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ABSTRACT 
The  substitution  processes  for  various  models of deleterious  alleles  are  examined  using  computer 

simulations  and  mathematical  analyses.  Most of the  work  focuses on the  house-ofcards  model, which is 
a popular  model of deleterious  allele  evolution.  The  rate of substitution is shown  to  be a concave  function 
of the  strength of selection  as  measured by a = 2Nu, where N is the  population size and u is the  standard 
deviation  of  fitness.  For a < 1, the  house-ofcards  model is essentially a neutral  model;  for a > 4, the  model 
ceases  to  evolve.  The  stagnation  for  large a may  be understood by appealing  to  the  theory of records.  The 
house-of-cards  model  evolves to a state  where  the  vast  majority  of  all  mutations  are  deleterious,  but  precisely 
one-half  of  those  mutations  that fix are  deleterious (the other half  are  advantageous).  Thus,  the  model 
is not a model  of  exclusively deleterious  evolution  as is frequently  claimed.  It is argued  that  there  are  no 
biologically  reasonable  models  of  molecular  evolution  where  the vast majority  of all substitutions  are 
deleterious.  Other  models  examined  include  the  exponential  and  gamma  shift  models,  the  Hartl- 
Dykhuizen-Dean  (HDD)  model,  and  the  optimum  model.  Of  all  those  examined,  only  the  optimum  and 
HDD models  appear  to  be  reasonable  candidates  for  silent  evolution.  None of the  models  are  viewed as 
good  candidates  for  protein  evolution,  as  none  are  both  biologically  reasonable  and  exhibit  the  variability 
in substitutions  commonly  observed  in  protein  sequence  data. 

I N the early  1970s, OHTA (1972, 1977) put  forth  the 
bold hypothesis that most amino acid substitutions 

involve deleterious mutations. In  one stroke she was able 
to account  for  the (then new) observations that  protein 
evolution is generally slower than silent evolution and 
that  proteins do  not exhibit  the generation-time effect 
of silent evolution. Today, OHTA’S mechanism-the sub- 
stitution of  mildly deleterious mutation-is often in- 
voked to account  for lowered substitution rates in spe- 
cific regions of the  genome. For example, KIMURA (1983) 
has argued  that  both  amino acid substitutions and silent 
substitutions in highly  biased coding regions are mildly 
deleterious. 

A mechanism of evolution involving the fixation of 
less fit alleles must necessarily require very special cir- 
cumstances in order to work.  At the very  least, the vast 
majority of mutations must be deleterious and popula- 
tion sizes cannot  be  too large. The early deleterious mu- 
tation models (KIMURA 1979; OHTA 1976) assumed that 
all mutations  are deleterious. Such models have come to 
be called shift models (OHTA 1992) as the distribution of 
selection coefficients must continually shift to assure 
that all new mutations  are less fit than  the most recently 
fixed mutation. 

The assumption that the vast  majority  of mutations are 
deleterious has  received  little  critical  scrutiny. In  her de- 
velopment of the model OHTA (1977)  simply  asserted  that: 

Since it is generally  accepted  that a great majority of new 
mutations  are  deleterious, it is natural to  assume that a great 
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majority of “borderline  mutations”  are also  very  slightly  del- 
eterious. 

Borderline mutations are those with deleterious ef- 
fects on  the  order of the reciprocal of the  population 
size,  which is many orders of magnitude smaller than  the 
smallest effect that can be measured experimentally. 
One could reasonable question whether mutations of 
large effect tell us anything at all about  borderline mu- 
tations. In fact, it has been  argued from biological prin- 
ciples that  mutations of  very small effect should be 
equally distributed between advantageous and disadvan- 
tageous effects (FISHER 1958; GILLESPIE 1987). 

The problem may be  approached from another di- 
rection entirely. Natural populations evolve to the  point 
where most mutations are  deleterious  through  the sub- 
stitution of advantageous mutations. At such time when 
all mutationally accessible advantageous alleles are ex- 
hausted, all newly arising mutations will be deleterious. 
This scenario is surely behind  the view that  the “great 
majority  of  new mutations are deleterious.” But is this 
how evolution works?  Will populations evolve to the 
point where the  great majority  of borderline mutations 
are  deleterious? The surprising answer to be developed 
here is that while the (not vast)  majority  of borderline 
mutations  are  deleterious, of those that fix, precisely 
half are  deleterious and half are advantageous. At 
the same  time,  the vast majority of all mutations  (in- 
cluding  those of both large and small effect)  are,  in 
fact,  deleterious.  Thus,  there is a strong  theoretical 
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argument  that calls into  question  the  common 
practice of using  experimental  observations  based on 
mutations of large  effect  to  infer the  properties of 
mutations-and more  importantly,  substitutions-of 
very small effect. 

These conclusions will come out of a more  general 
study  of nonexchangeable substitution processes. This 
study is the  third  in a series examining the classic models 
of population genetics in the  context of  WATTEFSON’S 
(1975) infinite-sites, no-recombination model of the 
gene. The previous articles (GIUESPIE 1993,  1994) dealt 
with the symmetrical overdominance, underdomi- 
nance, SASCFF, and TIM models. The present  paper 
deals with nonexchangeable models. That is,  with mod- 
els where the alleles in the  population  are not dynami- 
cally equivalent. 

