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ABSTRACT 
A two-locus model is presented to  analyze the evolution of compensatory mutations occurring in stems 

of RNA secondary structures. Single mutations are assumed to be deleterious but harmless (neutral) 
in appropriate combinations. In proceeding under mutation pressure, natural selection and genetic 
drift from one fitness peak to another  one, a population must therefore pass through  a valley  of 
intermediate deleterious states of individual fitness. The expected time for this transition is calculated 
using  diffusion theory. The rate of compensatory evolution, kc ,  is then defined as the inverse of the 
expected transition time. When selection against deleterious single mutations is strong, k, depends 
on the recombination fraction r between the two loci. Recombination generally reduces the rate of 
compensatory evolution because it breaks up favorable combinations of double mutants. For complete 
linkage, k, is  given  by the rate at which  favorable combinations of double mutantS are  produced by 
compensatory mutation. For r > 0, k, decreases exponentially with r. In contrast, k, becomes independent 
of r for weak selection. We discuss the dynamics of evolutionary substitutions of compensatory mutants 
in relation to WRIGHT’S shifting balance theory of evolution and use our results to analyze the substitution 
process  in  helices of  mFWA secondary structures. 

0 NE  of the most important problems in population 
genetics is to understand  the significance of epi- 

static selection in the evolutionary process. The analysis 
of epistatic fitness interactions has  played an  important 
role in the history  of population genetics since it was 
introduced by HALDANE (1931)  and WRIGHT (1931). 
Historically, epistatic interactions are  defined as interac- 
tions between genes. Epistatic selection is expected to 
lead to nonrandom associations between  polymor- 
phisms at  different loci  within populations. However, 
nonrandom associations between  loci  have been rarely 
detected in natural populations. Most notably, exten- 
sive studies of linkage disequilibrium based on allozyme 
variation in natural populations of Drosophila have 
failed to  lend  support  to  the  importance of the epistasis 
concept (LANGLEY 1977; HEDRICK et al. 1978; LEWONTIN 
1985). In  contrast, several population surveys  based on 
RFLP  analysis and DNA sequencing have  revealed 
strong linkage disequilibria between polymorphisms 
that have been  attributed to epistatic selection (MIYA- 
SHITA and LANGLEY 1988; MIYASHITA et al. 1993; SCHAEF- 
FER and MILLER 1993). This work and  other lines of 
research [for instance, LAURIE’S experimental a p  
proaches to  understanding  the effect of polymorphisms 
within the Adh gene region on alcohol dehydrogenase 
expression ( e.g., LAUFUE and STAM 1994) ] suggest that 
it is appropriate  to  extend  the classical  epistasis concept 
such that interactions between polymorphisms within 
genes are also included. This generalized definition will 
be used in this paper. 
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One molecular mechanism that might be subject to 
epistatic selection is the  maintenance of  RNA secondary 
structure ( KIRBY et al. 1995). These structures comprise 
single-stranded ( loop ) and double-stranded (stem) re- 
gions, where the stems are  formed by Watson-Crick pair- 
ing of complementary bases. If these structures played 
an  important functional role,  then epistatic selection 
would act to conserve the form of the stems of these 
structures. Thus, individual mutations occurring at nu- 
cleotides that form Watson-Crick  pairs  within  stems are 
expected to be deleterious if they break up  the pairing 
of an intact structure. But  fitness can be restored when 
a second ( “compensatory” ) mutation occurs at  the a p  
propriate position on  the opposite strand of the stem 
and reestablishes the pairing. 

In this paper,  a two-locus,  two-allele model is de- 
scribed to analyze the evolution of compensatory muta- 
tions. Our main goal is to model the  mode of evolution 
of compensatory mutations associated with  stems of 
RNA secondary structures, but  other processes (for in- 
stance the evolution of amino acids subject to protein 
folding) may also be described. Emphasis is placed on 
evolutionary rather  than populational properties. Our 
fitness scheme follows  essentially KIMURA’S (1985a) 
compensatory neutral model: individual mutations are 
assumed to be deleterious, but harmless (neutral) in 
appropriate combinations ( i.e., complementary Wat- 
son-Crick pairs) ; furthermore, we neglect dominance 
effects at each locus, so that we can adopt  the scheme 
of genic selection. However, we allow for differences in 
the fitness effects  of individual mutations. This seems 
to be important for RNA secondary structures because 
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FIGURE 1.-Model of sequential  mutation.  The  rate of the 

first mutation step is pz, that of the  second  “compensatory” 
mutation is v, ( i  = 1, 2 ) .  

noncanonical pairs (e.g., A/C) appear to be under 
stronger selective constraints than wobble pairs (ROUS 
SET et al. 1991 ) . Using diffusion theory, we are  able to 
derive analytical approximations  for  the  expected time 
to fixation of double  mutants ( e.g., A-U) under tight 
linkage, assuming the  population was originally fixed 
for  a favorable combination (e.g., G C )  . Based on this 
result, we define  the  rate of compensatory evolution as 
the inverse of the  expected time to fixation and apply 
our formulas to relevant data  on substitution rates in 
mRNA secondary structures. 

