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ABSTRACT 
Recently many investigators have used microsatellite DNA loci for studying the evolutionary relation- 

ships of closely related  populations or species, and some authors proposed new genetic  distance  measures 
for this purpose. However, the efficiencies of these distance  measures  in obtaining  the  correct  tree 
topology remains  unclear. We therefore investigated the probability of obtaining  the  correct topology 
(PC) for these new distances as well  as traditional  distance  measures by using computer simulation. We 
used both  the infinite-allele model (IAM) and  the stepwise mutation  model (SMM), which seem to be 
appropriate  for classical markers and microsatellite loci, respectively. The results show that in both  the 
IAM and SMM CAVALLI-SFORZA and EDWARDS’ chord distance (Dc) and NEI et al.’s DA distance generally 
show higher PC values than  other distance  measures, whether  the bottleneck effect exists or not.  For 
estimating evolutionary times, however, NEI’S standard distance and GOLDSTEIN et aL’s (6~)‘ are  more 
appropriate  than  other distances. Microsatellite DNA seems to be very useful for clarifymg the evolution- 
ary relationships of  closely related  populations. 

A LLELE frequency data  are useful for studying evo- 
lutionary relationships of closely related species 

or populations. In this case it is customary to use some 
genetic distance measures for constructing trees. Using 
computer simulation, NEI et al. (1983) examined  the 
relative efficiencies of different distance measures for 
obtaining  the  correct tree topologywith the assumption 
that new mutant alleles are always different from the 
existing ones in the  population [infinite-allele model 
(IAM); KIMURA and CROW  19641. This model seems to 
apply approximately to classical genetic markers such 
as protein and blood group polymorphisms (NEI 1987). 
In  recent years,  however, microsatellite DNA loci are 
often used for phylogenetic analysis (e.g., BOWCOCK et 
al. 1994; ROY et nl. 1994; DEKA et al. 1995),  and these 
loci seem to be subject to a mutational pattern  that 
roughly follows OHTA and KIMURA’S (1973) stepwise 
mutation model (SMM) . For  this reason, GOLDSTEIN et 
al. (1995a) and SHRIVER et al. (1995) developed new 
genetic distance measures. 

However, the efficiencies  of these distance measures 
in phylogenetic reconstruction compared with those of 
traditional distance measures are unclear when they are 
applied  to microsatellite DNA loci. Furthermore, NEI et 
aL’s (1983) study is based on a small number of replica- 
tions, so that  a  more careful study is necessary  even for 
the IAM. The purpose of this paper is to study the 
efficiencies of genetic distance measures in phyloge- 
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netic reconstruction by using computer simulation. In 
this paper we  will consider only two methods of  phyloge- 
netic reconstruction: the neighbor-joining (NJ) method 
(SAITOU and NEI 1987) and the unweighted pair group 
method with arithmetic mean (UPGMA, SNEATH and 
S o w  1973). UPGMA seems to be useful for allele fre- 
quency data when the evolutionary rate is nearly the 
same for all populations (NEI 1987), whereas the NJ 
method is  known to be applicable for a variety  of  situa- 
tions (NEI 1991). UPGMA usually produces a  rooted 
tree,  but in this paper we removed the  root to make a 
fair comparison with the NJ method  that produces only 
unrooted trees. In this paper we are primarily interested 
in the accuracy  of the phylogenetic tree topology o b  
tained,  but  the time dependency  and sampling error 
of each distance measure will also be considered. Pre- 
liminary results  of some parts of  this  study  have been 
published by NEI and TAKEZAKI (1994). 

METHODS OF COMPUTER SIMULATION 

Genetic  distance measures: Various genetic distance 
measures used for gene frequency data have been de- 
scribed by NEI (1987).  Here, we present only the defini- 
tions and brief explanations of the distance measures 
examined in this study. 

NEI’S (1972) standard genetic distance (&): 

4 s  = -In [ J x d G l ,  (1) 

where Jx = E; E 3  .‘,/r and J y  = E; E? g . / r  are the 
average homozygosities  over  loci in populations X and 
Y,  respectively, and Jxy = E; xqytj/r.  Here, xv and yq 
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FIGURE 1.-Model tree used for computer simulation. a is 
a branch length in unit of expected number of mutations 
accumulated per locus ( u t ) .  a was 0.1 and 0.04 for the I A M ,  
and 0.4 and 0.04 for the SMM. 

are  the  frequencies of the ith allele at  the  jth locus in 
populations X and Y, respectively, m, is the  number of 
alleles at  the  jth locus, and r is the  number of loci 
examined.  Under  the IAM, D,5 is expected to increase 
linearly with time, if the mutation-drift balance is main- 
tained  throughout  the evolutionary process. That is, 
E(D~,) = 2vt where v is a  mutation  rate  per locus per 
generation and t is the time measured  in  generations 
after divergence of the two populations. 

NEI'S (1973) minimum  genetic distance (Dm):  

Dm = (Jx + J Y ) / ~  - JYY.  ( 2 )  

The expectation of Dm is known to be E(DJ = J(l - 
e?'''), where Jis  the  expected homozygosity  of the two 
populations. 

LATTER'S (1972) Fyr (=+*) distance: 

REYNOLDS et d ' s  (1983) Ow becomes essentially the 
same as  this Frrwhen sample size  is large. The measure 
D12 = -In (1 - &,.) has also been  proposed (LATTER 
1972; REYNOLDS et al. 1983),  but our study has shown 
that  the efficiency of  DL in obtaining  the  correct  tree 
topology is almost the same as or slightly  lower than  that 
of Fyr (NEI and TAKEZAKI 1994; unpublished  results). 
Therefore,  the results for Dl. will not be considered in 
this paper. 