Five models will be  examined. The first is the house- 
of-cards model (KINGMAN 1978). For this model, absolute 
fitnesses are assigned to additive alleles at  the time of 
their creation. The fitnesses are chosen from a normal 
distribution and  are  independent of the fitness of the 
parent allele. The house-of-cards model has been 
adopted as a model of molecular evolution and exam- 
ined in some detail by OHTA and TACHIDA (1990) and 
TACHIDA (1991). Many  of the results presented  here 
build on these papers. OHTA (1992) calls her version  of 
the house-of-cards model the f ixed  model to emphasize 
its distinctness from shift models. However, there seems 
little in favor  of using “fured” over the venerable “house- 
of-cards,” so the  latter will be used here. 

The second model is the  optimum model. Here each 
allele is assigned a value at  the time of  its creation. The 
fitness of a diploid individual is determined by using a 
quadratic deviation fitness function  centered at zero on 
the sum of the values  of the two alleles. As with the 
house-ofcards  model,  the value  of an allele is chosen 
from a normal distribution and is independent of that 
of the  parent allele. Unlike the  house-ofcards  model, 
fitnesses are  bounded (by one).  The optimum model 
has frequently been used as a model of molecular evo- 
lution (LATTER 1970; KIMURA 1981; FOLEY 1987). Kimura, 
in particular, has emphasized its  suitability  as a model of 
codon usage evolution. 

The next two models are shift  models. These are the 
classical deleterious allele  models that instantiate the as- 
sumption that all mutations are deleterious. Two shift 
models are widely used  in  discussions  of  molecular  evolu- 
tion. The first, due to OHTA (1977), assumes that the se- 
lection  coefficients of  new mutations are exponential ran- 
dom variables. The second, due to KIMURA (1979), assumes 
that they are gamma random variables. 

The final model is the HARTL-DWUIZEN-DEAN (HDD) 
model (HARTL et al. 1985). Under this model,  the fitness 
function is a monotonically increasing bounded func- 
tion of the value. The values are assigned from a normal 
distribution but, unlike the  other two models, they are 

centered on the value  of their  parent allele. HDD is 
meant  to model the “evolution of  selective neutrality” of 
enzymes. The value represents enzyme  activity,  which  is 
supposed  to evolve to such redundancy  that all  subse- 
quent substitutions are  neutral. As will be shown, this is 
precisely  how the model behaves. 

The main concern of this paper is  with a description 
of  the substitution processes for these five models. Recall 
that  there  are two substitution processes. The origina- 
tion process is the  point process of the times  of entry into 
the  population of those nucleotide mutations that ulti- 
mately  fix. The fixation process is the  point process of 
the times when nucleotide mutations actually  fix. The 
two processes are tightly coupled  but differ dramatically 
in their complexity. The origination process tends to  be 
a renewal-like process that is sometimes more uniform 
than a Poisson process (for overdominant, SASCFF and 
TIM models in rapidly changing environments) and 
sometimes more clustered (for underdominance  and 
TIM models in slowly changing  environments).  The 
fixation  process  tends  to be episodic, with bursts of 
substitutions  occurring at intervals that  are  more 
evenly spaced than a Poisson process. The statistical 
properties  inferred  from  sequence  data  corresponds 
to the  origination process. The fixation process can- 
not  be observed. 

Most  of the results will come from computer simula- 
tions. Where possible, some approximate mathematical 
investigations will be employed. 

THE MODELS AND THEIR SIMULATION 

The simulation  program has been  described in de- 
tail in the two previous  papers  in  this series. Briefly, 
the simulation is made up of two components, one for the 
allele  frequency  dynamics and  one for the allelic  geneal- 
ogy. The latter is independent of the model of selection so 
has remained unchanged throughout this  series of papers. 
The former is changed with each new model. 

The state of the  population is represented by the fre- 
quencies of segregating alleles in the  population. The 
number of segregating alleles at  generation t is the ran- 
dom quantity K (  t).  The frequency of the ith of K(  t)  
alleles will be written as either x,( t) or x,. Allele frequencies 
will change due to  selection, genetic drift, and mutation. 
The simulation  of genetic drift and mutation is the same 
as in the previous papers in  this  series. The population size 
will be called Nand the mutation rate to new alleles, u. The 
parameter 8 = 4Nu will be used throughout. 

Under  the house-of-cards model, each new allele is 
assigned a selection coefficient chosen from a normal 
distribution with mean zero and variance m‘. The selec- 
tion coefficient for the  ith allele is called Y,. The addi- 
tivity assumption dictates that  the fitness of  the AiAj 
genotype is 

1 + ( y ,  + y,)/2. 
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The change in the frequency of the  ith allele is  given  by 

1 X i ( #  y, - Y )  
2 1 + Y  ' Axi(t)  = - 

where 
M4 

Y = x xt(t)y, .  
i= 1 

Rather  than using u2 to parameterize the house-of-cards 
model, it is more  convenient  to use a = 2Nu. With this 
notation,  the variance in fitness is (a/2N)' .  

