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ABSTRACT 
Fifty one years  ago,  Luria and  Delbrtick  published  in Genetics a paper  that was to become a classic.  In 

it they  proved,  beyond  all  reasonable  doubt,  that  bacteria  were  mutating  to  phage  resistance  long  before 
they  could  have encountered any  bacteriophage.  Luria  and  Delbriick  also  showed  how  the  same  experi- 
mental  data  could  be  used  to  estimate  bacterial  mutation  rates.  Since  that time and  in  many different 
contexts  the  methods  that  they  introduced  have  been  used to estimate  mutation  rates.  However,  little 
seems  to  be  known about  the  errors to  be  expected  in  such  estimates. In what  follows I examine  how  much 
uncertainty  in  the  estimates is to  be  expected  merely on the basis of the  stochastic  variability inherent in 
the  sampling  process.  On  the  basis of  this  examination I question a few traditional  ideas  and  conclude 
with some  practical  suggestions.  The  results  were  obtained by simulation. It is my hope  that  they  may 
inspire  others to provide a rigorous  theoretical  basis  for  such  calculations. 

I N a typical fluctuation test, that is, an  experiment of 
the kind introduced in LURIA and DELBR~~CK (1943), 

a  number of cultures  are grown up  under conditions as 
nearly identical as possible. The cultures  are  started, 
each with a small inoculum of  cells, assumed to be all  of 
the same genotype. As the cells  grow and divide some 
may mutate and give  rise to clones of mutants. At the  end 
of the growth period  the cells are plated on some se- 
lective medium  that will allow scoring the  number of 
mutants  that  produce colonies of a particular pheno- 
type. One of the fluctuation analyst’s jobs is to tell the 
experimenter how to use his data  to  infer  the  rate of 
mutation to that  phenotype. The goal of this study has 
been  to try to find out what methods  the analyst should 
recommend. 

The way to proceed is not obvious because, thanks to 
the growth of the  mutants,  the  number of mutant colo- 
nies is not simply a  function of the  number of mutations. 
Understanding  the significance of this fact was the key 
step in the research that led to  the LUIUA and DELBR~CK 
(1943) paper [FISCHER and LIPSON (1988) p. 1451. LURIA 
and DELBR~~CK were not able to find  the relationship be- 
tween the  number of mutations and  the probability dis- 
tribution of the  number of mutants. However, their ex- 
periments showed that  the distribution has a variance 
that is much  larger  than its mean, which was enough  to 
prove their main point. On the  other  hand, it meant  that 
the mean could not provide a reliable method for esti- 
mating the  mutation  rate. Nevertheless, the  formula 
they give for making the estimate is not as bad as it is 
sometimes painted. 

In an earlier  paper, STEWART et al. (1990), we de- 
scribed a  general  method  for calculating the probability 
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distribution of the  number of mutant colonies that will 
be observed in a fluctuation experiment.  It assumes that 
the  number of nonmutants is sufficiently large so that 
mutation can be treated as a stochastic process where: 
(i) the probability that  a  mutation will take place in the 
short interval between times t and t + d t  is independent 
of  what may happen  at  other times, and (ii)  the condi- 
tional probability, p (  n I t ) ,  that  a  mutation will yield a 
count of n mutant colonies, given that  it  occurred  at 
time t ,  depends  on t ,  but  not  on what may happen 
at other times. 

Readers who wish to make calculations for themselves 
should be aware that  the algorithm in STEWART et al. 
(1990) is  now obsolete. MA et al. (1992) describe an 
algorithm (that I will call “the MSS algorithm”) which is 
easy to understand and is manyfold faster than ours. The 
MSS algorithm is also described in SARKAR et al. (1992). 

Of course, the actual distribution depends  not only on 
the  general assumptions (i)  and  (ii),  but also on specific 
assumptions about  the  mutation process and  the growth 
of the clones. For many experiments it is reasonable to 
assume that (a)  the mutants grow at  about  the same rate 
as the original cells, (b) cell  division is not synchronized 
and  (c)  the rate at which mutations occur is propor- 
tional to  the  number of  cells present  at  that time. 

