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ABSTRACT 
The  determination of empirical  confidence intervals for the location of quantitative trait loci (QTLs) 

was investigated using simulation. Empirical confidence intervals were calculated using a  bootstrap 
resampling method for a backcross population derived from inbred lines. Sample sizes were either 200 
or 500 individuals, and  the QTL  explained 1,5, or 10% of the phenotypic variance. The  method worked 
well in that  the  proportion of empirical  confidence intervals that  contained  the simulated QTL was 
close to expectation. In general,  the confidence intervals were slightly conservatively biased. Correlations 
between the test statistic and  the width of the confidence interval were strongly negative, so that  the 
stronger  the evidence for a QTL segregating, the smaller the empirical  confidence interval for its 
location. The size of the average confidence interval depended heavily on  the  population size and  the 
effect of the QTL. Marker spacing had only a small effect on  the average empirical  confidence interval. 
The LOD drop-off method  to calculate empirical support intervals gave confidence intervals that gener- 
ally were too small, in  particular if confidence intervals were calculated only for samples above a  certain 
significance threshold. The bootstrap method is  easy to implement  and is useful in the analysis of 
experimental data. 

F OR many plant and animal species, genetic maps 
are available  with a large number of highly  poly- 

morphic markers. Recently, statistical methods have 
been developed to use map  information to detect  quan- 
titative trait loci (QTLs) . These  methods can be applied 
to data  from crosses between inbred lines (LANDER and 
BOTSTEIN 1989; HALEY and KNOTT 1992),  data from 
crosses between outbred lines (HALEY et al. 1994), and 
to outbred  populations (FULKER and CARDON 1994; 
GEORGES et al. 1995). All these methods have been a p  
plied successfully to experimental and field data (e.g. ,  
PATERSON et al. 1989; ANDERSON et al. 1994; CARDON et 
al. 1994; GEORGES et al. 1995). There  are still problems 
remaining with  all these methods, for example, how to 
deal with multiple QTLs ( JANSEN 1993, 1994; ZENG 
1993, 1994), how to set a significance threshold when 
testing for  a QTL (LANDER and BOTSTEIN 1989; 
CHURCHILL and DOERGE 1994; REBAI et al. 1994),  and 
what the  null hypothesis should be when testing for 
QTLs (VISSCHER and HALEY 1996). 

All QTL mapping  methods,  whether based on maxi- 
mum likelihood (LANDER and BOTSTEIN 1989) or  on 
regression (HALEY and KNOTT 1992; MARTINEZ and 
CURNOW 1992) do  not  lend themselves to a straightfor- 
ward calculation of a confidence interval (CI) for  the 
QTL location. Such a CI is important in practice, be- 
cause it may determine  the strategies for further experi- 
ments to get closer to the QTL, or for using the QTL 
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in breeding programs. For example, when using mark- 
ers to introgress a QTL allele from a donor population 
into  a  recipient  population, one strategy could be to 
introgress a donor marker haplotype that covers the 
95% CI for  the QTL. The methods used in practice (ie., 
the  method used in widely used computer  programs) to 
calculate CI for QTL locations is the so-called  LOD 
drop-off method (LANDER and BOTSTEIN 1989). Using 
this method,  the CI is calculated by finding  the location 
at  either side of the estimated QTL location that  corre- 
spond to a decrease in the LOD score of 1 or 2 units. 
The total width corresponding to a 1 or 2 LOD drop- 
off  is then taken as the  confidence interval, and, asym- 
potically, these should be approximately equivalent to 
96.8 and 99.8% CI,  respectively (MANGIN et al. 1994). 
However, using differences in likelihood between the 
estimated location of the QTL and locations elsewhere 
on  the  chromosome to determine  approximate 90 or 
95% CI may be biased for small and medium-sized p o p  
ulations (VAN OOIJEN 1992; MANGIN et al. 1994), be- 
cause then  the  distribution of the test  statistic does not 
truly  follow a chi-square distribution. For example, VAN 
OOIJEN (1992) showed by simulation that  the  propor- 
tion of confidence intervals based on a  support interval 
of 1 LOD that  contained  the QTL varied from 0.73 to 
0.84, depending  on  the size of the QTL and  the type 
(backcross or F2) of population (and size). CI were 
calculated only for samples that gave significant evi- 
dence of a segregating QTL. Similarly, MANGIN et al. 
(1994)  found by simulation that  the 90% CI was biased 
downward, i e . ,  the  proportion of 90% CI that con- 