THEORY 

Model:  We consider  a randomly mating, diploid 
population of effective  size N .  Furthermore, we assume 
two linked loci, with alleles A and a  at locus 1 and 
alleles B and b at locus 2.  Allele A is allowed to  mutate 
irreversibly to a and likewise B to 6. Back mutation 
is neglected because we assume that multiple hits at 
nucleotide sites are infrequent. The  entire  mutation 
scheme  (including  mutation  rates) is depicted  in Fig- 
ure 1. The transition from haplotype AB to ab  may occur 
through two different pathways  with the  intermediates 
Ab and aB. These pathways are  denoted by the indices 
1 and 2. The rate of the first mutation  step is pi, that 
of the second “compensatory”  mutation is v i  ( i = 1, 
2 )  . For selection, we assume a haploid (or genic) 
mechanism such  that  the alleles a and  bare individually 
deleterious; i.e., the fitnesses of the  intermediate haplo- 
types Ab and aB are 1 - s1 and 1 - g ( 0  < st < l ) ,  
respectively, whereas the combinations AB and ab have 
fitness 1. The recombination fraction between the two 
loci  is r.  

These assumptions provide sufficient flexibility to 
model the evolution of compensatory mutations associ- 
ated with RNA secondary structure. For instance, iden- 
tify allele A with guanine ( G )  , B with  cytosine ( C )  , a 
with adenine (A) ,  and b with uracil ( U )  . Then,  the 
mutation  scheme of Figure 1 shows a transition between 
the Watson-Crick pairs G C  and A-U  via the  intermedi- 
ates GU and  A/ C, where the first one refers to a wobble 
pair and  the  other to a  noncanonical pair. Assuming 
that the stability  of pairing regions is an  important  de- 

terminant of the  functional integrity of  RNA molecules, 
it is reasonable to assign the highest fitness  values  to 
Watson-Crick pairings in stems of RNA secondary struc- 
tures, whereas GU wobble pairs (which  are less stable) 
and noncanonical pairs (such as A/ C combinations) 
have smaller values. 

The deterministic recurrence  equations  for this two- 
locus model with selection, recombination and muta- 
tion can be derived by standard  methods ( EMENS 1979; 
Chapt. 2 ) .  Let x,, .rt,, x3, and x4 be the  frequencies of 
the haplotypes AB, Ab, aB, and ab,  respectively. Then, 

1 
x i = - ~ ( x l W l - ~ ~ ) ( l - p 1 - 1 1 2 ) 1  

x6 =:{(XI%- rD)pUl + ( % w ,  + rD) (1  - V I ) ]  

x ~ = : l ( x l W , - - ~ ) ~ * + ( x ~ ~ S + ~ ~ ) ( 1 - ~ ~ ) 1  

x; = x{ (.rt,un> + rD) VI + (XSW3 + rD)v.L + (xqwq - rD) 1, 

( 1 )  
where w, is the marginal fitness of the haplotype with 
index i ,  and  the mean fitness  of the  population. D = 
xl x4 - %x3 is the coefficient of linkage disequilibrium. 

This scheme is more  general  than KIMURA’S ( 1985a) 
model of compensatory evolution because all mutation 
steps are characterized by individual parameters and 
because the selective  values for  the  intermediate haplo- 
types  may be different. This flexibility is necessary for 
modeling  the evolution of compensatory mutations as- 
sociated with RNA secondary structure. 

