes distal to the centromere has been pro-
posed, based on studies on tomato (Tanksley et al.
1992), linkage analysis of the C bands of wheat (Curtis
and Lukaszewski 1991), and deletion mapping of
wheat (Werner et al. 1992). In the rice genetic map,
the inhibition of meiotic recombination by the cen-
tromere must be limited to the narrow region around
the centromere because the values of physical length
per centimorgan are sometimes lower than expected
values, even within 5 cM from the centromere. For ex-
ample, the physical length per centimorgan between
R643 and C492 was <182 kb (Koike et al. 1997), and
C492 was 1.1 cM from the centromere on chromosome
7 (Figure 1). Another example is that the end clones of
a 319-kb insert YAC (Y1053) were 2.3 cM apart from
each other, and they were mapped as being in the vicin-
ity of the centromere on chromosome 10, as shown in
Figure 1 (Umehara et al. 1995; Shimokawa et al. 1996).

The limited influence of rice centromeres on recom-
bination inhibition is similar to the situation reported
in the physical map of chromosome 4 of Arabidopsis
thaliana (Schmidt et al. 1995). In wheat, recent com-
parison of a physical map with the genetic map with an
array of 65 deletion lines for homoeologous group 5
chromosomes revealed that recombination was sup-
pressed in the centromeric region, and that the fre-
quency of recombination might depend on the region
rather than on the relative distance from the cen-
tromere (Gill et al. 1996). This recent finding con-
cerning the distribution of recombinations in wheat is
similar to that in rice.

Anonymous cDNA screening for markers: In the Rice
Genome Research Program, a large number of cDNAs
from various rice tissues and calli have been isolated
and characterized with the aim of cataloging all ex-
pressed genes in rice (Sasaki et al. 1994; reviewed by
Yamamoto and Sasaki 1997). These sequenced anony-
mous cDNA clones from Nipponbare callus, root, and
shoot libraries were the main sources of RFLP markers
in this map. We have analyzed RFLP between Nippon-
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Figure 1.—A rice molecular linkage map with 2275 markers on 1174 discrete positions. Position is shown by the genetic dis-
tance from short arm end expressed by Kosambi function. Markers are indicated by clone names denoted by C, R, S,F, G, Y, P, T,
W, M, B, V, and TEL numbers. See text for meaning of symbols. The markers with a vertical line on the right side of the chromo-
some are “floating markers” that show no recombinants to multiple markers with different positions; the length of the line indi-
cates the range between maximum and minimum positions. CEN with an arrow head indicates the position of the centromere on
the chromosome. CEN with a box indicates the centromeric regions determined by the most proximal markers assigned to short
and long arms.



bare and Kasalath by eight kinds of restriction enzymes,
BamHI, Bglll, EcoRV, Hindlll, Apal, Dral, EcoRI, and
Kpnl, for 3532 randomly selected cDNA clones. The
numbers of cDNA clones analyzed from each tissue li-
brary were as follows: 1072 from callus, 1117 from root,
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Figure. 1—Continued.
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727 from etiolated shoot, and 616 from green shoot.
From the results of Southern blot analyses, 1310 clones
(37% of analyzed anonymous cDNA clones) were used
and mapped at 1403 loci in the current genetic map.
Nearly half of the analyzed clones could not be used for
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RFLP mapping because they showed monomorphic
bands (705 clones), multiple bands, or smeared back-
ground (887 clones). Another 630 cDNA clones (18%
of analyzed clones) showed the same Southern band-
ing patterns as the previously mapped cDNA clones.