1014 P. M. Visscher, R. Thompson  and C.  S. Haley 

TABLE 1 

Effect of number of bootstrap  samples  and 
heritabilities on  confidence  intervals 

h‘ n nb CI90‘ P90d  CI95 P95 

0.01  50  89 0.98 94 0.99 
100 88 0.98 95 0.99 
200 87 0.98 94 0.99 
400 88 0.99  95  1  .00 
800 89 0.99 95 1 .OO 

0.05  50  62 0.93 73 0.96 
100 59 0.94 75 0.97 
200  60 0.95 72 0.98 
400 59 0.94 71 0.98 
800 59 0.94 71 0.98 

0.10 50 41 0.93 52 0.96 
100 37 0.91 50 0.96 
200  39 0.91 49 0.96 
400  37 0.91 47 0.97 
800  39 0.90 49 0.95 

Data for 200 backcross individuals were simulated with a 
100-cM chromosome with markers every 20 cM. The QTL is 
located  at 55 cM from one  end of the chromosome. 

Heritability. 
Number of bootstrap samples. 
CIx is the mean width of the x% confidence interval (in 

‘‘ PIX is the proportion of the x% confidence intervals that 
cM) . 

contain the QTL. 

tained  the simulated QTL was <0.90, in  particular  for 
QTLs that  explained  a small amount of variation and 
for  dense  marker maps. For example, for a backcross 
population of 200 individuals, the empirical probabili- 
ties that  the  90% CI based on the LOD drop-off method 
contained  the actual location of the QTL was -0.84 
and 0.74 for  a  map density of  20 and 5 cM,  respectively. 
Hence,  the  “one LOD drop  off’ concept as proposed 
by LANDER and BOTSTEIN (1989) is not recommended 
for use in practice, because the actual drop-off needed 
varies  with each study and each QTL. Other methods 
to calculate the CI  of QTL positions in  populations 
derived from crosses between inbred lines have so far 
relied on simulation (VAN OOIJEN 1992; DARVASI et al. 
1993; MANGIN et al. 1994). For the case of  two flanking 
markers, MANGIN et al. (1994) derived complex analyti- 
cal formulae  for  confidence intervals, assuming normal- 
ity  of residuals. Experimental QTL mapping popula- 
tions are usually not large, typically in  the  range of 100 
to 500 observations, and  the distribution of the  data 
may not  be normal, nor will many assumptions made in 
simulation studies (e.g., evenly spaced fully informative 
markers) hold in practice. 

We propose use of a  bootstrap  method (EFRON 1979, 
1982) to determine  approximate  confidence intervals 
for the position of QTLs in practice. The aim of this 
study is to test, by simulation, how  well the  bootstrap 
method works in QTL mapping  experiments and to 

suggest how to use it in practice. Specific questions 
addressed were  as  follows. (1) How does the  bootstrap 
CI compare to CI derived from the LOD drop-off 
method? (2) Does the  proportion of  CI that contain 
the QTL depend  on  the  (true) position of the QTL on 
the  chromosome? (3) What are  the sizes  of the 90 and 
95% CI for relatively  small experimental  populations? 

MATERIALS AND METHODS 

Simulation: Data for N individuals ( N  = 200 or 500) from 
a backcross (BC) population derived from inbred lines were 
simulated. For each individual, single chromosomes of 100 
cM with  six or 11 ( m  = 6, 11) evenly spaced fully informative 
markers (including markers  at the  ends) were simulated. 
Hence, markers were spaced  at either A = 10 or 20 cM. 
Crossovers were generated assuming HALDANE’S mapping 
function without  interference (-DANE 1919). The  chromo- 
somes contained a single QTL, and its additive effect was 
determined so as to obtain heritabilities in the BC population 
of 1,  5, and 10%. Environmental residuals were normally dis- 
tributed.  The position of the QTI, ( d )  was either  at 15 or 
55 cM from the start of the chromosome. For each  set of 
parameters, 1000 replicate BC populations were simulated. 