For the  optimum  model,  each new mutation is a s  
signed a value from a standardized normal distribution 
with mean zero and variance one. A fitness function, 

+(r) = 1 - uy' (1)  

is used to  map  the value  of a genotype into absolute 
fitness. The fitness of the AiAj genotype is  given  by 

w. = +(y, + y,). 
9 

The change in the frequency of the  ith allele is  given by 

Ax,(t) = xi(t)(Uri - G)/W, ( 2 )  

where 
M 4 

w ;  = 2 X,Wq 

j =  1 

is the marginal fitness of the  ith allele and 
M 8 

w = x xiw, 
i= 1 

is the mean fitness of the  population. As with the house- 
ofcards model,  the  optimum model will be parameter- 
ized by a = 2Nu. 

Under  the two shift models, fitnesses must be adjusted 
so that all mutations  are less fit than  the most recently 
fixed mutation. There is a great deal of  flexibility in set- 
ting up models with this property. The approach taken 
here is to assign each allele a random value that is used 
to calculate its selection coefficient. The value is set 
equal  to  the value  of the  parental allele minus either  an 
exponential or a gamma random deviate. As all alleles 
are  descendants of the  root allele, the values  of most of 
the  mutations in the  population will be exponential or 
gamma random variables.  However, some mutations will 
be  descendants of these alleles. Their values will be  the 
value  of their  grandparent allele minus the sum of two 
exponential or gamma random deviates (one coming 
from their parent allele). It is possible to have  mutations 
that are even more distantly related with  values that are 
sums  of three or more random variables, but this will be 
rare. 

For the  exponential shift model,  the  exponential dis- 
tribution used to assign the value has mean u = a/ (2N)  

and variance u2. For the gamma shift model,  the distri- 
bution is the gamma distribution, 

v w r r + e - 2 a x ,  

which has mean CT = a / ( 2 N )  and variance 2 4 .  This 
particular form of the gamma distribution is the basis  of 
KIMURA'S (1979,1983) theory of molecular evolution by 
mildly deleterious mutations. The mean of the gamma 
is the same as for the  exponential, but the variance is 
twice  as large. 

The selection coefficient of the  ith allele is st = vi - 
v,, where vi is the value  of the  ith allele and v, is the 
value  of the  root allele. As vi > v,, sj < 0. The fitness of 
a genotype is 

wq = 1 + (st + s p 2  

and the allele frequency changes are calculated using 
Equation 2. 

For the HDD model, the value  of an allele is obtained 
by adding a standardized normal deviate to  the value  of 
the  parent allele. The value  of a genotype is mapped  into 
fitness by the  function 

+(J) = ?4 + arctan(y)rr. 

This function has the  property  that it is positive, mono- 
tonically increasing, and  bounded above by one. The 
expressions for  the  change in allele frequencies  are  the 
same as for  the  optimum model. Note that  the HDD has 
no parameter reflecting the  strength of selection. The 
model is intended to, in effect, evolve its own parameters 
by moving to high values where fitness differences be- 
come small. 

One simulation is run  for each model and set of  pa- 
rameters. The simulation is initialized by running it until 
100 substitutions have occurred. Initial tests indicate 
that stationarity is attained in  less time than is required 
for ten substitutions. Thus, all  of the  properties  to  be 
described are  for stationary point processes. 

RATES OF SUBSTITUTION 

The rate of substitution is defined as 

W t )  EWt) 

t+m t t '  
k = lim- = - 

where X( t )  is the  number of originations or fixations in 
an interval of t generations. The rates will usually be 
expressed relative to  the  neutral substitution rate, which 
is equal  to  the  mutation rate u. 

Substitution rates as a function of a for all but the 
HDD model are illustrated in Figure 1. For all four mod- 
els, the  rate of substitution is a decreasing function of the 
strength of selection as measured by a. Thus, all  behave 
as models of deleterious alleles should. 

The most striking aspect of the figure is the  contrast 
between the house-of-cards model and  the others. For 



946 J. H. Gillespie 

8 I I I / # I , ,  

0.9 - House of Cards 
D"-o Optimum 
M Exponential Shift 
-Gamma Shift 0.8 

3 0.7 

2 0.6 

$! 0.5 

.$ 0.4 

E: s 
F 
2 

5 0.3 
In 

0.2 

0. I 

0.0 
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

a 

FIGURE 1.-The  rate of substitution  as a  function of the 
strength of selection, a, for five models with 8 = 1.0 and 
N = 1000. Each point is  based on 5,000 events. 

the house-of-cards model,  the rate is a concave function 
of a; for  the  others it is a convex function. The decline 
in the rate for the house-of-cards model is so extreme 
that simulations with a > 4 effectively run forever. 
Clearly, the initial problem is to understand why the  rate 
drops off so rapidly for  the  house-ofcards model and  not 
for the  others. 

There is an extensive literature on the rate of substitu- 
tion for the shift and optimum models. KIMURA (1983) 
summarized the results for the shift  models with the 
formula 

where (() is Reimann's Zeta function. (This formula is 
actually minor variant of KIMURA'S (GILLESPIE 1987).) The 
parameter P is one for the exponential shift model and 
one-half for the gamma  shift model. In the former case, the 
rate is proportional to 1/a; in the latter, to 1 / m .  ~ 0 t h  
are convex functions of a in agreement with the curves  in 
Figure 1. The numerical agreement between equation 3 
and the simulation  results is not impressive.  For example, 
for a = 4, the predicted rate for the exponential shift 
model is 0.2, while the simulated rate is 0.34. For the 
gamma  shift model the numbers are 0.32 and 0.45, re- 
spectively. The poor  performance is to be expected as a twe 
allele  model was used  to  obtain  equation 3 whereas  the S iu -  
lated  populations typically contain seven or eight alleles. 