ROGERS' (1972) distance: 

PREVOSTI et d ' s  (1975) distance has a statistical p rop  
erty similar to that of  DR and is defined as 

r m, 

Ce = C C I - / ( 2 r ) .  (5) 
1 '  

CAVALLI-SFORZA and EDWARDS' (1967) chord dis- 
tance: 

If we represent two populations  on  the surface of a 
multidimensional hypersphere using allele frequencies 
at  thejth locus, D,;for the locus gives the  chord distance 
between the two populations, where the angle (81) for 
the two populations is given by cos 8, = X:! &. By 
contrast, BHATTACHARWA (1946) and  NEI (1987) sug- 
gested that  the distance between the two populations 
be measured by 0' = 2; (arccos 0 J 2 / r .  However, the 
performance of this distance measure in obtaining  the 
correct topology is  essentially the same as that of D;% 
given  below, so that we shall not  consider this measure 
in this paper  (see NEI and TAKEZAKI 1994 for  the results 
for  the IAM). 

NEI et al.'s (1983) DA distance: 

D A = l -  

NEI et d ' s  (1983)  computer simulation with the IAM 
has shown that this distance is more efficient than D,s, 
D,, DK, and CAVALLI-SFORZA'S (1969) fH in obtaining 
the  correct topology. SANGHVI'S  (1953) X' d' lstance is 
closely related to 8' and is given by 

This is approximately given by  48' when 8,'s are small 
( NEI 1987). 

In  recent years  many authors have started to use  mi- 
crosatellite DNAs that  are repeats of generally two to 
five nucleotides. There is a high degree of polymor- 
phism with respect to the  number of repeats at  a micro- 
satellite locus. An allele at this locus is usually repre- 
sented by the  number of tandem  repeats, and this 
number may increase or decrease by mutation roughly 
following the SMM, as mentioned  earlier. In the SMM 
an allele in state i (an allele with i repeats) is assumed 
to mutate to an allele either in state i + 1 or i - 1 with 
an equal probability. With  this assumption, GOIDSTEIN 
et al. (1995a) proposed  that  the following distance mea- 
sure be used for microsatellite loci. 

I 

where px,(= C i  ix,) and pyf = (X, iyJ are average allelic 
states at  the  jth locus, and xzi and y,, are  the frequencies 
of the allele in state i at  the jth locus in  populations X 
and Y, respectively. 

A distance measure closely related to (b'p)' is the 
average square distance (ASD) (GOLDSTEIN et al. 1995b; 
SLATKIN 1995), defined as ASD = E; Et,/( i - ~ ] ~ x ~ ~ y ~ ~ / r .  
Under  the assumption of mutation-drift balance, the 
expected values  of ( 6 ~ ) ~  and ASD are given by E[ (6p)'I 
= 2vt and E(ASD) = 2 v t  + 2 ( 2 N  - l ) v ,  respectively, 



Genetic  Distances  and  Phylogenies 

TABLE 1 

Percentage of replications in which  the  correct  topology was obtained  for  the infinitedele model 

39 1 

NJ Unrooted UPGMA 

No. loci DR D ,  Ds FS7. X‘ Dc D A  DR Dm D,T FS,. X’ Dc  DA 

a = 0.1; H = 0.5 

10 8 7 4 6 13 17 17 10 7 9 6 14 17 19 
30 33 36 25 38 57 58 62 42 42 43 27 57 59 63 
50 55 60 44 65 73 77 80 58 61 62 56 81 80 83 

100 82 85 73 87 92 94 94 88 88 87 80 96 95 98 

a = 0.1; H =  0.16 

10 5 5 3 7 7  6 7 2 4 3 3 4  3 4 
30  24  29  17  32  32 31 36  21  24  24 15 27 24  30 
50  45  48  34 51 56 50 59 39  42  42  21 43 41  45 

100 71  74 60  78  77 74 80 67 68 68 46  70 69 73 

a = 0.004; H = 0.5 

10 10 5 5 6 22 31 25 9 8 7 7 33 33 31 
30 35 24 22 24 63 71 69 46 40 40 39 74 80 80 
50 49 39 39 41 84 89 88 65 63 60 64 93 95 95 

100 81 72  72  72 98 100 98 90 87  87  86 99 100 100 

a = 0.004; H = 0.16 

10 1 2 2 2 2   3 3 2 1 1 2 1  3  2 
30 5  4 4  5 10 1 8 1 5  5 6 5 4 1 4  13 13 
50 11 7 7 8 22 31 28 14 11 11 11 26 26 31 

100 32  22  21  27 44 58 54 41 33 32 28 53 57 62 

a = 0.1. N = 100 and u = 0.0025 for H = 0.5. N = 100 and u = 0.0005 for H = 0.16. a = 0.004. N = 250 
and u = 0.001 for H = 0.5. N = 100 and u = 0.0005 for H = 0.16. 