Model  for  analysis: Data were analyzed with a variation of‘ 
the regression method of HALEY and KNOTT (1992). Their 
method fits a putative QTL at different places along the  chro- 
mosome (e.g., at 1-cM intervals) and calculates the test statistic 
at each point.  The position giving the largest test statistic is the 
most likely position for  a QTL. It can be shown (WHITTAKER 
et al. 1996) that instead of performing a  search along  the 
chromosome, identical answers can be obtained by per- 
forming a  multiple regression of phenotypes on pairs of 
flanking  markers and transforming the estimated effects of 
the two markers in each regression to estimates of the QTL 
effect and its location. So, instead of a  search at 1-cM intervals, 
the search is over ( m  - 1) pairs of markers. This method was 
preferred because of its speed of calculation. Test statistics 
were calculated using a  likelihood  ratio test, assuming that 
residuals are normally distributed. Only a single putative QTL 
was postulated  in the model  fitted. 

Bootstrapping: Bootstrap samples were created by sam- 
pling with replacement Nindividual observations. An observa- 
tion consists of’ a  marker  genotype and a  phenotype. So, at 
each  bootstrap  sample, we draw, with replacement, Nobserva- 
tions out of the pool of (N) original observation. Some re- 
cords can appear  more  than  once in  a  bootstrap  sample, while 
others  are  not  included  at all. After n bootstrap samples, the 
empirical central 90 and 95% CI  of the QTL position was 
determined by ordering  the n estimates and taking the bot- 
tom and  top fifth and 2.5th percentile, respectively. Thus,  for 
each  simulated backcross population an empirical  bootstrap 
confidence interval was obtained,  and  the simulated QTL lies 
either within or outside this empirical  confidence interval. 
Averaged over replicate  populations, the  proportion of empir- 
ical bootstrap CI that contain the QTL was calculated. If the 
method works perfectly, this proportion would be 0.90 (0.95) 
when the 90% (95%) empirical  bootstrap CI  was determined. 
For each parameter  set, 1000n (1000 replicates X n bootstrap 
samples)  QTL mapping analyses were done. 

LOD drop-off  support  interval: For limited combinations 
of parameters,  confidence intervals were calculated also with 
the LOD drop-off method.  In these cases, a putative QTL wdS 

fitted  at 1-cM intervals, and a support interval was constructed 
by taking the interval corresponding  to a drop in the test 
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TABLE 2 

Effect  of  population  size  and  heritabfity on confidence  intervals  derived from 
bootstrapping  and  the LOD drop-off  method 

Bootstrap LOD  drop-off 

N" h2 CI90" P90d C195  P95  CI90  P90  C195  P95 

200  0.01 87 0.98  94  0.99  68 0.83 80  0.92 
0.05 60 0.95 72 0.98  38  0.86 48 0.93 
0.10 39 0.91 49 0.96  23 0.83 29 0.92 

500 0.01 76  0.96 86 0.99 56  0.87 68  0.94 
0.05 33 0.91 43 0.96 21 0.85 26 0.93 
0.10 18 0.90  24  0.95 13 0.86 16 0.94 

Data  were simulated with a 100-cM chromosome with markers every 20 cM. The QTL is located at 55 cM 

a Population size. 
'Heritability. 

from one  end of the chromosome. The number of bootstrap samples was 200. 

CIx is the mean width of the x% confidence interval (in cM). 
PIX is the  proportion of the x% confidence intervals that contain the QTL. 
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statistic of 2.71 and 3.84, for a 90% and 95% CI, respectively. 
As detailed in MANGIN et al. (1994), asymptotically these values 
correspond to a 90 and 95% support interval when the test 
statistic is distributed at a x' with one degree of freedom. The 
values from the x' correspond to a drop in  the LOD of 0.58 
and 0.83, respectively. 

RESULTS 

The  number of bootstrap  samples (n): For a QTL  of 
large effect (giving a h2 of 10%) at 55 cM for the start 
of the  chromosome, results are presented  in Table I 
for  a population size  of N = 200. It  appears  that in 
general  there  are only  small differences in CI and pro- 
portions of  CI that  contain  the QTL for  different values 
of n, which is as expected, since the effect of n is on 
the variation of  CI and  not  on  their mean values. In 
some cases, results for small n (50) seem to be slightly 
different from those with n > 50. For the 90 and  95% 
CI there is little change for values for n 2 100, erring 
on  the side of caution, we used n = 200 in subsequent 
simulations. Nearly  all empirical bootstrap CI  were 
slightly  conservatively biased, in that  the  proportion of 
90 and  95% CI that  contained  the QTL  usually  were 
>0.90 and 0.95,  respectively.  Only for h2 = 0.10 were 
the  proportions very close to  the desired values of 0.90 
and 0.95. 