FOLEY (1987) showed that  the  rate under the  optimum 
model is,  like the gamma shift model, asymptotically 
equal t o l / f i .  In fact, Figure 1 shows that  the rate of 
substitution for  the two models converge to  one  another 
as a - 00. There is a simple explanation for this. If the 
most common allele under  the optimum model has a 
value near zero  (as  it will for  large a ) ,  then  Equation 
1 shows that  the selection  coefficient of mutant alleles 
will be approximately - uy2, where y is a standardized 
normal  deviate. The square of a normal  random vari- 

P 

a 

FIGURE 2.-Mean values of Z and  embedded Z for the 
house-of-cards model and  the  Markov  approximation of 
the  house-of-cards  model  with 8 = 0.2 and N = 1000. Each 
point is  based on 5,000 events. 

able is gamma-distributed with parameter P = Yz. 
Thus,  the  distribution of selection coefficients for  the 
optimum  model is  very similar  to that of the gamma 
shift  model. 

There is a certain irony in this observation. I have on 
two occasions argued  that  the gamma shift model is en- 
tirely ad hoc, with no conceivable biological justification 
(GILLESPIE 1987, 1991). Now it appears  that  the gamma 
shift model could be viewed  as an approximation to  an 
optimum model. However,  while the  approximation of 
the  rate of substitution for large a is quite good,  the  next 
section will  show that  other aspects of the substitution 
processes are not at all  like the  optimum model. 

Much  less  is  known about  the rate of substitution for 
the house-of-cards model. The essential complication is 
that there is no easy  way to discover the absolute  fitness of 
the common genotypes  in the population. By contrast, the 
fitness of the reference genotype under shift  models is 
always one. The success  of mutants obviously depends criti- 
cally on the average  absolute  fitnesses of the resident gene 
types. Thus, our investigation will begin  with an investiga- 
tion of the fitnesses of resident genotypes. 

As a increases, so does  the  standard deviation in  fit- 
ness of mutants, which increases the effectiveness  of 
natural selection at  both fixing advantageous mutations 
and preventing the fixation of deleterious mutations. 
This should be reflected in the mean fitness of the alleles 
in the  population.  There  are two ways to investigate this. 
One way  is to examine 

z =  Y/a 

at regular intervals of time.  (Recall that 1 + Y is the 
mean fitness of the population.) The division by u is a con- 
venient scaling as the values  of  Yare  very  small. The mean 
value  of 2, as a function of a, is illustrated  in  Figure 2. 

As is apparent,  the values  of Z do increase with  in- 
creasing a. As an example, when a = 2.5 the  mean value 
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of Z is also about 2.5. In  this  case, the mean  selection 
coefficient of segregating  alleles is about 2.5 standard 
deviations  above the mean  selection  coefficients of  newly 
arising  mutations.  Reference  to a table  of  normal  deviates 
shows that  about 99.3% of the new mutations will  be  less 
fit than the average  fitness  of the segregating  alleles.  Thus, 
the  population  has  evolved as expected  and  the vast  ma- 
jority of  all mutations  are,  in  fact,  deleterious. 

What about  borderline mutations? If  we define 
borderline  mutations  to be those with selection CO- 

efficients within plus or minus 1/2Nof the mean  se- 
lection coefficient, then  the fraction of all mutations 
that  are  deleterious is 

JSU fi L a  e - r 2 / 2  dz 

1 
e - y 2 / 2 0 p  dy = - e s u - l / 2 N  

= 0.01165 

where s = 2.5 is the mean value  of Z. Similarly, the 
fraction of all borderline mutations that  are advan- 
tageous is 0.00434. Thus, 72% of all borderline mu- 
tations are deleterious. Not a “vast”  majority to be 
sure. If all advantageous mutations are included-not 
just  the borderline ones-then the fraction deleterious 
decreases to 65%. Natural selection has  moved the 
population to a point where the  great majority 
(99.3%) of all  new mutations are deleterious but only 
65% of those with fitnesses greater  than  the mean 
minus 1/2N are deleterious. 

The  other way to  investigate the fitness of  newly  aris- 
ing mutation is to  focus on sites that ultimately fw in the 
population rather than segregating  alleles.  When a new 
mutant enters the population, it does so as a new  allele 
with a mutation at a randomly  chosen  site.  This  mutation 
is  called the defining  mutation of the new  allele.  Simi- 
larly, the allele will be  called the defining allele of the 
mutation. The fixation of a site does not imply fixation 
of its defining  allele.  Rather,  it  implies  that,  at  the  moment 
of  fixation  of the  site, the population is composed  of  only 
the  defining  allele and its descendent alleles.  Usually,  when 
a is moderate and/or 8 is  small, the defining  allele is the 
most  common  allele  in  the  population  at  the  moment of 
fixation  of  its  defining  mutation.  Thus,  it  should  be  infor- 
mative  to  follow the fitnesses  of the alleles  whose defining 
mutations  ultimately fix in the  population. 