Diffusion approximation for small  recombination 
fractions: Our goal is to determine  the  expected time 
until fixation of the  double  mutant ab, assuming the 
population was initially fixed for  the wild-type AB. Fol- 
lowing KIMURA (1985a), we apply the diffusion equa- 
tion method. Because of x, = l, we must consider 
a three-dimensional diffusion process. However,  analyti- 
cal solutions of multidimensional diffusion equations 
are  hard to obtain. We therefore make a series of as- 
sumptions  that will lead to analytical approximations 
that are still useful for describing the evolution of com- 
pensatory mutations associated with  RNA secondary 
structure.  These assumptions are: 

The intermediate haplotypes Ab and aB are in an 
approximate mutation-selection balance. Necessary 
conditions  for this balance to hold are  that selection 
is much  stronger  than  mutation ( 5 ,  + , u 2 ,  vi; i = 1, 
2 )  and also much  stronger  than  genetic drift (2Nsi  
s=- 1 ) .  
Recombination rate is small  relative to the selection 
coefficients; Le., r < s, ( i = 1, 2 )  . Since RNA second- 
ary structures  are  formed within genes, this assump 
tion does not  appear to be too restrictive. 

From the first assumption, it follows that,  on  the time 
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Ax. = x! * - x; = 0, 2 = 2, 3. (2 )  

With and xl M 1 - x4, we then obtain from ( 1 ) and 
( 2 )  

= (1 - x4)(E + :x4). 

Furthermore,  the first assumption implies that  the 
second-order moments of the changes in and x3 can 
be neglected. Thus,  the three-dimensional diffusion 
process can  be  reduced  to one dimension. Introducing 
x = x4 as the sole diffusion variable and measuring time 
in units of 2N generations,  the infinitesimal drift and 
diffusion coefficients become (EWENS 1979; Chapt. 4 )  

1 
2 

a ( x )  = y ( l  - x) + - x ( l  - x) 

X [el + O2 - R ( l  - 2 x ) ]  and 

b ( x )  = x ( 1  - x), ( 4 )  

respectively. Here we have used the following  abbrevia- 
tions: 

Oi = 4NPj, 2 = 1, 2 

R = 4Nr, and 

To  interpret  the results, it is convenient to divide the 
time T until fixation of the  double  mutant ab into  the 
time Tl spent in the frequency interval [ 0, I /  (2N) ] 
and  into T2,  the time spent in [1 /  (2N),  11. In  other 
words, Tl is the time until a  double  mutant ab is formed. 
Then, the  expected times (in generations)  are ( EWENS 
1979; Chapt. 4 ) ,  

E ( T )  = E(T1) + E ( T z ) ,  

where 

$(x) = ( 2 N x ) - 2 Y e x p [ - ( f 3 1 + f 3 , - R ) x - ~ 2 ] .  (6)  

To obtain the expression for  E ( T1 ) , EWENS' formula 
(4.42) is used. The integral in this formula is decom- 
posed into  an integral from x to 1 / ( 2 N )  and  an integral 
from 1 / ( 2 N )  to 1. The contribution stemming from 
the first integral  can  be neglected. This leads immedi- 
ately to  the above expression. For y 4 1, which holds 
because of our strong selection-weak mutation assump- 
tion, we find by numerical analysis that E ( T , )  S- 
E ( T2) ; that is, most of the time is spent  until  a  double 

mutant is formed. Then, it follows from (5)  and ( 6 )  
that 

1 

-VI + -v, + I P1 P2 PI112 1 / 2 N  

S1 s2 s1 s2 

E ( T )  = s' * ( x ) d x .  ( 7 )  

This result has an intuitive interpretation because the 
term before the integral is the inverse of the rate at 
which double mutants ab are  produced from the inter- 
mediate haplotypes Ab and aB by compensatory muta- 
tion or recombination. The integral accounts largely 
for the effect of recombination on the survival  of  newly 
formed  double mutants. For weak mutation and recom- 
bination, this term is close to 1, but increases exponen- 
tially  with the recombination fraction when R > O1 + t&. 

Therefore, because the main effect of recombination is 
to reduce the frequency of the  double  mutant ab by 
crossing-over  with the wild-type AB, the expected time 
to fixation of a  double  mutant may be very long. 

The rate of compensatory evolution: The inverse of 
the  expected time to fixation of ab, E ( T )  -', can be 
interpreted as the rate of compensatory evolution, K,. 
This follows from the definition of a rate used in the 
physical  sciences. In  the molecular evolution literature, 
the rate of molecular evolution, k ,  is defined differently 
as the  product of the per-generation mutation rate 
times the probability of ultimate fixation of a  mutant. 
However,  in the limit of  small nucleotide mutation rates 
that  are relevant here these two defintions are equiva- 
lent ( STEPHAN and IQRBY 1993).  Hence, we find for the 
rate of compensatory evolution under strong selection- 
weak mutation 