In  that case, the distribution depends  on  a single pa- 
rameter, A, the  expected  number of mutations, and is 
well approximated by the distribution worked out in LEA 
and C~ULSON (1949).  In this report,  I assume that  the 
above conditions  are satisfied and study  only the LEA and 
COULSON distribution. However,  it  would be of consider- 
able interest to  investigate the robustness of estimates of A 
by applying  similar methods to other models of mutation, 
such as those  described  in KOCH (1982), SARKAR (1991), 
SARKAR et aL (1992) and STEWART et aL (1990). 
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The parameter A is not, in itself,  of  biological interest 
because the  experimenter can vary it at will simply by 
changing  the size  of the  culture vessel or the richness of 
the medium. What he really  wants to know  is not A, but 
the  mutation rate p. This is the expected number of 
mutations divided by the  number of  cell  divisions, i .  e . ,  
p = A/(  nT - no), where no and nT are  the initial and 
final population sizes. Since p is so easily calculated from 
A this paper can concentrate on estimating the  latter. 

We return  to p only  in the DISCUSSION where we take 
up accuracy and suggest a practical method  for giving 
approximate confidence intervals for estimates of p. 
However, the essential formula, Equation 1, was ob- 
tained by Monte Carlo methods and  it is to be  hoped  that 
theorists will take an interest in the problem and provide 
more rigorous results. 

This study deals with samples of samples, so care must 
be taken to avoid confusion of terms. I try to use real life 
terminology, but “simulated” is to be  understood 
throughout. A single experiment studies a number of 
cultures, each of  which  yields a colony count. The num- 
ber of cultures in a given experiment is its sample  size, 
denoted  here, as in much of the  literature, by C. For 
some purposes a number of experiments  are  considered 
together as a run consisting of a number of replications 
of the  experiment. 

A fluctuation experiment yields a set of C numbers, 
the colony counts  for  the C cultures. The experimenter 
calculates the value  of some function of those numbers. 
The function is an estimatorand the value is the estimate 
of A given by that particular experiment. 

I have studied the behavior of  five estimators that have 
been in common use. One of them, the maximum  likeli- 
hood estimator, appears to be the best  in  all  cases, but two 
of the others are quite satisfactory  in  some  circumstances. 

In  the past, experimenters avoided maximum likeli- 
hood estimates because they  were hard  to calculate. 
There is no longer any need  to avoid them. The MSS 
algorithm described in h/iA et al. (1992) and SARKAR et al. 
(1992) is easy to program. Using it, any computer with 
a mathematical coprocessor can calculate the probabil- 
ity distribution of colony counts, even up to 1500 or 
2000, in a reasonably short time. The likelihood of the 
sample is a smooth  function of A, and algorithms for 
finding  the A that will maximize such a function are 
widely available. 

SIMULATED  MATERIALS AND ACTUAL  METHODS 

The five estimators will be  denoted by ‘A’s with  sub- 
scripts that  are  intended to be mnemonic, as follows: 
(1)  The P O  estimator is the value, A,,, that makes the 
expected  number of cultureswithout  mutants match the 
observed number.  It is applicable only for small  values 
of A, but when applicable it is the quickest and easiest 
method of estimation. (2) The LURIA and DELBRUCK es- 
timator is the value, A,,, = aN,, obtained by solving 

Lum and DELBR~CK (1943)’s Equation 8, i . e . ,  r = aNt 
ln(N,Ca) , where r is the average colony count in the 
sample, N, is the total number of  cells in each culture, 
and a is the mutation rate. Historically minded  readers 
may be interested  to see how this much maligned esti- 
mator actually  behaves. (3) The median  estimator, AMED, 
is the m that satisfies LEA and COULSON (1949)’s EQUA- 
TION 37: ( r o / m )  - In m = 1.24 where ro is the median 
sample count. (4) Similarly the LEA and COCJLSON esti- 
mator, A,,, is the m that satisfies their Equation 42: 

11.6 ’ [ ( q / m )  - ln m t 4.5 + 2.02 = 0 
i= 1 1 

where r, is the  ith colony count. (5) The maximum like- 
lihood  estimator, A,,, is adequately described in any 
number of texts. 

Some colleagues and I generated  data by executing a 
computer program 16 times, four times for each of four 
sample sizes,  namely 16, 32, 64 and 128, cultures per 
experiment. The program simulates six runs of 100 ex- 
periments, each run having a different value  of A. In 
these executions the values  were A = 0.5,  1.0,  2.0,  4.0, 
8.0 and 16.0. Thus  the  data come from 9,600 simulated 
experiments with a total of 576,000 simulated cultures. 