Now let 2, = YJu,  where Yj is  now the selection  co- 
efficient of the allele  whose defining mutation  ulti- 
mately  fixes  in the population. Z,  may  be  viewed  as a 
discrete-time  stochastic  process  with  time  measured in 
units of originations. Thus, 2, would  be the scaled  se- 
lection  coefficient of the defining allele for the first site 
to  fix, Z, for the defining allele for the second  site  to  fix, 
and so forth. This  process will be  called the embedded Z 
process. The mean of the embedded Zprocess as a func- 
tion of a is illustrated  in  Figure 2. Remarkably, the mean 
value  is  very  close to 4 2 .  

If the house-ofcards model is to  be a model of  mo- 
lecular  evolution  where the vast  majority of substitutions 
are deleterious, then 2, must  decrease in  value  much 
more than it  increases.  However,  as Zi is a stationary 
process,  this  would  seem  unlikely.  In  fact,  when the simu- 
lations are examined, the fraction of  steps  where Zi de- 
creases  is, in all  cases, not significantly  dif€erent  from  one- 
half,  even  though  the k t  majority”  of all mutations  are 
deleterious.  Thus, the house-ofcards  model is,  in  fact, a 
model  that  yields  the  same  number of advantageous sub 
stitutions as deleterious  substitutions, a result  that was 
noted in  passing by  TACHIDA (1991). 

The simulation  results on the embedded 2 process 
uncovered two simple  properties-EZ, - a/2 and the 
fraction of decreases is  one-half-which  suggest that a 
mathematical analysis  of the process  might  be  possible. 
This is the case, but only  as an  approximation  when 8 is 
small and a is either small or large. 

The method of approximation is the standard two- 
allele approach under weak mutation:  Set the rate of 
substitution  equal  to the mean number of mutations 
entering the population  each generation, 2Nu, times 
the probability of fixation of  any one of them. The twist 
for the house-of-cards  model,  as noted and exploited by 
TACHIDA (1991), is the recognition that the fixation 
probability depends on the selection  coefficient of the 
currently  ‘fixed’  allele. 

A second  twist,  also noted by  TACHIDA,  is that  the fitness 
of the  currently  fixed  allele  forms a discrete-time  Markov 
process  when  each  unit  of  time  corresponds  to the  sub- 
stitution of a new mutation.  Thus,  the Markov  process a p  
proximates  the  embedded Z process of the  simulations. 

Consider a two-allele population with the selection 
coefficient of the currently  fixed  allele  being Yf and that 
of a newly arising  mutation X .  The fixation  probability 
of the new mutation is 

1 - ,-(X-Y,) 

1 - e-2N(X-Yt) 

(KIMuRA 1962). If the distribution of  fitnesses  of  new 
mutants is  Gaussian  with  mean  zero and variance 4, 
then the probability of fixation of a new mutation in  any 
particular generation is 

The scalings y = x /a  and z ,  = Y , / o  transform  Equation 
4 into 

J -m 

where 
1 1 - ,-Ocv-d 
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Thus, with probability G( z,) an origination will occur in 
the  current  generation. 

The next step is to  find  the distribution of z f + l .  An 
argument paralleling that  for  the probability of change 
shows that  the probability density of y = z,+ I ,  given that 
a substitution occurred, is 

The densityf( y, z , )  is the transition probabilityfor the 
embedded Markov chain. Although the chain is  analyti- 
cally intractable, it does yield to an asymptotic approach 
for small and large a. 

The small a approximation leads to a number of un- 
expected results. When a is small, so is cr = a/ (2N) ,  
which  motivates a search for  the leading term of an as- 
ymptotic expansion o f f (  y, z,) as (+ + 0. Use 

e--LT(Y-LI) - 1 - (+(y - 
to approximate g with 

and to  approximate f( y, z,) with 

We  now require  the asymptotic expansions of the ex- 
pectations of Az and (Az)', where Az = ( y - z). Use 

1 1  1 
1 - a 2 12 

J - % ,  - - + - ( y - z , ) + - ( y - z ) ' a  

(which I obtained from Maple, a symbolic mathematics 
computer  program)  to obtain 

EAz - - - z + O ( d )  
a 
2 

E(Az)' - 1 + z2 + O(a). (9) 

The expression for Ehzshows that, at stationarity, the mean 
value of z, is approximately a/2. Figure 2 shows that Ez, - 
4 2  in the simulations of the full  process as well as for the 
approximating Markov  process. Thus, our result that Ez, = 
a/2 appears to be valid  even  when a is not small. 

As selection gets weaker, the  embedded process does 
not converge to a diffusion, as might  be expected. The 
higher-order odd moments, when z = 0, are all  of order 
a. The even moments, on  the  other  hand, grow  rapidly 
with their  order. For example, E(&)", when z = 0, 
equals 1, 3, 15, and 105 when n equals 2, 4, 6, and 8, 
respectively. A consequence of the  domination of the 
dynamics by the even-ordered moments is that  the dis- 
tribution of Az is  very nearly symmetrical.  Positive and 
negative  values  of Az should occur  about equally  likely. 
This symmetry was seen  in  both  the Markov process 
and in the simulations of the full process. Clearly, the 
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FIGURE 3.-A typical  realization of the  embedded Z process 
for the house-of-cards  model. 

house-of-cards model is not a model  for which the vast 
majority of all substitutions are  deleterious.  Rather,  it 
is a model with an even mixture of  positive and nega- 
tive substitutions. 

Figure 3 gives a typical realization of z,, illustrating that 
the process is extraordinarily erratic as  would be ex- 
pected from the large even moments. 