where 71 is the  mutation  rate  per locus per  generation 
and  Nis the effective population size. Therefore,  both 
measures are linearly related to evolutionary time t. 
However, ASD has a  larger variance than (6p )? ,  so that 
we consider only (6p)’ in this paper.  Another  related 
distance measure is SHRIVER et aZ.’s (1995), which  is 
given by 

where Wx = X: X i # j l  i - j l  xikxjk/r, Wy = X;l I i - 

Simulation procedures: The  method of computer 
simulation was essentially the same as that of NEI et 
al. (1983). Figure 1 shows the  model  tree used in the 
simulation. The allele frequency  data  for  monoecious 
diploid  populations were generated by introducing mu- 
tations and sampling alleles at  random in each genera- 
tion.  In  the case  of the L A M ,  it was assumed that when- 
ever a mutation occurs, it creates a new allele. In the 
SMM, a  mutation was assumed to create  a new allele as 
described earlier.  When  a  population was split into two 
descendant  populations,  the initial allele frequencies 
of the two populations were assumed to be identical 
with those of the ancestral one,  and  the reproductive 
isolation occurred immediately. In  the study of the ef- 

j l  Y t k Y l k / r ,  wXY = X; C t t ~  I - j l  X i k y j k / r .  

fects of population bottlenecks (population size 
change), we assumed that  the size  of populations 2,  5, 
and 8 in Figure 1 was reduced to half the original size 
as soon as population splitting occurred. This scheme 
of simulation is certainly artificial. But it will  give some 
idea  about  the  bottleneck effect on reconstruction of 
phylogenetic trees. Allele frequency data were gener- 
ated  for 10, 30, 50, . . . , independent loci, and NJ and 
UPGMA trees were constructed by using various genetic 
distance measures. After 200 replications, the  percent- 
age (PC) of replications in which the  correct topology 
was obtained was calculated. 

The expected  number of gene substitutions per locus 
along  the  shortest  branch ( a  = ut) of the  model  tree 
was 0.1 or 0.004 for  the I A M ,  as  was in  the case  of  NEI 
et aZ.’s (1983) simulation. The value of a = 0.1  is in- 
tended to represent trees for  different species, whereas 
a = 0.004 is appropriate  for trees constructed  for popu- 
lations within species (see NEI 1987, p. 242). In the case 
of the SMM, a was set to 0.4 and 0.04. When a = 0.4, 
the largest expected distance (5.6) between populations 
is similar to the observed distance between African and 
non-African human  populations  for 30 microsatellite 
loci (GOLDSTEIN et al. 1995a). The value of a = 0.04 is 
intended to represent  the divergence level  of  very 
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FIGURE 2.-Relationships  of the  mean  distance  and  coeffi- 
cient of variation with evolutionary  time ( 2 4  for  the  case  of 
the IAM with H = 0.5. (A) Mean distance. (B) Coefficient of 
variation (CV). The  means  and CV's for  each  distance mea- 
sure  were computed for 100 loci and 30 loci,  respectively, 
with 1000 replications. 

closely related  populations. The divergence level  be- 
tween species can be  much  greater  than  that  expected 
for  the case  of a = 0.4. However, the conclusion from 
the case of a = 0.4 essentially holds for trees of such 
highly divergent populations, as will be shown later. 

The expected heterozygosity ( H )  was assumed to be 
0.5 or 0.16 for  the IAM and 0.8 or 0.5 for  the SMM. 
For the I A M ,  H =  0.5 represents  a high level  of heterozy- 
gosity and H = 0.16  a low  level  of  heterozygosity for 
classical genetic markers (NEI 1987, p.  197). In the case 
of microsatellite loci, the average heterozygosity seems 
to be generally between 0.5 and 0.8 (BOWCOCK et al. 
1994; GOTTELLI et al. 1994; ROY et al. 1994; DEKA et al. 
1995; FORBES et al. 1995; JORDE et al. 1995; PAETKAU et 
al. 1995). Theoretically, H i s  a  function of an effective 
population size (N) and a  mutation  rate ( v )  per  genera- 
tion. That is, H = 4Nv/( l + 4Nv) for  the IAM and H 
= 1 - 1 / d G  for  the SMM. Various values of N 
and v were used to generate  the H values mentioned 
above, but to save computer time we used N, which was 
5300. NEI et aL's (1983) results and  our preliminary 
study have  shown that  the PC value primarily depends 
on vt and Nv rather  than  on v, t, and N, separately, as 
expected  from LI and NEI'S (1975) theoretical study of 

the means and variances of Dm and D,s. This was the 
case even in the  presence of bottleneck effects. 

RESULTS 

Infinite-allele  model: Constant population size: Table 1 
shows the PC values for  the case of constant  population 
size for  the IAM. The PC values for distance measure C, 
are  not shown here because they are similar to those 
for DK (see NEI and TAKE- 1994). This table also 
does not include PC's for (Sp)' and q S w r ,  because these 
distances are  not  computable in this case. 

The Pcvalues for all the traditional distance measures 
for 10 loci are quite low whether  the levels  of divergence 
and heterozygosity are high or low. In many  cases, PC: 
values are <lo%. This indicates that phylogenetic trees 
constructed with a small number of loci are  not reliable. 
As the  number of loci increases, however, PC; gradually 
increases. Therefore, it is important to use a large num- 
ber of loci for  constructing  a  population  tree (NEI et al. 
1983). Irrespective of the divergence level ( a  = 0.1 or 
0.004), PC is higher  for  a high heterozygosity  level ( H  
= 0.5) than  for  a low heterozygosity  level ( H  = 0.16). 
When His high, PC is higher  for  a low divergence level 
( a  = 0.004) than  for  a high divergence level ( a  = 0.1). 
When His  low,  however, PC is higher  for  a high diver- 
gence level than  for  a low divergence level. 