It is instructive to express the rate of compensatory 
evolution as a function of r for weak recombination 
and weak mutation (which is appropriate for intragenic 
nucleotide data). For complete linkage ( r = 0)  , the 
rate of compensatory evolution becomes 

This result corresponds to the well-known formula of 
the  neutral theory, which says that  the rate of molecular 
evolution is equal to the mutation rate. We  may relate 
Equation 8a to an even broader body  of theory by  Tay- 
lor-expanding In [ E  ( T )  ] with regard to r. Considering 
terms up to the first order shows that (see SIMULATION; 
Equation 16 ) 

where A is a positive function  that  depends, in a  rather 
complicated way, on all parameters of the model (ex- 
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cept T )  . Equation 8c has the form of the classical Arr- 
henius law of chemical reaction kinetics ( GARDINER 
1990; Chapt. 5 ) .  This expresses the  rate of a chemical 
reaction as a  product of the frequency at which re- 
actants try to overcome an activation barrier times a 
negative exponential term containing  the  height of the 
barrier. Clearly, the analogy with the  present  model is 
very close, since the first factor of the right-hand side 
of ( 8c) gives the frequency at which favorable double 
mutants  are  formed by mutation, whereas the  exponen- 
tial term describes the  retarding effect of the recombi- 
nation  barrier. 

Diffusion approximation for free recombination be- 
tween  loci: Although free  recombination ( r = 0.5 ) may 
not be applicable to RNA secondary structures, it is 
desirable for  certain limiting cases (see below) to derive 
an explicit solution for  the  expected time until fixation 
of ab double  mutants under  continued  mutation pres- 
sure. This problem is technically very difficult; therefore 
we consider  here only the special case  of equal  mutation 
rates and equal selection coefficients; i .e. ,  p = p,  = vI, 
and s = si( i = 1, 2 )  . This model has been  treated by 
KIMURA (198513) numerically and by simulation, but 
not analytically. We start with KIMuRA’s formulation. Let 
E ( T )  = T( p,  q )  be the  expected time (in units of 2 N  
generations)  to fixation of ab gametes, given that  the 
initial frequencies of a and b are p and q,  respectively. 
Then, T( p,  q )  satisfies the partial differential equation 

where a ( p ,  q )  is the  drift coefficient 

with (Y = 2Ns and 8 = 4Np. I was not able to find a 
general solution of Equation  9 under  the  appropriate 
boundary  conditions (see KIMURA 1985b). However, 
the qualitative behavior of the  corresponding  determin- 
istic differential equations 

dY ( t )  = - sy( t )   [ l  - 
dt 

x 11 - 2 x ( t ) l  + p [l - y ( t ) ]  (11) 

suggests the following heuristic argument  for  finding 
an approximative solution in certain parameter ranges. 
The dynamical system ( 11 ) has three  equilibrium 
points. Besides (1, 1) , these are 

and 

( x ’ 2 ,  y2) = (- - - - - -).  1 P . 1  P 
2 s ’  2 s 

Another  important observation is that a stochastic pro- 
cess,  which starts at (0,   0) , will get absorbed  at ( 1, 1 ) 
with high probability due to selection as soon as this 
process reaches ( x2, y2)  [note that  the first term in 
Equation 10 becomes positive at ( x,, p) ] . In the follow- 
ing, we calculate the time ?’, until  the first mutant 
reaches frequency 1 / 2 - p /  s. Since alleles a and b 
arrive first  with equal probability, we model  the process 
until the first mutant reaches frequency 1 / 2 - p/ s as 
a one-dimensional diffusion on  the interval [ - ( 1 / 2 
- p/ s) , + ( 1 / 2 - p/ s) ] , with p * being  the diffusion 
variable. The process starts at p * = 0. For p * > 0, the 
drift coefficient of  this diffusion is a ( p  *, 4”) (defined 
by Equation l o ) ,  where q * ( p  *) is the solution of 

a(  q*, p * )  = 0. (13) 

The rationale  here is that  the selective pressure acting 
on  the first mutant is much  greater  than  that on  the 
second one  (see Equation 11 ) . For p * < 0, the drift 
coefficient is defined symmetrically. The expected time 
(in generations) until the first mutant reaches fre- 
quency 1 / 2 - p/ s is then given by formulae 4.23 and 
4.24 in EWENS (1979) as 

E (  T I )  = 4N)** exp(-2ax) (L) 0 1  dx 
1 - 2 x  x ( l  - x) 

wherep**= ( 1 / 2 )  - (p/s). 
If selection against deleterious  intermediates is  very 

strong, we  may have the situation that occasionally a 
mutant allele runs away to reach frequency ( 1 / 2)  - 
(p/ s) = 1 / 2 due to genetic drift and mutation (over- 
powering selection), while the frequency of the  other 
mutant allele stays close to zero due to selection. Alter- 
natively, the second allele may be  in an intermediate 
frequency range when the first reaches ( 1 / 2 )  - ( p /  s) . 
However,  this scenario is highly  unlikely when strong 
selection acts against it. 