One execution with a sample size  of 16 had to be 
abandoned because in one of its experiments none of 
the  cultures developed any mutants. The program is not 
designed to cope when the logarithm of the estimate is 
--to. The program was executed an additional time, with 
a different  random  seed, and that execution was used 
instead of the  aborted  one. The  net effect is as if the 
single experiment  had  been  replaced by another. Of 
course, such arbitrary action biases the result, but  the 
effect of discarding one experiment out of 401 should 
be negligible. 

To generate  the colony counts, the program uses the 
MSS algorithm to fill an array cump [ 0 .  .15 00 ] with 
the cumulative distribution function of the LEA and 
COULSON distribution. It  then invokes the pseudo- 
random  number  generator ran1 of PRESS et al. (1988) 
to  get a value rv, 0 < rv < 1. The colony count is the 
smallest integer k such that rv  < cump[k] or, if 
cump[1500] 5 rv, the colony count is set to the “jackpot 
value” 1501. 

When the colony counts  for a given experiment have 
been  obtained,  the program calculates from them  the 
five different estimates for A and records  the results. 

RESULTS 

When thinking about how to estimate the mutation 
rate,  it is important to distinguish between two different 
As. First there is AAcTuu, which is some definite number, 
but is unknown and unknowable. Second is A,,,mTE,. 
For any particular experiment  it is a number  that  the 
experimenter calculates, but even if A,,,, remains 
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fixed hESTIMATED will  vary from  experiment  to  experiment 
so it is a  random variable. The questions are: (1) ‘Which 
of the five suggested estimators should the experi- 
menter use?” and  (2) ‘What  does AESTIMATED tell  us 
about A,,,?” 

In estimating the  mutation  rate, it is better to use a 
geometric rather  than  an  arithmetic scale, in other 
words, to study the bias and variance of the logarithm of 
the rate rather  than  the  mutation  rate itself.  For that 
reason, much of what  follows will be  concerned with a 
random variable L = ln(A,,,mT,D) or, when it is nec- 
essary to make distinctions among  the estimators, with 
L,, A,,,, L,,,, L,,, and L,,, these being the logarithms 

The  distribution of L: Figure 1 presents typical 
graphs  that show the distributions of L,, and L,,, to be 
quite close to normal. For each of the 100 replicates in 
the  run  there  are  four marked points, one for L,,,, one 
for L,, or L,,,, one  for L,,,, and  one for L,,. To begin 
with the estimates of, for example, &, obtained in that 
run  are sorted so that  the first estimate is the smallest, 
the second is the  next smallest, and so on. Then the 
sample is standardized by a  linear transformation that 
makes its mean zero and its variance one. Let y n  be the 
value thus obtained from the  nth estimate. Let x, be the 
expected value  of the  nth smallest observation in a ran- 
dom sample of  size 100 drawn from  a standardized nor- 
mal population.  The estimate is plotted as the  point 
(x,, y,) . To present  four different estimators on a single 
graph,  the y-scales for the different estimators are sepa- 
rated by one  standard deviation. 

The plots to be shown in Figure 1, A  and B, were 
chosen by lot from those with parameters at the  extreme 
ends of the range being studied. For purposes of com- 
parison, Figure 1C shows what happens when four in- 
dependent  random samples from a  normal  population 
are plotted in  exactly the same manner. Similar plots 
using the estimates for A rather  than its logarithm, L, 
showed a systematic curvature, particularly for the 
smaller sample sizes. 

Although the distributions of L,,, L,, and L,,,, are 
not as  close to normal as are those of LLkC and L,,, the 
agreement is close enough  to indicate that means and 
variances will provide a  sound basis for choosing among 
possible estimators. 

The  standard  deviation and percentage  points of &: 
To give approximate confidence intervals for AACTUAL it 
will be necessary to give a  formula, Equation 1, for cal- 
culating the  standard deviation of L,, as a  function of 
A,,,,. The  data  needed to derive the  formula  are 
given in Table 1. For this and all other tables, results for 
a given parameter set are  grouped  together so all runs 
consist of  400 replications. 