Since the  population size remained  the same 
throughout  the evolutionary process in this case, the 
expected evolutionary rate was constant  for all different 
lineages. In such a case UPGMA is known to be efficient 
for  obtaining  a  correct  tree (NEI 1987, 1991). Table 1 
shows that PC's for UPGMA are slightly higher  than 
those for NJ except  for  the case of a = 0.1; H = 0.16 
and  for FsT for  the case of a = 0.1; H = 0.5. UPGMA  is 
based on  the assumption of the molecular clock (NEI 
1975, p. 200). Therefore,  a distance measure that is 
linearly related to evolutionary time is expected to per- 
form well in UPGMA. Indeed,  the  linear distance D,s 
shows a slightly higher PC; value in UPGMA than in NJ 
for all  cases, but  there  are  other distance measures that 
give a  higher PC than D,$ when UPGMA  is used. This 
has occurred because Ds has a  larger variance than some 
other distance measures. 

There  are considerable differences in PC among dif- 
ferent distance measures. The P(; values for DA, D(;, and 
X' are generally higher  than those for the  others. 
Among these three distance measures, the PC: values for 
X' are slightly  lower than those for  the first two. Al- 
though DA and Dc show similar PC: values, DA performs 
slightly better  than Dc for  the case  of NJ with a = 0.1, 
whereas DC's performance is slightly better  than DA 
when a = 0.004. Among the  remaining distance mea- 
sures, FST tends to show the highest PC; when NJ is used 
but  not when UPGMA  is used. Previously, we men- 
tioned  that  the  expected value of Ds increases linearly 
with time, but when NJ is used, it has a low PC; value. 
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TABLE 2 

Percentage of replications in which  the  correct  topology was obtained 
for the infinitedele model in the  case of the  bottleneck 

NJ Unrooted UPGMA 

No. loci DR D, D.5 Fs7. X 2  DC DA DR D, D.s F S T  X' DC DA 

393 

10 5 
30  25 
50  39 

100 68 

10 5 
30  24 
50  45 

100 71 

10 2 
30 16 
50  32 

100 59 

10 2 
30  4 
50 10 

100 20 

5 
25 
44 
75 

6 
26 
50 
77 

2 
10 
23 
51 

1 
3 
5 

15 

3 
16 
31 
57 

3 
17 
36 
63 

1 
12 
21 
48 

2 
3 
4 

15 

6 
32 
52 
76 

5 
25 
40 
72 

2 
10 
26 
51 

1 
4 
6 

20 

14 
48 
65 
87 

6 
31 
53 
80 

15 
41 
59 
85 

4 
7 

14 
30 

a = 0.1; H = 0.5 

15 15 4  4 
46 50 11 6 
66 69 13 6 
87 91 1 1  3 

a = 0.1; H = 0.16 

6 8 3  3 
28 33 20 19 
49 56 35 34 
75 81 64 58 

a = 0.004; H = 0.5 

26 22 2  2 
56 52 5  6 
66 68 4  8 
86 91 4 3 

n = 0.004; H = 0.16 

2 3 2 2  

18 16 10 5 
35 37 12  7 

7 8 7 4  

6 
27 
39 
63 

3 
22 
40 
67 

3 
8 
9 
5 

2 
3 
5 
8 

1 
0 
0 
0 

1 
2 
2 
0 

2 
5 
5 
1 

1 
1 
2 
4 

15 
42 
57 
78 

4 
26 
44 
73 

13 
22 
23 
15 

1 
9 
9 

19 

15 
46 
67 
84 

4 
23 
40 
69 

16 
27 
34 
30 

3 
12 
24 
39 

13 
42 
61 
78 

5 
28 
45 
77 

13 
23 
26 
22 

3 
9 

14 
22 

N = 250 and u = 0.001 for H = 0.5. N = 250 and u = 0.0002 for H = 0.16. The size  of populations 2, 5, 
and 8 are reduced to a half. 

When H is  low and  the divergence level is high, PC is 
slightly higher  for Fyr than  for Dc. 

Means  and  sampling errors of distance measures: The ef- 
ficiency of constructing phylogenetic trees by means of 
genetic distances depends on the  linear  relationship 
with  time and  the sampling error of the distance mea- 
sures used (NEI et al. 1983; GOLDSTEIN and POLLOCK 
1994; TAJIMA and  TAKEZAKJ  1994). We have therefore 
examined these properties. Figure 2A shows the rela- 
tionships of the mean distance and evolutionary time 
( 2 4  for various distance measures for  the case  of H = 
0.5. The results for H = 0.16  are not shown here, be- 
cause the relationships are essentially the same as those 
for H = 0.5. The mean D~v increases linearly with time, 
as expected. However, the average values  of all other 
distance measures reach a  certain level of plateau, 
though when the divergence level  is  low, they increase 
approximately linearly with time. The average Dm in- 
creases fairly linearly with time even for  a  higher diver- 
gence level. By contrast, the rate of increase with time 
quickly decreases in FST and Dc compared with other 
distances. Generally, Ds, Dm, p, and DA are better  than 
F&, DR, and Dc with respect to the linear  relationship 
with time. 

To measure the  extent of sampling error, we com- 
puted  the coefficient ofvariation ( C V )  for each distance 
measure. Figure 2B shows the relationships between the 
CV and  the evolutionary time (274 for H = 0.5 for 30 
loci. The relationships for H = 0.16 were similar to 
those for H = 0.5, though the CV's were generally 
higher in this case. The W s  for r(l are  not shown in 
Figure ZB, because they  were  virtually identical with 
those for DA. As expected, the CV's are large for low 
divergence levels in all distance measures but decrease 
as the divergence level increases. For a very high diver- 
gence level,  however, the CV's for Dr and Fyr tend to 
increase. 