The primary  goal  of the asymptotic  analysis for large a 
is to discover why the process effectively  stagnates. The ex- 
planation follows from a simple  application of the theory 
of records. The starting point is to note that 

which  implies that the transition  probability  becomes 

Examination of f m (  y, z,) shows that,  for  large a, the only 
mutations that fix are ones whose fimesses exceed z, In 
other words,  when  selection  is strong, the fixation of del- 
eterious alleles  essentially  stops.  But, the simulations  show 
that the substitution of more fit  alleles  also  stops. All  evo- 
lution stops! 

The reason is apparent from the form offm( y, z,). In 
order for a substitution to occur, a mutation must ap- 
pear whose fitness exceeds z,. If the fitness of the first 
allele is assigned at random,  the theory of records tells 
us that  the average time until a mutation  appears with 
y > zo is infinite (GLICK 1978). Of course, the  appearance 
of a more fit allele does not guarantee its fixation. The 
rate of substitution will be somewhat  less than  the  rate 
of appearance of records. 

The theory of records is concerned with the  number 
of record values in a sequence of independent draws 
from a probability distribution. A record occurs on a 
specific draw if the value  of the  random variable ob- 
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tained on that draw exceeds the values  of the  random 
variables obtained on all previous draws. The mean 
number of records in n draws  is 

n 

l / i  - 0.5772 + ln(n) 
i= 1 

(GLICK 1978). For example, the  expected  number of 
records in a million draws  is  only 14.39. If the sample is 
extended  to  another million draws, the  expected  num- 
ber of records is only 0.69 greater  than  for  the first mil- 
lion. When 6 = 2, one mutation will enter  the popula- 
tion, on average, each  generation.  In two million 
generations,  there can be no more  than  about 15 sub- 
stitutions, on average. A typical simulation in this paper 
runs  until 5,000 substitutions have occurred. On aver- 
age, this would require  more  than  about e5,Ooo genera- 
tions for  the large a cases. Such simulations will appear 
to run forever. 

The results for the HDD model  are simple: k EJ u. The 
population quickly  evolves to a position where the se- 
lective differences between alleles is smaller than 1/N. 
All subsequent evolution is indistinguishable from neu- 
tral evolution. There is little point in documenting this 
behavior as not a single statistic indicated any deviation 
from neutrality with k = u. 

TIMES  BETWEEN  SUBSTITUTIONS 

The times between originations or fixations form a 
stationary time series in discrete time, . . . , T-,,  To, 
T,, . . . , whose properties may be investigated using 
standard time series methods. In  the previous two pa- 
pers, we discovered that  the most valuable statistic is the 
autocovariance function divided by the  square of the 
mean time between events. 

‘k T k  = - (ET,)‘ ’ 

where 

ck = Cov(T,, Tifk) 

is the covariance of two intervals separated by a lag of k 
originations or fixations. 

The function ( e k  is  closely connected to the  index of 
dispersion of the  counting process, 

Var X( t)  
I(t) = - EX( t )  . 

For large t ,  

R = lim I ( t )  (10) 
hrn 

m 

= %o + 2 x (ei. (11) 
i= 1 

R will be recognized as the quantity that has been widely 
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FIGURE 4.-The  covariance  divided by the  square of the 
mean  time  between originations  for  three  models.  The  results 
are  based on 10,000 events  with 0 = 1.0, N = 1000, and  with 
a = 10 for  the  gamma  shift  and  optimum  models  and a = 2 
for  the  house-of-cards model. 

used to describe the variability  in rates of substitution 
(KIMURA, 1983). It is this connection  that makes %k 
more  convenient  than ck. 

Here we  will investigate only the  origination  pro- 
cess. As was shown in the previous paper,  the fixation 
process is considerably more complicated.  These com- 
plications are irrelevant to  the analysis of sequence 
data as the  counting processes for  the  origination  and 
fixation processes converge  rapidly with the  number 
of substitutions. 

Figure 4 illustrates Xk for  the origination process for 
the gamma shift, optimum, and house-ofcards models. 
All three models have the  property  that ( e k  EJ 0 when 
k > 1.  In  other words, the origination processes  behave 
very nearly like renewal processes with the intervals be- 
tween originations being nearly uncorrelated. The ex- 
ponential shift and HDD models also share this property 
(data  not  given).  The previous papers in this series 
showed that this behavior is also characteristic of the 
TIM,  SASCFF, and overdominance models. As the origi- 
nation process for  the  neutral models is a Poisson pro- 
cess, it has uncorrelated intervals between  successive 
originations. In fact, the  underdominance model has 
been  the only model of the ten examined in this series 
of papers  that exhibits any significant correlation 
between successive origination intervals. 

The values  of %o do vary significantly  between the vari- 
ous models. For the HDD and gamma and exponential 
shift models, %o EJ 1. For these models, the origination 
process is indistinguishable from a Poisson process 
(and from  the  neutral origination process). By contrast, 
%o > 1 for  the  house-ofcards and optimum models. Re- 
calling that R = %o for renewal processes (equation 11 
with %, = 0,  i > 0 )  , we conclude  that  for these two models 
molecular evolution should appear  more episodic than 
it  does for the  neutral model. Clearly,  this property is 
worth closer scrutiny as the  neutral model’s failure to 
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FIGURE 5 . 4 ,  as a function of a for the houseafcards and 
optimum  models.  Results are based  on 5,000 events  with 
0 = 1 and N = 1000. 

account  for  the observed episodic evolution of proteins 
has been its greatest shortcoming. 