A summary of the frequency of redundant clones in
3532 anonymous cDNA clones is given in Table 1.
Twenty-seven clones appeared redundantly more than
six times in RFLP analysis. All the sequences of these
clones showed similarities to known genes except C854
on chromosome 1. One-third of the highly redundant
clones were mapped at more than one locus, and only
four clones were considered to be single-copy genes by
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Southern analyses. With few exceptions, the redundant
clones did not show tissue specificity. The alcohol de-
hydrogenase 1 clone (C496 on chromosome 11) ap-
peared only in the callus library. Chlorophyll a/b-bind-
ing protein (S10558 on chromosome 3) appeared only
in the green shoot library. Two types of tissue-specific
thionin that were toxic to various bacteria, fungi, ani-
mal cells, and plant cells appeared highly redundant.
One clone (R1382 on chromosome 7) appeared only
in the root library, and the other (§1809 on chromo-
some 6) appeared only in the etiolated shoot library.
Most of the cDNA markers derived from Nippon-
bare have allelic bands in the Kasalath genome in
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Southern analyses. To learn the frequency of expressed copy clones, 650 clones were mapped, 234 clones were
genes in Nipponbare that have no allelic gene in the redundant to previously mapped clones, and 423
Kasalath genome, we focused on the single-copy clones. clones were monomorphic. Four single-copy Nippon-
Of the 3532 analyzed cDNA clones, 1307 were consid- bare cDNA clones showed no allelic bands in the
ered to be single-copy genes. Among the 1307 single- Kasalath genome. These four loci are S14051 at ~123.5
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cM on chromosome 1, C708 at 15.4 cM on chromo-
some 4, S846 at 74.6 cM on chromosome 7, and R887
at 50.8 cM on chromosome 12. There are no common
features in the location of these genes. The sequences
of the four clones showed no similarities to known
genes.

Sequence similarities to known genes in PIR release
48 (82,182 sequences) and SWISSPROT release 33
(52,205 sequences) were sought for the sequences of

98
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all mapped cDNAs with version 2.0u5 of the FASTX
program (Pearson and Lipman 1988). The 585 cDNA
clones representing 615 loci show significant similari-
ties with known genes (detailed results will be accessi-
ble at http://www.dna.affrc.go.jp:84/). Of the 615 loci,
201 loci were mapped by the addtional clones, and 414
loci were mapped in our previous map (Kurata et al.
1994b). Kurata et al. (1994b) detected similarities be-
tween 258 loci with known genes in PIR release 37. The
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TABLE 1
Redundancy of randomly selected 3532 ESTs revealed by RFLP analysis
A B Protein Organism Cc b E F G H Loci
2 194
3 4
4 26
5 8
6 Methionine adenosyltransferase Acanthamoegba O 5 0 1 M 3 R2167,chrl, 58.4 cM: R2280, chrl,
(EC 2.5.1.6) castellanii 65.9 cM:R476B, chr5, 20.9 cM
6 Nonspecific lipid transfer protein Hordeum 0 0 6 0 M 3 S790C,chrll, 2.7 cM: S790A,
Cw-21 vulgare chrll, 55.8 cM: S790B, chrl2,
9.5cM:
6 Hemoglobin H. vulgare 5 1 0 0 M 1 C245,chr3,30.5cM:
6 Aspartate aminotransferase, cytoplas- Arabidopsis 4 1 1 0 M 1 C(C250,chrl, 132.4cM:
mic isozyme 2 (EC 2.6.1.1) thaliana
6 GOS2 protein O. sativa 3 2 1 0 M 1 Cl467,chr7,722cM:
6 Glutathione S-transferase | Z. mays 0 6 0 0O M 1 R37chrl, 132.4cM:
7 Phosphoglycerate kinase (EC 2.7.2.3), Triticum 5 1 1 0 M 2 R2403S,chr2,17.5cM: R2403,
cytosolic aestivum chr6, 106 cM:
7 DNA-binding protein MNB1b Z. mays 4 2 1 0 S 1 C607,chr6, 123.1cM:
7 — — 1 1 4 1 S 1 (C854,chrl, 126.8cM:
7 5-Methyltetrahydropteroyltrigluta- Haemophilus 0 4 2 1 M 1 R1759, chrl2, 108 cM:
mate-homocysteine methyltrans- influenzae
ferase (EC 2.1.1.14)
8 dTDP-glucose 4-6-dehydratases A. thaliana 2 6 0 0 S 1 C614,chr3,43.9cM:
homolog
8 Tubulin a-1 chain O. sativa 4 2 1 1 M 1 C1468,chr3, 132 cM:
8 Transmembrane protein Z. mays 0 3 4 1 M 1 R427,chr2,107.7 cM:
8 Thionin precursor, leaf H. vulgare 0 8 0 0 M 1 R1382 chr7,49.6cM:
9 Histone H4 (TH091) T. aestivum 8 1 0 0 M 4 C79,chr4d, 97.6 cM: C2161,
chr5, 92.8 cM: C1521, chr7,
75.7 cM: C2070, chr9, 61.5 cM:
9 Ubiquitin precursor Ubi-1 Z. mays 2 5 1 1 M 1 R810,chr2,15cM
9 ADP, ATP carrier protein precursor 0. sativa 3 6 0 0 M 2 (C92chr2 123.1cM: R2266B,
chr6, 86.7 cM:
9 Heat shock protien 82 O. sativa 5 3 1 0 M 2 R1562,chr9, 70.8 cM: C985,
chr9, 84.7 cM:
9 Leaf-specific thionin precursor H. vulgare 0 0 9 0 M 1 S1809,chr6,66.1cM:
10 Heat shock protein 70 0. sativa 3 6 1 0 M 5 (C549, chr3,88.7cM: C1000,
chrl, 143.5 cM: R2702B, chr2,
153.1 cM: R3182, chr5, 92.0 cM:
S1524, chr3, 43.6 cM:
10 Glyceraldehyde-3-phosphate Ranunculus 6 4 0 0 M 1 C(C37,chr290.4cM:
dehydrogenase, cytosolic acer
14 Chlorophyll a/b-binding protein Il O. sativa 0 0 O 14 M 1 S10558,chr3, 88.7 cM:
precursor
17 Alcohol dehydrogenase 1 (EC O. sativa 17 0 0 0 M 1 (C496,chrll, 30.3cM:
1.1.1.1).
17 Glyceraldehyde 3-phosphate Caenorhabditis 7 10 0 0 S 1 R896,chr4,74.8cM:
dehydrogenase 2 (EC 1.2.1.12) briggsae
18 Fructose-bisphosphate-aldolase 0. sativa 9 7 1 1 M 3 R2657A, chrl, 158 cM: R2657C,
(EC 4.1.2.13), cytoslic chrl0, 9.75 cM: C2269S, chr5,
72.5 cM:
19 Enolase 2 (EC 4.2.1.11) Z. mays 7 10 1 1 M 2 C913A, chrl0, 11 cM: R2185,
chr3, 37.4 cM:
26 Translation elongation factor T. aestivum 8 9 8 1 M 1 R518,chr3 18.4cM:

eEF-1 o chain

Column A indicates the number of redundancy of clones that show the same RFLP image by eight restriction enzymes. Column
B shows the clone frequency with the redundancy less than six. The columns titled Protein and Organism show the name and
organism of the most similar protein appearing in PIR database R48.0 and SWISS-PROT R33. Columns C-F show the redundancy
in callus, root, etiolated shoot, and green shoot libraries, respectively. Column G represents the estimated number of gene copies
by Southern analysis, and columns S and M represent the mean single copy and multiple copies, respectively. Column H shows the
number of loci mapped by respective clone and name, and locations of the loci are presented in the column titled Loci.
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TABLE 2
Distribution of the number of recombinations per chromosome and plant

Chromosomes 1 2 3 4 5 6 7 8 9 10 11 12 Total
Genetic length 181.7 154.7 167.2 1295 1195 125 117 1188 96.1 837 118.6 1101 1521.9
Mean 3.56 3.01 3.25 249 231 2.40 2.30 232 178 162 231 2.06 29.43
Variance 2.64 1.89 217 1.43 1.61 1.58 1.16 1.17 094 0.94 1.38 1.00 23.87
Coefficient of

dispersion 0.740 0.628 0.667 0573 0.697 0.658 0.506 0.504 0.525 0.581 0.598 0.485 0.811
Minimum 0 0 0 0 0 0 0 0 0 0 0 0 19
Maximum 8 8 8 6 7 6 5 5 5 4 6 4 46

increase in the number of known gene loci is caused in
part by enlargement of the target amino acid sequence
database: PIR release 48 has 25,333 more sequences
than release PIR 37.