Thus, under very strong selection against intermedi- 
ates, the stochastic process reaches fixation at ( 1, 1 ) 
only if new b mutant9 are  produced by mutation  on 
aB chromosomes at times t 2 T I  and if these new ab 
haplotypes survive recombination. The probability of 
this joint event is given by the  product of the probabili- 
ties for  the two single events, which can be calculated 
as  follows. The probability for  the  creation of an ab type 
by mutation is approximately 1 / 2 because about  one 
half of the chromosomes are aB types at  that time. Given 
an ab type  has been  produced by mutation  in  a certain 
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generation,  it survives recombination due to strong se- 
lection if crossing-over  with AB types does not occur in 
the same generation. The probability that a new ab type 
survives recombination is therefore  the fraction of ab 
types, Np/ ( Np + 1 / 2)  , which is produced  more 
quickly than crossing-over between ab and AB chromo- 
somes can occur.  Thus,  the  expected time to fixation 
of ab double  mutants,  starting from ( p ,  q )  = ( 0 ,  0 )  , is 

E ( T )  = E(T,) .   (15)  
2Np + 1 

NP 

SIMULATION 

Our analytical approximations assume weak muta- 
tion and strong selection. To examine the validity  of 
these approximations and to explore a larger  parameter 
space, simulations were performed as follows. In each 
generation,  the effects  of mutation, recombination and 
selection on the  frequencies of the gametes AB, Ab, aB, 
and ab were computed using the  recurrence Equation 
1. The resulting distribution of gamete frequencies was 
then subject to multinomial sampling (described in 
STEPHAN et al. 1993).  The simulation routine was tested 
against exact results ( KIMUFU 1985b)  and against simu- 
lation results obtained from faithful sampling of  ga- 
metes ( KIMUFU 1985a,b).  The values  of the time to 
fixation reported in the following are averages  over 
1000 runs. 

Small  recombination  fractions: In Figure 2a, the sim- 
ulation results are  compared with the analytical approx- 
imations for small recombination fractions. The xaxis 
is scaled as r/max ( s1 ,s,) ; the time to fixation on the y- 
axis is given in generations (on a log scale). For very 
small recombination rates, the  agreement between the 
simulations and Equation 6 is good for  both  parameter 
sets: 

Example 1: pi = vi = 0.0001, si = 0.01, N =  500; 

Example 2: p j  = v i  = 0.0005, s1 = 0.025, 

s, = 0.05, N = 250. 

The simulations suggest that  the time to fixation in- 
creases with recombination rate in a nearly exponential 
fashion; however, the theoretical curves in Figure 2a 
increase more  than exponentially in r, thus causing 
huge differences between approximation and simula- 
tion. This suggests the following improvement of the 
analytical solution. First, a better  agreement with the 
simulations is found when Equation 7 is used instead 
of Equation 6 because the analytical approximations 
generally overestimate the time to fixation. Second, an 
expansion of the  function In [E ( T )  3 with respect to r 
[where E ( T )  is  given  by the right-hand side of  Equa- 
tion 73 shows that  the terms of the Taylor series are 
positive. This suggests that  an approximation which 
considers only the zeroth- and first-order terms of this 
expansion is most useful. Hence, 

E ( T )  M E(T)I ,=nexp 7-ln(E(T))I7=n , (16) 

where E ( T )  is given by the right-hand side of Equation 
'7. Equation 16 immediately leads to Equation 8c. 

This approximation is compared with the simulations 
in Figure 2b. Indeed, it reproduces  the simulation re- 
sults much  better  than Equation 6. For very  weak recom- 
bination such that  the scaled recombination fraction is 
0.1 or smaller, the difference between the analytical 
results and  the simulations is within one standard  error. 
It is also important to note  that large values of 0, = 
4Npi are  not  required for our analytical approximations 
to hold as one might expect for a mutation-selection 
balance model with drift ( EWENS 1979; Chapt. 5.6) . In 
both examples, the  mutation  parameter assumes  values 
smaller than 1, which appears to be realistic for a wide 
range of species (including those with large population 
sizes). However, huge discrepancies arise for both sets 
of parameter values as the scaled recombination frac- 
tion approaches 0.5. 