Figure 2B shows that D~T has the largest Cv's among 
all distance measures examined. Apparently, because 
of this large CV, the PC's for D.s are low even though 
the  expected value of DS has a  perfect  linear relation- 
ship with time. The CV's for Dm were the  second largest 
following those for Ds, whereas Dc had  the smallest C V .  
FST has a relatively high CV for H = 0.5, but  in  the case 
of H = 0.16, the CV for FST rapidly decreases as the 
divergence level increases. These low W s  seem to be 
responsible for  a relatively high PC for FST for the case 
of a = 0.1 and H = 0.16. 
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FIGURE 3.-NJ  trees  constructed by using average distances 
affected by the  bottleneck  effect. (A) D,y for H = 0.5; (I = 0.1 
with the TAM. (B) Dsfor H = 0.16; a = 0.1 with the IAM. (C) 
( 6 ~ ) '  for H = 0.8; a = 0.4 with  the SMM. The  branch  lengths 
for  populations 2,5, and 8 are elongated  because of the  bottle- 
neck  effect.  When a = 0.1, the extent of elongation is higher 
for H = 0.5 than for H = 0.16. The average  values of DS and 
(6p)' were  computed for 100 loci. 

Bottleneck effect: Table 2 shows the PC values for  the 
case where populations  undergo  a bottleneck. In this 
case the PC's for NJ and UPGMA both become smaller 
than those for  the case of a  constant  population size 
(Table 1 ) .  Further,  the P i s  for UPGMA are generally 
lower than those for NJ in this case. When a bottleneck 
occurs, the distance values are known to increase rap- 
idly (CHAKRABORTY and NEI 1977). Figure 3, A and B 
show NJ trees constructed by using the average D,y for 
H = 0.5 and 0.16 when a divergence level is high ( a  = 
0.1).  In these trees, the  branch  lengths  for  the popula- 
tions that went through  a  bottleneck  are  elongated. 
Thus,  the evolutionary rate varies considerably with 
population, even if the  mutation  rate remains the same. 
In this  case UPGMA  is not efficient in obtaining  the 
correct topology, because the assumption of rate con- 
stancy is violated. Thus, PC values  of DK, D , ,  and FSr are 
nearly zero irrespective of the  number of loci used. 

The  extent of decrease of PC; due to the  bottleneck 
effect clearly depends  on  the bottleneck effect on dis- 
tance measures. Thus, when the divergence level  is 
high,  the  bottleneck effect on distance values is larger 
for H = 0.5  than for H = 0.16 (Figure 3, A and B), and 

the P,;values decline  more drastically in the  former case 
than in the  latter. By contrast, when the divergence 
level was  low, distance values increased considerably 
owing  to the  bottleneck effect for  both heterozygosity 
levels (data  not  shown),  and P(:'s declined substantially. 

Although every distance measure is affected by the 
bottleneck effect, DA,  Dc, and X' generally show a 
higher PC; than  the  other measures, and P(:s for D,4 and 
D(; are  higher  than those for X' except  for  the case of 
a = 0.1; H = 0.16. The difference in PC; among  other 
distance measures shows a  pattern similar to that  for  the 
constant  population size  case when NJ is used. When 
UPGMA  is used, however, FS, does not perform well, 
giving an  incorrect  tree in most  cases, but  the P(:'s for 
D,y are relatively high. 

Stepwise  mutation  model: Constant  population size: 
The PC: values for  the case of the SMM are  presented 
in Table 3. To save space, the PC's for D,, and X' are 
not presented because their efficiencies  relative to the 
traditional distance measures were  essentially the same 
as those for  the case of the JAM. The PC's for UPGMA 
are also not shown here for  the same reason. As in the 
case of the IAM, UPGMA performed  better  than NJ for 
the case of constant  population size, but  not  for  the 
case where the bottleneck effect was considered. 

Table 3 shows that in the case of a = 0.4, P(,'s are 
very  low for any distance measure unless 300 or  more 
loci are  studied  (except  in  the case of constant popula- 
tion size  with H = 0.8). They are lower than those for 
the case of the IAM with H = 0.5 when the same number 
of  loci are used (Table 1).  This indicates that when the 
divergence level is high, microsatellite loci may be no 
better  than classical markers unless the average hetero- 
zygosity for  the  latter markers are very  low. 

In the case of a = 0.04, however, the PC values for 
traditional distance measures, particularly for DA and 
D(;, are reasonably high if 30 or  more loci are used. 
These values are comparable to those for  the case of 
the IAM with H = 0.5 but  are  higher  than those for  the 
case of the IAM with H = 0.16 (Table 1). Since the 
heterozygosity  level  of  classical markers is usually  low, 
microsatellite loci seem more useful than classical mark- 
ers for a study of closely related populations. Curiously, 
however, LIslvand ( 6 ~ ) ~  show  lower  P,;values than tradi- 
tional distance measures, except  for a = 0.4 and H = 
0.5. This indicates that &,and ( 6 ~ ) ~  are generally less 
useful than traditional distance measures for phyloge- 
netic inference even for microsatellite loci, for which 
the distance measures were  specifically designed. Partic- 
ularly when a = 0.04, D~sw shows a very poor  perfor- 
mance  for  obtaining  the  correct  tree even when 300 or 
more loci are  studied. 

The relative PC; values for traditional distance mea- 
sures are essentially the same as those for the I A M ,  and 
Dc and IIA show a  higher PC than  the other distance 
measures irrespective of the values  of a and H. 