Many family genes were located in the genetic map.
Ribosomal protein genes, protein kinase genes, peroxi-
dase genes, and histone genes were mapped at 69, 31,
27, and 20 loci, respectively. Among the 69 ribosomal
protein clones, 43 were the genes for the large subunit,
and the other 26 clones were for the small subunit. The
locations of the 69 ribosomal protein genes were scat-
tered on the 12 chromosomes, as reported previously
(Wu et al. 1995). No ribosomal protein clones appeared
more than six times in anonymous cDNA screening
(Table 1). The locations of the protein kinase genes
were also scattered throughout the entire genome, ex-
cept on chromosomes 4 and 10, and no clones ap-
peared frequently in anonymous cDNA screening. Per-
oxidase clones were mapped on all chromosomes
except chromosomes 8 and 9. Histones H1, H2A, H2B,
H3, and H4 were mapped at 1, 6, 3, 5, and 5 loci, re-
spectively. Most histone clones were from the callus
cDNA library. Three of four nucleosome histone clones,
histones H2A, H3, and H4, appeared ~10 times each
among the 3532 clones in the anonymous cDNA screen-
ing. The other nucleosome histone clone, H2B, appeared
five times. The evolution of the histone H4 gene is
known to have been one of the slowest, and the se-
quence variations of histone H4 genes in the public se-
quence databases are less than those of histone H2A
genes (Thatcher and Gorovsky 1994). The differ-
ences in the sequence and the Southern images among
histone H2A clones mapped at six loci were larger than
those among histone H4 clones mapped at five loci.
The variations of histone H4 genes in the rice genome
is also less than that of histone H2A genes.

Forty-nine isozyme loci are known in rice: 31 have
been associated with respective chromosomes, and 13
have been mapped in classical linkage maps (Mori-
shima and Glaszmann 1990; Kinoshita 1993). Al-
though no isozyme marker was used, cDNA clones that
were putatively identified as isozyme genes have been
mapped in the present high-density linkage map. Isoci-
trate dehydrogenase 1 (lcd-1), malate dehydrogenase 1

(Mal-1), and aspartate aminotransferase 1 (Got-1) were
associated with chromosome 1. C399 (isocitrate dehy-
drogenase) and R886 (malate dehydrogenase) were
mapped at 43.4 and 110.6 cM on chromosome 1, re-
spectively. Three aspartate aminotransferase isozyme
genes, Got-1, Got-2, and Got-3, were associated with chro-
mosomes 1, 6, and 2, respectively. On the other hand,
four loci were determined by aspartate aminotrans-
ferase cDNA clones in the present map (Song et al.
1996). Either of the two loci mapped by the cDNA
clones on chromosome 1, C250 at 132.4 cM or R1764 at
146.7 cM, may correspond to Got-1 in the classical map.
C60213 at 71.5 cM on chromosome 6 and C2168 at
36.7 cM on chromosome 2 would correspond to Got-2
and Got-3, respectively. Two phosphoglucose isomerase
isozyme loci, Pgi-1 and Pgi-2, were associated with chromo-
somes 3 and 6, respectively. C1329 and V7 at 145.8 cM
on chromosome 3 would correspond to Pgi-1, and ei-
ther V19A at 50.4 cM or V19B at 49.7 ¢cM on chromo-
some 6 would correspond to Pgi-2 (Nozue et al. 1996).
The phosphogluconate dehydrogenase isozyme locus,
Pgd-2, and the catalase isozyme locus, Cat-1, would cor-
respond to R2869 at 3.0 cM and R1167 at 123.1 cM,
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Figure 2.—Histogram of the length of the 555 double
crossover intervals. Bars represent the number of the cross-
over intervals of the categorized range. The range width is
2.5cM.
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respectively, both on chromosome 6. The alanyl ami-
nopeptidase isozyme locus, Amp-2, would correspond
to R1963 at 118.1 cM on chromosome 8. The alcohol
dehydrogenase isozyme locus, Adh-1, would correspond
to C496 at 30.3 cM on chromosome 11.