Free  recombination: Figure 3 shows the simulation 
and analytical  results for N = 100 and 8 = 0.1,  0.5, 1, 
and 2. For 8 = 0.5, 1, and 2, we find good to excellent 
agreement of the analytical approximations with the 
simulations when selection is sufficiently strong. For 
weak selection, however, large discrepancies may arise, 
in particular when 0 is small. For 8 = 0.1, we found  huge 
differences when 2Ns I 6; for this case the analytical 
approximation is not shown  in Figure 3.  Asymptotically, 
for large values  of  2Ns, the fixation time increases expo- 
nentially with the  strength of selection, as expected. For 
weak selection and large 8 values, the curves go through 
a shallow minimum. This phenomenon was also noted 
by KIMURA (1985b). 

Relaxing the assumptions: We  have carried out simu- 
lations to examine the impact of the first assumption 
on the time to fixation. Increasing the effects of drift by 
reducing  population size leads to marked discrepancies 
even for very small recombination fractions. For exam- 
ple, consider the  parameter set of Example 1 with N = 
250 instead of  500. Then  the simulation yields an aver- 
age fixation time of 342,266.3 ? 11,494.4 generations 
for r = 0,  whereas Equation 6 produces 453,398.9 and 
the above linearized equation gives 447,516.0. Thus,  the 
relative errors  are  much larger here  than one standard 
error. 

It is also interesting to relax the  strong selection-weak 
mutation assumption because this encompasses the 
nearly neutral case  of  very  weakly selected mutations 
( i .e.,  2Ns, 5 1 ) . For example, consider again the param- 
eter set of Example 1 with the selection coefficients 
changed such that 2Nsi = 0.5. In this case, the simula- 
tions yield an average fixation time of 16,058.8 2 313.7 
generations  for r = 0, whereas Equation 6 gives 
22,629.0. 

Most interestingly, the time to fixation does not in- 
crease with recombination as we found in the case of 

( d  ) 
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strong selection-weak mutation. We have simulated the 
model  for T = 0, 0.0001, 0.001, 0.01, 0.1, and 0.5 and 
found  not  the slightest indication of an effect of recom- 
bination. This behavior is not  due to the choice of the 
selective  values such that 2Ns, 5 1; for increasing popu- 
lation size from N = 500 to N = 2000 leads to the same 
behavior. If mutation rates and selection coefficients 
are  comparable,  the  population is near  a quasilinkage 

- d  10 20 

Selection Coefficient (2Ns) 

FIGURE 3.-Expected time to fixation (in  generations) as 
a function of selection under  free recombination. Simulations 
(m ) are  presented  for N = 100 and  four different 0 values, 
which are written by the curves. Analytical approximations 
( -  - - )  are shown for 0 = 0.5, 1.0 and 2.0. The theoretical 
values are based on Equation 15. The analytical approxima- 
tions agree with the simulations within one  standard  error 
when 2Ns is sufficiently large. 

FIGURE 2"Expected time to fixation as afunction of recombina- 
tion. Time is measured in generations and plotted on a log  scale; 
recombination fraction is scaled as r/max (s, , si). Simulations (de- 
noted by squares) and theoretical results (denoted by dashed lines) 
are compared for two parameter sets (see  text). Parameter set 1 
(Example 1; a) and Example 2 (0) simulation results are shown 
as are theoretical results for Example 1 ( -  - - )  and Example 2 
( * - . ) . ( a )  The theoretical values are calculated based on Equd- 
tion 6; ( b )  the theoretical values are obtained from Equations 7 
and 16. The latter approximations reproduce  the simulation results 
much better. For r/max(s,, si) 5 0.1, the theoretical results are 
within one standard error of the simulations. 

equilibrium, so that  the gain of ab double  mutants pro- 
duced by crossing-over between the Ab and uB interme- 
diates is approximately equal to their loss due to cross- 
ing-over  with AB gametes. The free-recombination 
approximation developed above (Equation 15) does 
not  reproduce this  case of  weak selection-weak muta- 
tion well,  as our diffusion results work  only for  strong 
selection. For example,  for  the case of N = 2000 the 
simulations yielded an average fixation time of -20,000 
generations (independent of recombination) , whereas 
the free-recombination diffusion result is 26,376.0 gen- 
erations. For the N = 500 example (in which  case 2Ns, 
= 0.5), the discrepancy is even greater. 