Means  and  sampling errors of distance measures: Figure 
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TABLE 3 

Percentage of replications in which  the  correct  topology  was  obtained 
for the  stepwise  mutation  model with the NJ method 
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10 4 4 3 5 5  
30 17 19  21  26  25 

100 53 51 56 67 66 
300 84  83  86  94  94 

10 0 1 0 1 3  
30 1 4 2 8 7  

100 18  18 23 26 29 
300 43 47 51  57  67 

10 3 2 2 4 4  
30 11 8 9 19 15 

100 28 35 39  41  51 
300  47  71  74 61 78 

10 1 0 1 1 1  
30 3 1 3 4 6  

100 12 14  18 22  24 
300 37 41 43  51 61 

H = 0.8; constant population size 

0 1 16 11 12 
5 4 52 44 46 

14 23 91 89 89 
55 58 100 100 100 

H = 0.5; constant population size 

1 1 3 3 3 
7 8 20 14 17 

37 29 57 53 60 
76 72 93 90 94 

H = 0.8; bottleneck 

0 1 11 8 6 
1 2 34 29 29 
3 17 66 74 75 
0 55 92 98 97 

H = 0.5; bottleneck 

3 1 3 2 3 
3 5 11 10 16 

17 28 38 39 45 
32 78 74 77 82 

30 
69 
98 

100 

6 
27 
69 
97 

17 
45 
80 
97 

4 
15 
47 
74 

25 
67 
97 

100 

5 
26 
70 
96 

18 
46 
85 

100 

5 
19 
54 
84 

0 
1 
2 
7 

1 
1 
7 

30 

0 
0 
3 
2 

0 
1 
0 
5 

1 
7 

26 
62 

1 
4 

17 
58 

0 
3 

17 
44 

1 
2 

12 
43 

a = 0.4. N = 150, and u = 0.02 for H = 0.8. N = 94, and v = 0.004 for H = 0.5. a = 0.04. N = 300 and v 
= 0.01 for H = 0.8. N = 188 and u = 0.002 for H = 0.5. In the case  of bottleneck, Nand u were the same as 
the above except for N = 188 and v = 0.002 for a = 0.4 and H = 0.5. Nwas reduced to a half after separation 
from the ancestral populations in populations 2, 5, 8. 

4A shows the relationships between the  mean distance 
and evolutionary time ( 2 v t )  for various distance mea- 
sures for the case  of H = 0.8. The results for the case 
of H = 0.5 are  not shown, because they are similar to 
those for the case  of H = 0.8. As expected, (Sp)' has a 
linear relationship with time. Dsw also increases almost 
linearly with time. All the traditional distance measures 
are nonlinearly related with time, though  the relation- 
ships are initially linear.  The initial linear relationship 
is slightly better  for Ds and DA than Dc. 

Figure 4B shows the relationships between the CV's 
and evolutionary time ( 2 v t )  for H = 0.8. The CV's for 
FST and DH are  not shown, because they are close to 
those for DA and Dc, respectively. The CV's for (Sp)' 
and D,sw are clearly much  greater  than those of the 
traditional distance measures. These high CV's explain 
the  poor  performance  of (SF)* and Dswin phylogenetic 
reconstruction,  though  the mean values are linearly re- 
lated with time (see Figure 4A). 

ZHIVOLOVSKV and FELDMAN (1995) analytically  showed 
that CV for (6~)' is approximately constant if a suffi- 
ciently high divergence level  is considered. In  the range 
of divergence shown in Figure 4B ( 2 v t  5 6), however, it 

is still decreasing for H = 0.8. For H = 0.5 CV for ( 6 ~ ) ~  
reached a plateau more quickly (data  not shown). In 
contrast to the case  of (by)*, Dswhas a very high C V ,  but 
the CV drops quickly for high  divergence. Therefore, 
Dsw has a larger CV than (Sp)' for a low divergence level 
but a smaller CV for a high divergence level. 

The CV's for traditional distance measures are nearly 
constant over  time except in the initial stage. Particu- 
larly, D,y has a large CV when 2vt is small, but the CV 
quickly declines to reach an apparent constant value. 
Here,  too, Dc and DA have a smaller CV than Ds. The 
relationships between CV's and 2 v t  for H = 0.5 were 
more or less the same as those for H = 0.8. 

Bottleneck effect: The effect of population size change 
(bottleneck effect) on P i s  for the NJ trees are shown 
in the lower  half of Table 3. In the presence of the 
bottleneck effect, Pgs are generally smaller than those 
for  the  constant  population size  case (upper half  of 
Table 3), as in the case of the IAM. The distance values 
increase rapidly in the presence of the bottleneck effect 
(Figure 3 C ) ,  and the  extent of decrease of P(:'s is posi- 
tively correlated to the  extent of distance increase. 

The relative  values  of PC's for different distance mea- 
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FIGURE 4.-Relationships  of the mean distance and the 
coefficient of  variation with evolutionary  time (2vt)  for the 
case  of  the SMM with H =  0.8. (A) Mean distance. (B) Coeffi- 
cient  ofvariation (CV). The means and CV's for  each  distance 
measure were  computed  for 100 loci and 30 loci,  respectively, 
with 10,000 replications. 

sures are generally the same as those for  the  constant 
population size. The PC values for  the traditional dis- 
tance measures are again higher  than those of  D~,,and 
(6p)' for n = 0.04; H = 0.8 and 0.5 and a = 0.4; H = 
0.8. Since the efficiencies of DA and Dc are higher  than 
other traditional distance measures, DA and Dc per- 
formed best in these cases. By contrast, in the case of 
a = 0.4 and H = 0.5, (6p)' tends to show a  higher PC 
value than all other distance measures. In  the case of 
constant  population size, the P i s  for D.swrand (Sp)' are 
similar to each other when a = 0.4, but in the  presence 
of the  bottleneck effect, the P i s  for Dsw drastically de- 
crease. Although the CV for Dsw  is smaller than  that  for 
(Sp)' when the divergence level is high (Figure 4B), 
the PC for D,sw  is  severely affected by the bottleneck 
effect. In practice, population size  would change fre- 
quently in the evolutionary process, so ( 6 ~ ) ~  seems su- 
perior to Dsw in actual data analysis. 