Figure 5 illustrates so as a function of a for the house- 
of-cards and optimum models. The house-ofcard model 
is extraordinary in that %,, increases dramatically with 
increasing a. For a = 3.5, so = 84. Such extreme clus- 
tering of substitutions has not  been observed in any 
other model examined to date. The reasons for  the clus- 
tering may be  understood from the previous discussion 
on the rates of substitution. 

The house-ofcards  model  tends to evolve to a state 
where the currently fixed allele is sufficiently fit that  the 
waiting time until a more fit allele appears is  very long. 
The substitution process would  effectively stagnate, as 
we  saw from the theory of records argument, were it  not 
possible for  the fixation of  less fit alleles. This too re- 
quires a long waiting time (for a > 2.5), but  should a less 
fit allele fix, there is an immediate burst of both advan- 
tageous and deleterious substitutions that  ends when a 
particularly fit allele fixes. 

These dynamics may be better  understood by refer- 
ring again to Figure 3. Consider the final ten substitu- 
tions in the figure. The  tenth  from  the  end  had  an ab- 
solute fitness of 0.48 and remained  in  the  population  for 
5,772 generations before being replaced by the  next mu- 
tation whose fitness was 0.49. That allele remained in the 
population  for only 973 generations before being re- 
placed. Jumping  ahead,  the sixth allele from the  end 
had a fitness of 3.91 and remained in the  population for 
1,752,804 generations. The next  four alleles had fit- 
nesses  of 3.1, 1.9, 2.4 and 1.6 and remained in the popu- 
lation for 801961,159874,658 and 10755 generations, re- 
spectively. This extraordinary  variation  in the residence 
times of alleles is responsible for the high  values of %,,. 

The optimum model also  shows a tendency for clus- 
tering but  the effect is much less pronounced  than for 
the  house-ofcards model. The maximum value  of %,, was 
1.6 which occurred when a = 50. The optimum model 

shares the property that  the time until the  next  mutation 
to enter the  population  depends on  the fitness of the 
currently fixed allele. This is the origin of the clustering. 
However, the  optimum model differs from the house- 
of-cards model in that  the maximum fitness of  any geno- 
type  is one.  Thus,  there  cannot  be  the extremely long 
waits for  more fit alleles to  appear in the  population. 

The two shift models do  not exhibit any clustering 
because the fitnesses  of fixed alleles are always scaled to 
one.  In fact, the origination process for  the shift models 
are indistinguishable from a Poisson  process.  Similarly, 
the origination process for  the HDD model is indistin- 
guishable from a Poisson  process. 

DISCUSSION 

The results presented here have a direct bearing on 
the hypothesis that most molecular evolution involves 
the fixation of deleterious alleles. Three classes  of delete- 
rious  allele  models  have been proposed:  shift  models 
(OHTA 1972,  1976; KIMURA 1983), house-ofcards  models 
(TACHTDA 1991; OHTA 199'4, and optimum models (UTTER 
1970; KIMURA 1981; FOLEY 1987). Each  has at least one ma- 
jor shortcoming as a model of deleterious evolution. 

The shift models are  the least appealing of the  three. 
The assumptions that all mutations are deleterious and 
that  the distribution of fitnesses  relative to the  common 
allele is immutable are difficult to justify. The usual jus- 
tification is to infer from the observation that as  most 
mutations of large effect are deleterious that most  mu- 
tations of  small  effect  must be deleterious as well. The fal- 
lacy  of this argument is  shown by the house-ofcards model 
which evolves to the point where  most  mutations of large 
effect are deleterious yet  only about 65% of those of  small 
effect are deleterious.  Shift  models are clearly inappropri- 
ate as models of molecular  evolution. OHTA (1992) herself 
has argued against them based on the biological  implau- 
sibility  of the shifting  distribution of  relative  fitnesses. 

Of the two remaining models, neither can be said to 
be a model of evolution by exclusively deleterious sub- 
stitutions. For both, precisely one-half of the substitu- 
tions are advantageous and one-half are deleterious. I 
would  go so far as to claim that there are no biologically 
realistic  models  in  which  most of the substitutions of mu- 
tations of  very  small  effect are deleterious.  It is  difficult  to 
imagine a model that allows the evolution  to  less  fit  states 
without the return evolution  to more fit  states  when  fitness 
differences are on the order of the reciprocal of the popu- 
lation  size.  This  conclusion  seems  inescapable  despite the 
huge investment our field  has  in the notion that most of 
the sites  fixed  in  evolution are deleterious. 

But  even if the house-ofcards and optimum models 
are not exclusively models of deleterious evolution, they 
may still be viable models of molecular evolution. Of the 
two, the house-of-cards models appears to be  the least 
worthy. The house-ofcards model suffers from extreme 
parameter  dependence as illustrated in Figure 1. The 
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strength of selection must be such that 1 < a < 4. If (Y < 
1 the  model is  essentially the same as the strictly neutral 
model. If a > 4 the  model stagnates. Given that a is the 
product of the  population size times the  strength of  se- 
lection,  there is no conceivable reason why it  should  be 
restricted to such a small range of  values. 