The  population  size ( N ) :  In Table 2 two population 
sizes are  compared for the  bootstrap  method and the 
LOD drop-off method. The CI are much smaller for 
the larger population, very roughly by a factor of 2. For 
the  larger  population size ( N  = 500), the empirical CI 
seemed to  be unbiased for heritabilities of 0.05 and 
0.10 for the  bootstrap  method.  Suppport intervals for 
the LOD  drop-off method generally were  anti-conserva- 
tive, i.e., the probabilities that  the 90 and 95% support 
intervals contained  the QTL were <0.90 and 0.95. 

Marker  spacing (A): Using either  a  marker spacing 

of 10 or 20 cM for  the QTL mapping  did  not result in 
very different empirical CI (Table 3).  

Position of the QTL: Results for  the position of the 
QTL at  either 15 or 55 cM are  presented in Table 4. It 
appears  that  the empirical CI from the bootstrap 
method is not sensitive to the position of the QTL. 

Type-I  error: For  QTL  with  small  effects the analysis 
will occasionally  pick up spurious QTL elsewhere on 
the chromosome. These type-I errors  are  expected  to 
bias the empirical CI. To investigate this, correlations 

TABLE 3 

Effect on marker  spacing,  population size, and 
heritabilities on confidence  intervals 

N" Ab h" C190d P90" C195  P95 

200 10 0.01  85  0.99 93 1 .oo 
0.05  58  0.95 70 0.98 
0.10 37  0.92  47  0.96 

20 0.01 87 0.98 94 0.99 
0.05 60  0.95 72 0.98 
0.10 39  0.91 49 0.96 

500 10 0.01 74 0.98  84  0.99 
0.05  33 0.92  43  0.97 
0.10  17  0.91 22 0.96 

20 0.01 76  0.96 86 0.99 
0.05 33 0.91 43  0.96 
0.10 18  0.90 24 0.95 

Data are simulated with a 100xM chromosome with mark- 
ers every 10 or 20 cM. The QTL is located at 55 cM from one 
end of the chromosome. The  number of bootstrap samples 
was 200. 

a Population size. 
Marker spacing in cM. 
Heritability. 
CIx is the mean width of the x% confidence interval (in 

e PIX is the  proportion of the x% confidence intervals that 
cM) . 

contain the QTL. 
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TABLE 4 

Effect  of QTL position,  population  size,  and 
heritabilities  on  confidence  intervals 

w d b  h2' CI90" P90' C195 P95 

200 15 0.01 90 0.93 96 0.97 
0.05 66  0.90  77  0.95 
0.10 38  0.90  50  0.94 

55 0.01 87 0.98 94 0.99 
0.05 60 0.95 72 0.98 
0.10 39 0.91 49 0.96 

500 15 0.01 81 0.91 89 0.96 
0.05 32 0.90 43 0.95 
0.10 16 0.90 20 0.94 

55 0.01 76 0.96 86 0.99 
0.05 33 0.91 43 0.96 
0.10 18 0.90 24 0.95 

Data were simulated with a 100-cM chromosome with mark- 
ers every 20 cM. The QTL is located  at 15 or 55 cM from  one 
end of the chromosome. The  number of bootstrap samples 
was 200. 

Population size. 
'Position of the QTL on  the  chromosome in cM. 
' Heritability. 

CIx is the  mean width of the x% confidence interval (in 

PIX is the  proportion of the x% confidence intervals that 
cM) . 

contain the QTL. 

were calculated between the test statistic, the absolute 
difference between the  true  and estimated position of 
the QTL, and  the width of the  bootstrap CI.  Results are 
shown in Table 5. The correlation between the absolute 
difference between true and estimated QTL location 
and  the test  statistic was in the  range of -0.1 to -0.2, 
i.e., the larger the test statistic, the smaller the deviation 
from the  true QTL location. Correlations between the 
test statistic and  the bootstrap 95% CI were larger,  in 
the  range of -0.5 to -0.8. For different  population sizes 
and heritabilities, the  correlation between the deviation 
fiom  the  true QTL location and  the CI were  very  simi- 
lar, with  values  of -0.2. 