DISCUSSION 

Using diffusion theory, we have obtained analytical 
approximations  for  the  expected time to fixation of 
pairs of mutations (at different  loci) under continued 
mutation pressure. We considered  a two-locus model 
with two alleles (nucleotides)  at each locus (site) . Mu- 
tations at these sites  were assumed to be individually 
deleterious  but  neutral in appropriate combinations. 
We found diffusion approximations  for  strong selec- 
tion-weak mutation and tight linkage. Furthermore, we 
were able to treat analytically the case  of free recombi- 
nation between loci. The analytical results were exam- 
ined by computer simulations. Simulations were  also 
used to explore relevant parameter ranges that were 
not  amenable to mathematical treatment  (for instance 
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the case of  weak selection-weak mutation) . The diffu- 
sion process of our two-allele,  two-locus model is three- 
dimensional. Progress could be made by reducing  the 
number of diffusion variables using the assumptions 
that p j  4 s, (strong selection-weak mutation)  and r < 
si (tight  linkage).  Under these assumptions, an explicit 
formula for the rate of compensatory evolution, k,, was 
obtained. 

Our most important  finding is the relationship be- 
tween recombination rate and  the rate of compensatory 
evolution. For strong selection-weak mutation, we 
found  that  the rate of compensatory evolution de- 
creases in an  exponential fashion with the recombina- 
tion fraction r, when ris small (Equation 8c) . For  com- 
plete linkage ( r  = O ) ,  the rate of compensatory 
evolution is approximately equal to the rate at which 
double  mutants d a r e  produced from the  intermediate, 
detrimental haplotypes Ab or aB by compensatory muta- 
tion (Equation  8b ) . This result is analogous to the clas- 
sical Arrhenius formula of chemical reaction theory. 
The effect of recombination on  the  rate of compensa- 
tory evolution can be explained as  follows. Under 
strong selection-weak mutation, individual deleterious 
mutations remain in low frequencies. When a  double 
mutant is formed by mutation, recombination will then 
most likely occur between the  double  mutant and the 
wild  type. This will reduce  the frequency of the  double 
mutant  and thus retard its fixation probability. In con- 
trast, when selection (relative to  mutation) is weaker, 
individual mutations may not remain at low frequen- 
cies. Then the elimination of double mutants ab  by 
recombination with  wild-types AB may be counterbal- 
anced by the  production of double mutants due to 
crossing-over between the intermediates Ab and uB; in 
other words, the  population is in an  approximate link- 
age equilibrium. As a  consequence,  the effect of recom- 
bination on the rate of compensatory evolution should 
disappear for weak selection. This was indeed  found 
in the simulation of the weak selection-weak mutation 
case. 

KIMURA ( 1985a, 1990,  1991 ) has likened the substitu- 
tion process of compensatory mutations to WRIGHT’S 

(1931,1932) shifting balance theory. There is certainly 
some resemblance in that  both processes describe shifts 
from one  adapted peak to another  one. However, there 
are also important differences between these two mod- 
els. WRIGHT’S theory is primarily concerned on how a 
species moves from one fitness  peak through  a (deep) 
valley  of population mean fitness to another peak. Our 
analysis  suggests that compensatory evolution does  not 
necessarily occur through  a deep adaptive valley of pop- 
ulation mean fitness, even if selection against deleteri- 
ous intermediates is strong (i .e. ,  indiuidual fitness of 
the  intermediate haplotypes is markedly lower than 1 ) . 
For the biologically important case of strong selection 
and tight linkage (which is presumably relevant for 
RNA secondary structure; see below), we found  that 
the  population moves along  a ridge of selective  values 

from one fitness peak to the  other  one without passing 
through  a  deep valley  of population mean fitness. This 
is because the deleterious intermediates are  at very  low 
frequency while  waiting for  a compensatory mutation 
to occur. On the other  hand, if selection is weak, the 
population may pass through  an adaptive valley  of mean 
fitness, which  in  this  case is not  deep. For loose linkage 
and strong selection, the resemblance between  com- 
pensatory evolution and the shifting balance process is 
closer. Our free-recombination analysis indicates that 
the deleterious intermediates may reach high frequency 
before a compensatory mutation occurs and may thus 
reduce  population mean fitness.  However,  this  process 
is extremely slow and may therefore be very rare in 
nature. 

