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H ALEY and KNOTT (1992) developed a simple re- 
gression method  for mapping quantitative trait 

loci  (QTLs) using F2 populations. MARTINEZ and CUR- 
NOW (1992) considered  the same approach using back- 
cross populations. Studies that  compare  the regression 
method with that of LANDER and BOSTEIN’S (1989) max- 
imum likelihood find very little difference between the 
two methods. The simple regression method offers a 
great advantage over the maximum likelihood method 
in terms of computing  speed. MARTINEZ and CURNOW 
(1992) state that  the difference between the two meth- 
ods arises  solely because the residual term in the  linear 
model does  not have a  normal  distribution, being a 
random variable from one of  several normal distribu- 
tions. Theoretically, the regression method  should suf- 
fer from the failure of the assumption of normality 
within marker genotype due to  the segregation of the 
QTL, but  the  great majority  of information is contained 
in mean differences between marker genotypes with 
little coming from the within marker genotype distribu- 
tion (HALEY and KNOTT 1992).  Therefore, the effi- 
ciency of the simple regression method is unlikely to 
be substantially less than  the maximum likelihood ap- 
proach (MARTINEZ and CURNOW 1992). 

The parameters of primary interest in QTL mapping 
are  the positions and effects  of  QTLs.  However, estima- 
tion of the residual variance is also important  for  the 
following reasons: (1) Effects  of  QTLs are only mean- 
ingful when reported relative to the size  of the residual 
standard deviation; (2)  The test statistic (t-test) is deter- 
mined by the ratio of the estimated QTL effect to its 
standard deviation while the  latter is proportional to 
the residual standard deviation; ( 3 )  Constructing con- 
fidence intervals about  the estimated effects  of the 
QTLs requires knowledge of the residual standard devi- 
ation (through  the t-test statistic). Although the simple 
regression method provides good estimates of positions 
and effects  of QTLs, estimation of the residual variance 
tends to be biased. Unfortunately, there has been no 
attempt to investigate the bias  in the  literature. This 
short  note  reports  the result of theoretical derivation 
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of the bias and proposes a simple method  to  correct it. 
The theory is verified from a Monte Carlo simulation 
experiment. 

Consider, for simplicity, a backcross population de- 
rived from two inbred  parental lines fixed for alterna- 
tive alleles at all  QTLs and marker loci and we want to 
test for the presence of a QTL flanked by  two markers. 
We can use genotypes of the two markers to predict  the 
genotype of the putative QTL and write the statistical 
model as 

y j = p o + p x j + € j  j =  1 , .  . . , ?z (1) 

where yj is the trait value of the jth plant, Po is the 
mean of the model, p is the effect of the putative QTL 
expressed as the difference between  homozygotes and 
heterozygotes, xi is an  indicator variable, taking a value 
1 or 0 depending  on  the genotype of the QTL, and ej - N(0, (T:) is the residual including random environ- 
mental effect and effects  of other QTLs not explained 
by the markers. 

Model (1) appears  the same but is different from the 
usual linear model in that  the  independent variable, xi, 
is not directly observable; rather, it has a probability 
distribution that can be inferred from genotypes of 
flanking markers and  the position being tested for the 
putative QTL. Disregard the fact that xj is  missing, the 
mean and variance of yj conditional on xi are E(y,l xi) 
= Po + p x j  and Var(yj( x,) = cr:, respectively. 

If the QTL is not at  a marker locus, given the geno- 
types  of flanking markers, 3 is still uncertain  and has 
to be treated as a  random variable. Therefore,  the mean 
and variance of yj conditional on flanking marker geno- 
type are 

E(yjl marker) = Po + PE( xi/ marker) 

and 

Var (yjl marker) = pwar ( xjl marker) + a: 
respectively, where E( xi[ marker) = p,, Var( 31 marker) 
= pi( 1 - pi) and pj is the probability of xi = 1 conditional 
on the flanking marker genotype and  the position of 
the QTL.  Because marker genotypes provide informa- 
tion about  the QTL through pj ,  the above conditional 
mean  and variance can be expressed by 
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TABLE 1 

Comparison of  regression (RG) and  maximum likelihood (ML) analyses of data from  a 
simulated  backcross  population of  size 1000 

20 cM spaced 50 cM spaced 

P P CMA BT* d P cM.4 Bf* U3 

0.5 
ML 0.489 (0.072) 10.03 (3.558) 1.004 (0.046) 0.498 (0.084) 25.50 (6.185) 1.000 (0.050) 
RG 0.488 (0.072) 10.03 (3.622) 1.017 (0.046) 1.012  0.499 (0.085) 25.30 (5.920) 1.030 (0.048) 1.029 

ML 0.991 (0.061) 9.86 (2.005) 1.007 (0.048) 1.014 (0.094) 25.17 (3.324) 1.014 (0.094) 
RG 0.991 (0.062) 9.93 (1.981) 1.056 (0.048) 1.049 1.015 (0.096) 25.16 (3.274) 1.015 (0.096) 1.116 

ML 2.003 (0.071) 9.94 (1.171) 0.999 (0.045) 1.989 (0.075) 24.85 (1.893) 1.010 (0.058) 
RG 2.002 (0.075) 9.90 (1.193) 1.197 (0.054) 1.197 1.996 (0.094) 24.97 (1.936) 1.464 (0.066) 1.462 

ML 3.994 (0.065) 10.07 (0.807) 1.008 (0.050) 3.991 (0.066) 24.69 (1.643) 1.012 (0.050) 
RG 4.007 (0.076) 9.99 (0.847) 1.785 (0.091) 1.789  4.001 (0.128) 24.69 (1.680) 2.844 (0.133) 2.848 

ML 7.997 (0.067) 10.08 (0.787) 1.002 (0.045) 7.991 (0.058) 24.98 (1.341) 0.995 (0.038) 
RG 7.987 (0.091) 10.07 (0.820) 4.166 (0.296) 4.156  7.993 (0.167) 24.99 (1.352) 8.349 (0.410) 8.394 

The table  shows the mean estimates of the  gene substitution effect ( P )  of the QTL and its distance from the first marker 
(cMA),  and the residual variance (with the  standard deviation of the estimates over 100 replicates in parentheses).  The true 
QTL location is in the middle of tested interval and the  true residual variance is uz = 1.0. 
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* In the RG method, c?: should be expressed by B:. 