In practice, CI will be calculated only for QTL effects 
that  are  deemed significant. Given the large negative 
correlation between the test  statistic and  the width of 
the CI, we would expect  the average CI to be smaller 
and less biased for those experiments (or replicates) in 
which there is strong evidence for  the  presence of QTL. 
To investigate this, we calculated the CI for significant 
replicates only.  First, the 95% percentile of the test 
statistic was calculated for  the case  of no segregating 
QTL (h' = O ) ,  using 10,000 simulated populations. 
Thresholds  that gave a type-I error of 5% for  a  marker 
spacing of 20 cM and for  populations sizes  of 200 and 
500 were 6.8 for  both  population sizes (results not 
shown elsewhere),  corresponding to a LOD  of 1.5. Em- 
pirical CI  were determined  for  the  bootstrap  method 
and  the LOD drop-off method, only for those simulated 

TABLE 5 

Correlations  between  the  test  statistic,  the  absolute 
difference between  the  true  and  estimated  QTL 

position,  and  the 95% bootstrap  confidence  interval 

N" 

200 0.01 25 -0.25 -0.74  0.22 
0.05 11 -0.22 -0.75  0.29 
0.10 7 -0.12 -0.59 0.25 

500 0.01 17 -0.24 -0.76 0.23 
0.05 6 -0.13 -0.61 0.22 
0.10 4 -0.06 -0.45 0.18 

h2 b 6' r(T, 6)" r(T, CI)' r(6,  CI)' 

Data were simulated with a 100-cM chromosome with mark- 
ers every 20 cM. The QTL is located at 55 cM from  one  end 
of the chromosome. The  number of bootstrap samples was 
200. 

Population size. 
Heritability. 

'Absolute difference between the  true  and estimated QTL 
position. 

Correlation between test statistic and  the absolute differ- 
ence between the  true  and estimated  QTL position. 

e Correlation between the test statistic and  the width of the 
95% confidence interval. 

'Correlation between the absolute  difference between the 
true  and estimated QTL position and  the width of the 95% 
confidence interval. 

populations in which the test  statistic exceeded the 
threshold value (Table 6) .  Although the CI were still 
biased upward for  the  bootstrap  method,  the  propor- 
tions of  CI that  contained  the QTL  were closer to the 
desired values  of 0.90 and 0.95 than  the CI based on 
all simulated populations (Tables 1-4).  For the LOD 
drop-off method, empirical probabilities that  the sup- 
port intervals contained  the QTL location were biased 
downward, in some cases  severely so. For example,  for 
heritabilities of 0.01, the  proportion of 90% support 
intervals that  contained  the QTL were 0.57 and 0.80 
for  a sample size  of 200 and 500, respectively, and 0.69 
and 0.88 for  the 95% support intervals (Table 6) .  

DISCUSSION 

Empirical  confidence  intervals: A bootstrap  method 
was used to determine empirical 90 and 95% confi- 
dence intervals for the location of a QTL. The method 
worked well, i .e.,  the  proportion of empirical CI that 
contained  the QTL  was close to expectation (either 90 
or 95%), in  particular if  CI are  determined only for 
those populations with significant QTL  effects. The 
bootstrap  method is extremely easy to implement and 
is very  fast if used in  conjunction with regression-based 
interval mapping.  Performing 200 bootstrap samples 
for one simulated population took only about 2 CPU 
sec for N = 200 and -5 CPU  sec for N = 500 on a DEC 
Alpha-3000 workstation. This compares to hours of 
CPU time when using maximum likelihood (CHURCH- 
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TABLE 6 

Effect of type1 errors on confidence  intervals  for the bootstrap and LOD drop-off method 

Bootstrap LOD  drop-off 

NU h2 Power" C190d  P90"  C195 P95 CI90 P90 C195 P95 

200 0.01 0.21 61 0.94 75  0.97  30  0.57 40 0.69 
0.05 0.75  49 0.91 63 0.96 31 0.83 39  0.91 
0.10 0.98 36 0.90  46 0.95 23 0.83  28  0.91 

500 0.01 0.40  59 0.94 73 0.97 33 0.80 43 0.88 
0.05 0.99  32 0.9'2 42 0.95 20 0.84  25  0.93 
0.10 1 .oo 18 0.90  24 0.95 13 0.86 16 0.94 

Data were  simulated with a 100-cM  chromosome with markers  every 20 cM. The QTL is located  at 55 cM 
from  one end of the chromosome.  The  number of bootstrap  samples was 200. Confidence intervals were 
determined if the test statistic was  above threshold 6.8. 