Sample size: So far we assumed that  the PC values 
are  computed by sampling all individuals in  the popula- 
tions. In practice, however, the  number of individuals 
sampled are usually limited. Therefore, we examined 
the effect of sample size on PC values. In Table 4 we 
present only the PC; values for DA, since other distance 

measures showed similar results. The  number of indi- 
viduals sampled varied from 10 to 50. The Pcvalues for 
the  entire  populations sampled are also  shown in the 
table. 

When the divergence level is high,  the sample size 
(s) does  not make much difference for  the PC values in 
both  the IAM and SMM as long as s 2 20. In the case 
of the L A M ,  this is true  whether  the heterozygosity  level 
is high ( H  = 0.5) or low ( H  = 0.16). Similarly, in the 
case of  the SMM, the sample size effect is very small 
when the heterozygosity  level is  low ( H  = 0.5). When 
the heterozygosity  level is high ( H  = OB), however, PC; 
is lower for s = 10 - 20 than  for s 2 30. This is in 
agreement with SHRIVER et d ' s  (1993) result. By con- 
trast, when the divergence level is  low, PC increases with 
increasing sample size up to s = 50 if the heterozygosity 
is high ( H  = 0.5 for IAM and H = 0.8 for SMM) . When 
average heterozygosity is low, however, the sample size 
effect is not substantial. Therefore,  in  general, it is more 
important to examine  a large number of  loci rather 
than  a large number of genes per locus to have a  higher 
P,;value. However, if the average heterozygosity is high 
and divergence level  is  low, a large number of individu- 
als (s  50)  should be also examined. 

DISCUSSION 

Our  computer simulation has shown that DA and DC; 
are most efficient in  obtaining  the  correct  tree topology 
in many different  conditions  examined. This is so de- 
spite the fact that DA and Dc are based on geometric 
distances of populations  represented on a multidimen- 
sional hypersphere and  are  independent of the muta- 
tional models (NEI 1987). The expected values of QS 

and (Sp)' increase linearly with time under  the IAM 
and  the SMM, respectively,  as mentioned  earlier. How- 
ever, the efficiencies of D,, and (Sp)' for  obtaining  the 
correct  tree  are generally low. This has happened be- 
cause D,y and (Sp)' have a large sampling error.  There- 
fore,  the  extent of sampling error is an  important factor 
for  determining  the efficiency of a distance measure in 
phylogenetic reconstruction. However, the  coefficient 
of variation is not  the sole determinant of the efficiency, 
and the  linear  relationship with time also  plays some 
role, as  is clear from the comparison of CV's between 
Dc and DA. This conclusion is similar to NEI et nZ.'s 
(1983) and suggests that  different distance measures 
should be used for  reconstructing  a topology and esti- 
mating  branch lengths. In general, DA and DC are supe- 
rior  to  other distance measures in topology construc- 
tion and D( and  are  better  than  others in branch- 
length estimation, depending  on  the  model used. 
Therefore, it seems to be preferable to use DA and  Dcfor 
constructing  a topology and  then use D,, for estimating 
branch  lengths  for  electrophoretic or immunological 
data and ( 6 ~ ) ~  for microsatellite loci (NEI 1995). A 
statistical method  for  conducting this type of statistical 
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TABLE 4 

Percentage of replications in which  the  correct  topology was obtained 
by the NJ method  for  different  sample  sizes 

No. loci 

Infinite allele model Stepwise mutation model 

a = 0.1 a = 0.004 a = 0.4 
Sample 
size (s) 10  30  50 100  10 30  50  100  10  30  50  100  10  30  50 100 

a = 0.04 

H = 0.5 H = 0.8 

10 13 59 75 94 1 5 12 46 2 8 24 45 1 4 9 32 
20 11 60 80 94 5 24 50 81 4  16 30 55 2 16 34 74 
30 15 61 81 95 9 39 65 94 4  17 38 58 7 26 46 82 
50 15 63 80 94 13 54 76 94 4  19 41 64 9 35 64 90 
All 17 62 80 94 25 69 88 98 4  23 43 66 23 57 73 97 

H = 0.16 H = 0.5 

10 8 33 57 80 1 5 13 36 1 7 12 29 2 7 32 58 
20 6  34 57 80 2 8 17 48 2 6 13 31 2 16 41 67 
30 7  35 58 79 2 9 24 51 2 7 16 29 3 20 41 68 
50 6 36 58 80 2 12 24 54 3 7 16 31 3  19 46 72 
All 7 36 59 80 3 15 28 54 3 7 16 29 3  19 47 71 

s is the number of individuals sampled. DA distance was used. Infinite-allele model. In the case of a = 0.1 
N = 250 for H = 0.5 and for H = 0.16. In the case of a = 0.004, N = 250 for H = 0.5, and N = 100 for H 
= 0.16. Stepwise mutation model. In the case of a = 0.4, N = 150 for H = 0.8, and N = 94 for H = 0.5. In 
the case of a = 0.04, N = 300 for H = 0.8 and N = 188 for H = 0.5. 
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analysis has already been developed (TAKEZAKI et al. 
1995).  It  should also be  noted  that  the  linear relation- 
ship with time is better for D A  than for D C .  Therefore, 
a tree constructed with D A  may be sufficient for many 
purposes unless the evolutionary time considered is  very 
long. 