Ebjl PJ = PO + PP, 
and 

Var(yjIpj) = Pj(1 - pi)@‘ + d = [ p j ( l  - PJY + 110: 

respectively, where y = p*/$. 

(1) as 
MARTINEZ and CURNOW (1992) reformulate model 

Yj = P o  + PP, + ej (2) 
and regress yj on pj to estimate P. HALEY and KNOTT 
(1992) also replace the missing  QTL genotype by its 
probability and use the same approach to interval map- 
ping in F2 populations. Note that  the residual, 5 ,  de- 
fined  under model (2) is not equivalent to E,. The vari- 
ance of ej is equivalent to the variance of yj conditional 
on p,, i.e., 

02, = Var(yjlpj) = [p,(l - pj)y + 110: 

which is not  homogenous  and has been inflated by the 
within marker genotype QTL variance. The  amount of 
inflation depends  on pj and y. When the simple regres- 
sion  analysis  is conducted under model (2), the “resid- 
ual variance” is expected to be 

OS = {yE[pj(l - p3)I + 1Id (3) 

where the  expectation, E[p,( 1 - pj)], takes the average 
of p,(l - pj) over j .  The actual residual variance is a:, 
but  the “residual variance” being estimated in the sim- 
ple regression analysis  is a:. The inflation could be sub- 
stantial if p is large compared  to 0:. 

The above derivation was verified by a Monte Carlo 

simulation experiment. Data  were simulated for 100 
replicates of 1000  backcross individuals from a cross 
between two inbred lines. For  simplicity, one chromo- 
somal segment was simulated with length of either 20 
or 50  cM. The chromosomal segment was flanked by 
two markers with a QTL located in the middle of the 
interval. The effect of the QTL was set at 0.5, 1.0, 2.0, 
4.0 and 8.0 residual standard deviations. Without loss 
of generality, the residual standard deviation was set at 
one (0: = 1). The probability (pi) of x, = 1 is deter- 
mined by the position of the QTL and the flanking 
marker genotypes assuming no interference (MARTINEZ 
and CURNOW 1992). HALDANE’S map function was used 
to convert the map distance into recombination fre- 
quency. When the size  of the interval is  20  cM, E[pj(l 
- p,)] = 0.0493, leading to a: = (0.04937 + 1)o: = 
1 + 0.0493 P’, while a: = 1 + 0.1155 p‘ if the  length 

of the interval is  50  cM. 
Results are listed in Table 1. The estimates of QTL 

position and effect from the two methods were  very 
similar, which is consistent with HALEY and KNOTT 
(1992). However, when p > 1.0, the residual variance 
was seriously  over estimated by the regression method, 
especially when 50 cM spaced markers were used. For 
example, when P = 4.0 and marker space is  50  cM, the 
mean estimate of 6; from the regression method is 
2.844,  while the mean estimate from the ML method 
is 1.012, very close to one  (the true  value).  The actual 
proportion of phenotypic variance explained by the 
QTL was SO%, but this proportion would be  reported 
as 58% from the regression analysis. 

In view  of the fact that a: is inflated when the simple 
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regression analysis  is used, we can adjust 0; to obtain 
an approximately unbiased estimate of a: by rearrang- 
ing (3), i e . ,  

0: = 0: - p2E[pj(1 - pj ) ]  (4) 

The expectation, E[p j ( l  - p j ) ] ,  is determined by the 
position of the QTL relative to the flanking markers 
and  the  length of the interval. In a backcross popula- 
tion,  there  are  four possible marker genotype classes, 
say AABB, AABb, AaBB and AaBb. Therefore,  the expec- 
tation, S[pj(l - p , ) ] ,  is 

E[pj(l - p j ) ]  = 2 Pr(xj = 1 IMi) 
4 

i= 1 

X [I - Pr(xj = 1 IM,)] Pr(Mj) 

where Mj denotes  the zth marker genotype class.  For 
example, if the marker genotype is AaBb, then Pr(&) 
= (1  - rI2)/2 and Pr(xj = 11%) = rlqrq2/(1 - r12), 
where rlq and rq2 are  the recombination fractions of the 
QTL with the left and the  right markers, respectively, 
and r12 denotes  the recombination fraction between the 
two marker loci. 

This note  does  not  intend to disqualify the simple 
regression method in QTL mapping. The effect of any 
individual QTL being tested is  usually  small for most 
polygenic traits, which  makes the regression method 

valid for most situations. However researchers who pre- 
fer  the regression method  need to be aware  of the fact 
that  the residual variance estimated from the simple 
regression method is inflated by part of the variance of 
the tested QTL. The inflation could be substantial when 
multiple markers are used simultaneously as  covariates 
(ZENG 1993,  1994; JANSEN 1993,1994), because the ac- 
tual residual variance could be small. Therefore, it is 
necessary to adjust this inflated estimation to obtain an 
unbiased estimate of the residual variance. 
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