Population  size. 
Heritability. 

CIx is the mean  width of the x% confidence  interval (in cM). 
'Power is the  proportion of simulations  for  which  the test statistic was above 6.8. 

'PIX is the  proportion of the x% confidence intervals that  contain  the  QTL. 

ILL and DOERCE 1994). However,  as these authors 
pointed  out,  the cost of running a  computer  for  a cou- 
ple of hours or days  is  trivial compared to the cost  of 
collecting genotypes and phenotypes, and thus it would 
be reasonable to  combine  bootstrap resampling with 
the maximum likelihood analysis. We do  not expect 
that using maximum likelihood instead of linear regres- 
sion would alter our conclusions as the  methods  gener- 
ally  give  very similar results (HALEY and KNOTT 1992; 
MARTINEZ and CUFWOW 1992). We used regression be- 
cause of  its  simplicity and speed of computation. 

Although simulations were not performed using dif- 
ferent  assumption, e.g., data from F2 populations, un- 
equal  marker spacing, not fully informative markers, 
nonnormal  data,  there is no reason why the  method 
cannot  be  applied to other kinds of data. Indeed, it is 
the flexibility  of the  bootstrap  method  that makes it 
attractive to use in practice. 

Depending on how the information from a QTL m a p  
ping  experiment is used subsequently, a  confidence in- 
terval may be too  crude  a way to summarize the findings. 
For example, if the ultimate aim  of an experiment is to 
clone  the QTL, a precise location estimate is needed. 
In  that case, a  posterior distribution of the QTL location 
may be  more  appropriate  than  a simple confidence in- 
terval. An empirical posterior distribution of the QTL 
location can be obtained by bootstrapping. Figure 1 
gives a  standard  representation of a test  statistic plotted 
against the position along  the  chromosome  for  a single 
BC population of  200 individuals. The replicate was se- 
lected because of its shape, i.e., near  the maximum test 
statistic the curve appears bimodal (or  trimodal). This 
was done to mimic situations in practice for which it is 
not clear whether  there  are two distinct peaks  (QTLs) 
or whether  the peaks are caused by a single QTL. Subse- 
quently, 10,000 bootstrap samples were taken, and  the 
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frequency distribution of the QTL location was calcu- 
lated. This empirical distribution is shown in Figure 2. 
It  appears  that  the trimodal shape from Figure 1 is ac- 
centuated in the frequency distribution. There seems 
clear evidence that  the QTL is not  at  the markers, while 
the probability of locating the QTL at  either positions 
50 or 70 cM  is similar. The same conclusion could have 
been drawn from Figure 1, since the difference in the 
likelihood ratio test  statistic is small between positions 
50,70, and 90. Other replicate populations showed em- 
pirical bootstrap distributions of different shapes, often 
with a clear single peak. One use  of the empirical fre- 
quency distribution of the QTL location in practice 
might be to calculate the empirical probability that  the 
QTL  lies  within each interval for use in marker-aided 

o !  I .  I I 
0 20 4 0  60 80 100 

Position  on chromosome (cM) 

FIGURE 1.-Test  statistic  plotted  along the chromosome for 
a single backcross  population of 200 individuals.  The QTL 
was at 55 cM and  explained 10% of the phenotypic variance. 



1018 P. M. Visscher, R. Tho1 mpson  and C. S. Haley 

0 20 4 0  60 80 100 

cM 

FIGURE 2.-Empirical frequency distribution of the  esti- 
mated  position of a QTL from 10,000 bootstrap  samples from 
data of a single backcross population of 200 individuals  (see 
Figure 1). 

selection programs. For example, the empirical proba- 
bilities could be used as  weights  in  marker-assisted  selec- 
tion breeding programs, thus taking account of the un- 
certainty about  the location of a QTL. 