This objection is not new. OHTA (1992) has tried to 
deflate it by introducing  population subdivision. The 
essential idea is that if fitnesses are  determined  inde- 
pendently in m patches, then the effective standard devia- 
tion  in  fitness is u/m. While  this does make the depen- 
dence on u itself  less extreme, it doesn’t help to explain 
why the new a = 2Nu/m should fall  in the narrow range 
(1,4).  In fact, the new a is  now the product of three pa- 
rameters and might be expected to be even more variable. 

The  rate of substitution under  the optimum  model is 
much less dependent  on a. In this regard,  the  optimum 
model is a much  more acceptable model of molecular 
evolution than is the  house-ofcards model. It  captures 
the spirit of deleterious model in that  the  rate of sub- 
stitution is a decreasing function of the  strength of  se- 
lection. The essential difference between it  and the 
house-of-cards model is that fitnesses are  bounded  un- 
der  the optimum  model and  unbounded  under the 
house-of-cards model. The compression of  fitnesses 
near  one allows for  continuing evolution. 

If  we were to  promote  one of these models as a model 
of molecular evolution, itwould have to  be  the  optimum 
model. As the dynamics of protein and silent substitu- 
tions are dramatically different (GILLESPIE 1986, 1991), 
the  optimum  model can only apply to one type  of sub- 
stitution. The essential difference between silent and re- 
placement substitution dynamics is that  the  former ex- 
hibit a strong generation-time effect and a relatively 
small  value  of R while the  latter has a small generation- 
time effect and large values of R. The generation-time 
effect is to  be  expected for any substitution process that 
is mutation-limited, as  is the  optimum model. Moreover, 
the  optimum model exhibits a small  value  of R. Thus, 
it is an acceptable model of silent evolution. The case for 
the  optimum model would be strengthened consider- 
ably if the  rate of silent substitution in  coding regions 
were  lower than  that in truly “non-functional,”  hence 
neutral, DNA. As of this writing, it is not clear which  of 
the two rates are  higher so we must wait for this support. 
IMURA (1981) originally proposed  the  optimum 

model as a model for silent evolution in coding regions. 
Although he now appears  to be backing away from this 
view in favor  of the strictly neutral model (KJMURA 1991), 
it may  well transpire  that  the  optimum  model may be 
needed to explain lowered rates of silent evolution in 
coding regions. The HDD model is also a viable candi- 
date  for  silent evolution as it evolves to a state  where 
it is, in  essence, a neutral  model.  It  therefore exhibits 
a strong  generation-time  effect and R = 1. Like the 
neutral  model, it cannot provide an  explanation  for 

lowered  rates of substitution  in specific regions of the 
genome. 

A modified version  of the house-of-cards might be a 
viable candidate for molecular evolution. TWO simple 
modifications should  be considered. The first is the ad- 
dition of fluctuating population sizes. OHTA’S “slightly 
deleterious  mutation theory” is, in its current incarna- 
tion, a house-ofcards  model with fluctuating population 
sizes. The dynamics  of this model have not been exam- 
ined in detail, but two crucial conjectures can be made. 

The first concerns  the time scale of the fluctuations. 
If the time scale  of population size fluctuations are much 
less than  that of molecular evolution, then  the model 
will behave like a constant  population size model with a 
suitable average population size  playing the  role of N .  As 
the time scale  of molecular evolution is on  the  order of 
millions of  years, we must assume that populations stay 
very  small for millions of  years and  then very large for 
millions of  years in order for  the fluctuations to affect 
the dynamics. Some may find this assumption demo- 
graphically implausible ( GILLESPIE 1988). 

The second  concerns  the  nature of the substitutions 
should  the  population size fluctuate on a time scale  of 
millions of  years. During periods of  small  size ( a < 1) , the 
substitutions that occur will follow neutral dynamics. 
When the population expands, those  substitutions will be 
almost  entirely  advantageous. The fixation of a slightly  del- 
eterious alleles (1 < a < 4) will almost  never  occur. 

The second modification of the house-ofcards model 
keeps its biological motivation intact yet  allows for con- 
tinuing evolution. All that  need be done is to allow the 
fitnesses to  change very  slowly through time. For long 
stretches of time, the relative  fitnesses  of alleles in the 
population will remain fixed. Thus,  the segregating 
variation will have properties essentially the same as un- 
der  the house-of-cards model. Occasionally, the fitness 
of the most fit allele will change, leading to a burst of 
substitutions similar to that described in this paper. The 
occasional change in  fitnesses is the force driving mo- 
lecular evolution. This is precisely the model that was 
explored in the first paper in this series. There it was 
shown that as the persistence time of  fitnesses (the av- 
erage time between changes) increases, the  rate of sub- 
stitution first increases then decreases to match the rate 
of change of the  environment. At the same time, the 
clustering of substitution increases. The addition of  fluc- 
tuating fitnesses is quite  natural as the fitness of a geno- 
type  is determined by its  success in its environment, 
which is in a constant state of change.  In fact, the basic 
assumption of the house-of-cards model that fitnesses 
remain fixed in perpetuity is patently absurd. 

While the  proposed modification of the house-of- 
cards model is simple and biologically compelling, it 
must be emphasized that  the resulting model changes 
qualitatively in one  important  regard.  Under  the house- 
of-cards model, genetic drift is the force responsible 