Next we will relate our results to data on the evolution 
of compensatory mutations associated  with  stems of 
RNA secondary structures. STEPHAN and KIRBY (1993) 
used the sequences of 10 Drosophila species to infer 
Adh mRNA secondary structures. They obtained for 
each inferred helix an average number of compensa- 
tory substitutions (“covariations”)  per pair and  the 
physical distance (calculated between the nucleotides 
of the bottom pair of the  stem) . Their main observation 
was that  the  number of covariations decreased with 
physical distance. There was a  much  stronger distance 
effect for short-range pairings (with physical distances 
<40 nucleotides)  than for longer-range pairing re- 
gions. Our theoretical findings may suggest the follow- 
ing explanation for this behavior. The strongly  negative 
correlation between the  number of  covariations and 
distance for short-range pairings indicates that selection 
pressure against individual deleterious mutations 
within stems is relatively high. On the  other  hand,  the 
weak distance effect for longer-range pairings is  consis- 
tent with selection on single mutations within  stems 
being weak.  At first, the explanation for  the long-range 
pairings seems implausible since long-range pairings 
that order several short-range helices into discrete struc- 
tural units appear  to be functionally more  important 
and  therefore  under  stronger selective constraints. 
However,  all that is required  for our explanation to 
work  is that selection pressure per site (not per pairing 
region) differs between short- and longer-range helices. 
STEPHAN and KIRBY ( 1993)  found  a highly significant 
correlation between  stem length  and physical distance. 
This seems to suggest that selective constraints on  (en- 
tire) longer-range helices can be larger than on short- 
range pairings, even if individual mutations in longer- 
range helices are subject to weaker selection pressure. 

Of great  interest for any RNA higher-order  structure 
is a comparison between the rate of evolution in paired 
us. unpaired regions of the  structure. From such com- 
parisons, we  may be able to estimate some of the param- 
eters of our model. Unfortunately, the currently avail- 
able data  permit only a  crude analysis.  Using Equation 
16, the rate of compensatory evolution k, ( r )  from Equa- 
tion 8c can be fitted to the  data on the  number of 
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covariations and physical distances discussed above.  In 
this fit, we make the  (reasonable) assumption that re- 
combination  rate scales  with  physical distance in a lin- 
ear  manner. This fit reveals that on average 0.77  covaria- 
tions per pair would  have occurred in the history of the 
10 species if linkage were complete ( T = 0 ) .  This value 
is proportional to kc ( 0 )  . For comparison, one needs 
to know the  number of substitutions in the  unpaired 
regions of the Adh mRNA secondary structure  for  the 
same 10 species, which is proportional to the rate of 
molecular evolution k .  MOIUYAMA and GOJOBORI 
(1992) estimated the average number of synonymous 
substitutions for the Adh gene without accounting  for 
secondary structure.  Their results may therefore not  be 
exactly applicable; on  the  other  hand,  a  saturated 
mRNA secondary structure is not available at  present. 
Based on their  data, we estimated that  on average 3.17 
synonymous substitutions per site have occurred in the 
history of the 10 species. This suggests that 

k , ( O )  0.77 
k 3.17 

% - = 0.24. 

Thus,  the  rate of compensatory evolution is consider- 
ably  lower than  that of molecular evolution (which as- 
sumes that the nucleotide sites in Adh evolve indepen- 
dently). Based on Equation  8b, one would  have 
expected an even lower  value for k, ( 0 ) .  If k were com- 
parable with the  mutation rates v, and vp, kc ( 0)  should 
be by a  factor ( pl / s1 ) + ( p2/ s2)  smaller than k .  There 
may be several reasons for  the relatively high value of 
k, ( 0)  . First, a  more  detailed analysis  of Adh mRNA  sec- 
ondary  structure may shift the estimates for  the rates 
of evolution in paired and  unpaired regions. Such an 
analysis requires more sophisticated methods  for  the 
inference of secondary structure  (see KIRBY et al. 1995; 
MUSE 1995)  than those used in STEPHAN and KIRBY 
(1993). Second,  a  more realistic model may take into 
account multiple hits at pairing sites and  hence  more 
pathways between stable pairs within a helix. This would 
increase the  rate  at which double  mutants  are  formed 
(relative to the  rate given by the  right-hand side of 
Equation 8b) .  Third,  the  mutation rates vl and vz in 
paired regions may be larger than k due to templated 
mutation (GOLDING 1987). In this process, which acts 
over short distances, the frequency of nucleotide substi- 
tutions is thought to be elevated by the palindromic 
structure of  DNA. 
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