The average  width  of the CI changed little with in- 
creasing marker spacing and decreased by more  than 
the square root of  2.5 (500/200) when population size 
increased from 200 to 500. Under normality, we would 
expect the CI to be  proportional to the square root of 
N. The actual dependence of the CI width  of marker 
spacing and population size  is  possibly due to the 
change in the posterior distribution of the QTL  loca- 
tion, which  is nonlinear in A and N. Also, the CI has an 
upper  bound of 100 cM, the  length of the chromosome. 

In  the  present study we investigated the use  of the 
bootstrap technique only to estimate empirical CI for 
a single QTL. In practice, evidence for multiple QTLs 
per chromosome may be  found  either by employing 
a multidimensional search (HALEY and KNOTI 1992; 
MARTINEZ and CURNOW 1992) or by using the  methods 
proposed by JANSEN (1993, 1994) and ZENG (1993, 
1994). When using a  direct search for two or more 
QTLs, application of the bootstrap seems  obvious: for 
each bootstrap sample, one searches for the same num- 
ber ( 4 )  of  QTLs  as detected in the original data sample, 
so that q locations are estimated in each bootstrap sam- 
ple. After n bootstrap samples, either marginal or  joint 
empirical CI can be  determined using all location esti- 
mates. When using the  method of JANSEN or ZENG, 
which  fits cofactors in the model of  analysis to condition 
on QTLs elsewhere in the  genome, it becomes less clear 
from which pool to draw the bootstrap samples, because 
part of their  method is to preselect which markers will 
be fitted in the model when performing  the interval 

mapping. If the criterion to select markers as cofactors 
is kept constant across bootstrap samples, then by 
chance only one  or even no intervals may be further 
explored to map  the QTLs. Perhaps a logical way to 
apply the  bootstrap in the cofactor method is to deter- 
mine  the empirical CI of one QTL at  a time, by keeping 
the cofactors fixed  across bootstrap samples. Hence, 
when detecting q QTLs, one would perform n bootstrap 
samples for each of the QTLs. However, further work 
is needed  on finding CI for multiple QTL. 

The aim of  this  study was to investigate the CI for 
QTL locations. However, the bootstrap method can 
equally be applied to other parameters in the model of 
analysis. To illustrate this, we calculated the empirical 
distribution of the additive  QTL effect for N = 200, h2 
= 0.10 (allele substitution effect = 0.67), and A = 20. 
The 90 and  95% CI widths for QTL  effects  were  0.50 
and 0.62,  respectively. The proportion of  CI that con- 
tained the  true QTL effect was 0.89 and 0.95,  respec- 
tively. However, in these cases an empirical CI can be 
determined also by calculating the empirical standard 
error of the effect from the  linear model (see, for exam- 
ple, DARVASI et al. 1993). Applying  this procedure gave 
CI widths of 0.50 and 0.60,  respectively,  with  0.89 and 
0.94  of empirical CI containing  the  true QTL  effect. 
Hence, calculating the empirical standard  errors di- 
rectly from the  data using the inverse of the X’ X matrix 
(regression) or information matrix (maximum likeli- 
hood) may be preferred. [Note that DARVASI et al. 
(1993) present  the  standard  errors of the estimate of 
the  mean of one  the QTL genotypes in a backcross 
population in their Table 3.  However, the expectation 
of that genotype class  is the  mean, so that  the  presented 
standard  errors  are  just those pertaining to the overall 
mean,  and  not to the additive effect as suggested by the 
authors.] 

Bootstrapping has been  applied to other problems 
in genetics. For example, FELSENSTEIN (1985) has ap- 
plied it to find confidence limits for phylogenies, and 
CHIANO  and YATES (1994) have used bootstrapping in 
human genetic linkage analyses. 