Detection of crossover interference: A genetic dis-
tance is defined on the assumption that recombination
occurs at random in the map; however, the occurrence
of one crossover inhibits the formation of another
nearby, a phenomenon known as “crossover interfer-
ence” or “chiasma interference” (Sturtevant 1915;
Muller 1916). Because of the low number of informa-
tive classical markers segregating in a single cross, only
limited information about the process of recombina-
tion in the whole genome could be obtained from each
cross. In plants, the cytologically observed number of
chiasmata during meiosis has been considered to cor-
respond to the number of crossovers, and interfer-
ence has been studied by counting chiasmata (Haldane
1931). Recent investigations, however, give different
results. Estimated numbers of crossovers by chias-
mata counts are fewer than those by RFLP linkage map
length (Nilsson et al. 1993), and the distribution of
crossovers estimated by RFLP linkage map does not in-
dicate interference (Sall and Nilsson 1994). To re-
solve this matter, we investigated the numbers and loca-
tions of the meiotically recombined positions in each
analyzed plant.

The numbers of recombinations were determined
by counting the genotype changes from homozygote to
heterozygote and vice versa, along with the map for
each plant. The distributions of the number of recom-
binations per chromosome and per plant were ana-
lyzed, and the means and the variances are listed in Ta-
ble 2. If the recombinations on each chromosome were
completely random, a Poisson distribution with the
variance equal to the mean would be expected (Haldane
1931). A coefficient of dispersion, a ratio of a variance
to a mean of distribution, can be used to test the Pois-
son distribution. This value will be near 1 in distribu-
tions that are essentially Poisson, <0.795 in the 186
samples of repulsion for 1% significance. In the distri-
bution of number of recombinations per each chromo-
some, the values of the coefficient of dispersion were
significantly <1, indicating that interference was effec-
tive within a chromosome (Table 2). The value of the
variance linearly increased with the value of the mean,
suggesting that the strength of the interference was al-
most the same on every chromosome. Because the
value of the coefficient of dispersion of the distribution
of the number of recombinations per plant was not sig-
nificantly <1, the interference was effective only within
chromosomes.

An estimated mean value for the number of recom-
binations per plant from the total genetic map length,
1521.9 cM, is 30.4; however, the mean value of recombi-
nations per plant estimated by counting the genotype

changes along with the map for each plant is 29.4. The
difference may be caused by the Kosambi map function
for the intervals between markers, since the differences
were larger on chromosomes with large gaps, for exam-
ple, chromosomes 9 and 12.

Positive interference is also suggested by the lower
frequency of double crossovers within short intervals
than would be expected in the absence of interference.
Because we have used F, plants to construct the linkage
map, we could not distinguish which gametes were the
result of recombination and thus determine all double
crossovers. Heterozygous intervals between the same
homozygous genotypes, however, are the result of dou-
ble crossover. We observed 555 double crossovers with
various intervals in the 186 analyzed plants. The distri-
bution of the double crossover intervals is shown in Fig-
ure 2. A constant frequency would be expected if there
were no interference on an infinitely long chromo-
some, given adequate marker density. However, the
number of double crossover intervals with <5 cM was
significantly lower than that of longer intervals, even
though the genome coverage with shorter interval
marker density is 80%. The low numbers of intervals at
>60 cM would be caused by the limits of chromosome
length.

Clone and data availability: All clones and probes
developed by RGP have been deposited and are avail-
able for research purposes from the MAFF DNA Bank
at the National Institute of Agrobiological Resources
(http://bank.dna.affrc.go.jp). All the cDNA and ge-
nomic sequence data have been deposited at DDBJ,
and they are available through DDBJ, GenBank, or
EMBL. Detailed information about the DDBJ sequence
accession numbers, the gene name with a significant
similarity, insert size, Southern hybridization image,
and F, segregation data for all DNA markers will also be
accessible (http://www.dna.affrc.go.jp:84/). For wheat
(W), barley (B), and maize (M) clones, the correspond-
ing locus names on the molecular maps of those spe-
cies will also accessible at that same electronic address.
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