In  the  present  paper we are primarily concerned with 
phylogenetic reconstruction of intraspecific popula- 
tions for microsatellite loci. However, when a phyloge- 
netic relationship of different species is to be  studied, 
( 6 ~ ) '  can be  quite  high. For example, the (Sp)' be- 
tween humans and chimpanzees for 25 microsatellite 
loci is -25 (data from BOWCOCK et al. 1994), whereas 
the (Sp)' between domestic sheep  and Rocky Mountain 
bighorn  sheep  for  eight microsatellite loci (data from 
FORBES et al. 1995) is -39. In  the  latter case there is 
one locus that shows an extremely high degree of  varia- 
tion, and if we exclude this locus, (Sp)' becomes -14. 

To obtain some idea about  the utility  of microsatellite 
loci for a study  of genetic differentiation of different 
species, we conducted  an  additional  computer simula- 
tion with a = 1 and 2, for which the largest expected 
number of gene substitutions (2vt) were 14 and 28, 
respectively, without the bottleneck effect. Table 5 
shows the results  of this simulation. The PC values for 
traditional distance measures are now considerably 
smaller than those for  the cases  of a = 0.04 and 0.4. By 
contrast, (611)' and Dsw tend  to show  slightly higher 
values than those in Table 3. Indeed, when H = 0.5, 
they  show higher PC values than traditional distance 

measures. However, the PC's for  them  are still quite low 
unless 300 or more loci are studied. 

In  the  present study we assumed that microsatellite 
loci are subject to the mutational pattern of the SMM. 
In practice, this assumption does not necessarily hold, 
and  there is evidence that  mutation sometimes pro- 
duces nucleotide repeat  patterns  that  require two or 
more  step changes (KWIATKOWSKI et al. 1992;  WEBER 
and WONC 1993). For this reason, VALDES et al. (1993), 
DI RIENZO et al. (1994),  and GARZA et al. (1995) pro- 
posed mathematical models that allow changes of more 
than one step with some probability. Our computer 
simulation has  shown that these models give essentially 
the same relative PC values as those for  the SMM used 
here  (data  not shown) and that details of mathematical 
models of the evolutionary change of microsatellite loci 
are  unimportant for phylogenetic reconstruction. 

However, the real problem with microsatellite loci is 
that  the mutational pattern is often irregular and  that 
there seems to be an upper limit of the  number of 
repeats (FORBES et al. 1995; GARZA et al. 1995; 
GOLDSTEIN et al. 1995b).  Furthermore, some microsatel- 
lite loci are highly polymorphic in some populations or 
species but  monomorphic in others. For example, four 
out of  the 25 polymorphic loci  in humans  are appar- 
ently monomorphic in chimpanzees (data from Bow- 
COCK et al. 1994). Even  within humans some highly 
polymorphic loci in Europeans are  monomorphic in 
Amerindians. This raises a question about  the long-term 
stability  of microsatellite loci. At the  present time, we 
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TABLE 5 

Percentage of replications in which  the  correct  topology was obtained  for  highly  divergent  populations 
in the  case of the  stepwise  mutation  model 

a =  2 a =  1 

No. loci DH D.v FvT Dc DA DSM. (Sp)' Dft D,( Fy,. Dc DA DSw ( 6 ~ ) ~  

H = 0.8 

10 1 1 0 0 0 3  1 2 1 2 4 4 2  5 
30 4 4 6 8 9 8  5  8  7  9  12 11 7 4 

100 16 17 22 38 40 38 26  30  31  32  47  49  30  22 
300 55 59 63 76  78 81 78 64 66 68 82 84 77  64 

H = 0.5 

10 2 0 0 0 0  1 3 1 1 0 0 0 3  2 
30 0 1 1 2 2 9  8 1 1 1 1 1  4  6 

100 5  4  4 8 1 0  40 38  9  6  8 13 18 41  42 
300  28  25  29  40  47 88 87 52  30 35 50 56 81 83 

The N T  method was used. N = 75, and u = 0.04 for H = 0.8. N = 47, and u = 0.008 for H = 0.5. The size 
of all populations remained constant. 

do  not know the reason for  the difference in the  extent 
of polymorphism between different  populations.  There- 
fore, some caution is necessary in  the  extrapolation of 
our results to the study of distantly related  populations. 

Another  disturbing factor in  the use of microsatellite 
loci is that  the  mutation  rate seems to vary considerably 
from locus to locus and this will increase the variance of 
distance values. Therefore,  the coefficients of variation 
given in Figure 4B should be considered to be mini- 
mum,  and  the actual PC values are  expected to be 
smaller than those given in Tables 3-5. The bottleneck 
effect also  would contribute to reducing  the PC values, 
as  we have seen before. 

Despite these problems with microsatellite loci, they 
are clearly useful for studying the genetic relationships 
of  closely related  populations. With  classical genetic 
markers, it is often difficult to study this problem, be- 
cause there  are  not many polymorphic loci that  are 
used for this purpose.  In  the case  of microsatellite loci, 
it is relatively  easy to examine many polymorphic loci. 
Therefore, at least for studying closely related  popula- 
tions microsatellite loci are  expected to be very useful. 

This study was supported by research  grants from  the National 
Institutes of Health and  the National  Science  Foundation  to M.N. 
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