Bootstrapping vs. LOD drop-off method: Our results 
confirm those of VAN OOIJEN (1992) and MANGIN et 
al. (1994), in that  the empirical CI obtained  from  a 
difference in the likelihood ratio generally is biased 
downward. Calculating support intervals  only for sam- 
ples that were deemed significant did not remove  this 
bias for the LOD drop-off method,  and in some cases 
made it worse (for h2 = 0.01, compare Tables 2 and  6). 
In contrast, the bootstrap CI  were generally less  biased 
if only significant replicates were used to construct SUP- 

port intervals. We can explain this difference if we imag- 
ine  a QTL with an infinitesimal effect, which  would 
result in a  proportion of significant samples approxi- 
mately equal to the type-I error rate. Applying the LOD 
drop-off method for those, say, 5%  of samples would 
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give a surface around  the estimated QTL location that 
is too  steep, giving support intervals that  are  too small. 
The (spurious) QTL are  detected because of sampling 
variation, i.e., by chance  there is a  difference  in perfor- 
mance between individuals that have inherited markers 
from the two inbred lines. However, in  the  bootstrap 
method some of the  chance associations are  broken up, 
because at each  bootstrap sample a  different subset of 
the  population is represented. Note that in this study 
a  rather lax significance threshold was used because it 
was based on a single chromosome only. In practice, 
the significance threshold will be based on  the  entire 
genome,  and  the difference between the LOD drop-off 
method  and  the  bootstrap  method is likely to be larger. 

Bootstrapping in linear models: The bootstrap 
method we choose, i.e., sampling with replacement 
whole records  (marker genotypes plus phenotypes), is 
only one  out of many  possible bootstrap strategies. 
There is no clear recipe on how to perform bootstrap- 
ping under linear models (WU 1986; HU and ZIDEK 
1995). Different bootstrap algorithms may be used de- 
pending  on whether (1) residuals in the linear  model 
are  independently  and identically distributed, ( 2 )  vari- 
ances are  homogeneous or heterogeneous, or (3) ef- 
fects that  are fitted in  the  model  are selected. Most 
studies so far have concentrated  on (1) and ( 2 )  for  a 
fixed linear  model. When mapping QTL using linear 
regression, we are  not strictly dealing with a fixed lin- 
ear  model with homogeneous residual variances, be- 
cause the effects (markers)  that  are fitted in the  model 
are  a selected subset and because the actual QTL geno- 
types are  not observed so that variances are  heteroge- 
neous. Only in  the case of a very powerful experiment 
would the same markers (flanking  the  true QTL loca- 
tion) be selected that  are fitted in  the  linear model. 
One  argument against our sampling algorithm is that 
the design of the  experiment varies  over bootstrap sam- 
ples (N.B. a  different set of marker genotypes are  con- 
tained in each  bootstrap  sample), and therefore  the 
bootstrap CI of the QTL position includes variances due 
to different designs. An alternative sampling scheme is 
to calculate fitted values and residuals from the original 
data  and  then sample with replacement only residuals, 
so that  the design is held  constant over bootstrap sam- 
ples (EFRON 1979; WU 1986). We tried this method  and 
found  that  the CI  were biased downward, i.e., they were 
anti-conservative. This was particularly the case for QTL 
of large effects. For example,  for N = 500 and A = 20 
and a QTL explaining  50% of the variance, the average 
90 and 95% CI widths  were 8 and 10 cM,  respectively, 
and  the  proportion of CI that  contained  the QTL were 
0.79 and 0.85, respectively. Thus it appears  that this 
bootstrap sampling scheme  did not create  enough boot- 
strap variance of the QTL location. Until other boot- 
strap  algorithms  are  found  that  perform markedly bet- 
ter, we prefer  the algorithm proposed  in this study 
because of  its  simplicity and ease of  application. 

Other  resampling  schemes: The permutation test 
suggested by CHURCHILL and DOERGE (1994) is another 
resampling scheme. However the  purpose of the per- 
mutation test and  the  bootstrap  method  are  different. 
The  permutation test is used to determine  an empirical 
threshold  for significance testing, whereas the boot- 
strap method, as applied in this study, is used to deter- 
mine an empirical confidence interval of a QTL loca- 
tion in the belief that  there is an effect present. In 
practice, one could use both resampling methods: first, 
the  permutation  method to test for  a significant QTL 
effect, and given significance, then  the  bootstrap 
method to find an empirical confidence interval for  the 
location of that QTL. An alternative approach is to  use 
bootstrappping  for  both significance testing and CI cal- 
culations, since given the empirical bootstrap distribu- 
tion of the QTL effect a probability statement can be 
made analogous to a significance test (e.g. ,  the empiri- 
cal probability that  the QTL effect is zero). However, 
unlike the  permutation test, this approach does not 
take multiple testing into  account and would result in 
too many  type-I errors. 
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