Corresponding to each sample size, C, and expected 
number of mutations, A, Table 1 has three  entries,  the 
top two give the bias and standard deviation of L,, as 

Of ‘p09 ‘L&D? ‘MED, ‘L&, and ‘ML* 

TABLE 1 

Bias and standard  deviation of L, 

Sample size, C 

A 16 32  64 128 

0.5  -0.0420 -0.0479 -0.0157 -0.0056 
0.4336 0.2920 0.1875 0.1449 
0.3812 0.2695 0.1906 0.1348 

1.0 -0.0236 0.0017 -0.0021 -0.0007 
0.2994 0.2087 0.1471 0.1054 
0.3064 0.2166 0.1532 0.1083 

2.0  0.0049 0.0006 -0.0023 0.0005 
0.2251 0.1659 0.1257 0.0865 
0.2462 0.1741 0.1251 0.0871 

4.0  0.0102 0.0023 -0.0001 0.0004 
0.1893 0.1428 0.0978 0.0629 
0.1979 0.1399 0.0990 0.0700 

8.0 0.0202 0.0035 0.0041 0.0017 
0.1533 0.1088 0.0746 0.0549 
0.1591 0.1125 0.0795 0.0562 

16.0  0.0039 0.0097 0.0017 0.0037 
0.1322 0.0956 0.0724 0.0486 
0.1278 0.0904 0.0639 0.0452 

obtained from the simulations. The third entry is the 
estimate of the  standard deviation given by Equation 1. 

The way the  standard deviation of L,, varies  with A 
and C is  shown  in the log-log plots of Figure 2. In each 
part of the figure the values of the  standard deviation as 
given in Table 1 are plotted as functions of one of the 
parameters, with different symbols distinguishing, in 
Figure 2A, the values for different sample sizes and, in 
Figure 2B, those for different values of A. The fact that 
the points lie nearly on straight lines implies that, a p  
proximately, the  standard deviation is jointly propor- 
tional to powers of and  the sample size.  When 
regression coefficients are calculated from the data, the 
exponent for the sample size  is  very close to  the theo- 
retical -% so the  latter is used in the formula: 

s = 1.225A-0.315/flC (1) 

where s is the  predicted  standard deviation  of L,,, A is 
AACTUAL, and C is the sample size. The -0.315 is the 
average  slope  of the lines  in  Figure 2B and the constant of 
proportionality,  1.225, is chosen  to give the best  fit  between 
Equation 1 and the observed standard deviations. 

The percentage points of the frequency distribution 
of L,, for the  different sample sizes and values  of A are 
given in Table 2. To make the various entries compa- 
rable the observed  values  have been standardized. The 
logarithm of A is subtracted from the observed percent- 
age point of L,, and  the result is divided by the  standard 
deviation calculated using Equation 1. Consider, for ex- 
ample,  the  5%  point  for  a sample size  of  32 and A = 4. 
When the estimates from the run of  400 cultures were 
arranged in increasing order of L,,, the 20th and 21st 
entries  happened to be 1.1492 and 1.1498.  Averaging 
them gives  1.1495. Subtracting from this the logarithm 
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FIGURE 2.-The standard  deviation of kL as a function 

of  the  parameters. (A) As a function of the  sample  size, C. 
0, A = 0.5; +, A = 1.0; 0, A = 2.0; 0, A = 4.0; 0 ,  A = 8.0; 
W, A = 16.0. (B) As a function of the  expected  number of 
mutations, A. 0, C = 16; A, C = 32; V, C = 64; 0 ,  C = 128. 

of  4.0  gives -0.23679. The standard deviation is esti- 
mated using Equation 1: 1.225 X 4-0.315/fi = 
0.13993.  Finally, -0.23679/0.13993 = -1.692 and that 
is the value  you will find in Table 2. 

The  other  estimators: The  other results from the 
simulations are summarized in Table 3. Unlike Table 1 
it has two and  not  three  entries  for each (C, A) pair. 
Because none of these estimators is as satisfactory  as the 
maximum likelihood estimator, I have not tried to find 
confidence intervals from them and so there will be no 
need  for  an  approximation for the  standard deviation. 
In Table 3, as in Table 1, the upper entry is the sample 
bias and  the lower  is the sample standard deviation. 

Since the PO method is not much  good when A is 
greater  than one  and  the  method of the median is prac- 
tically  useless when A is  less than two, the results for 
those two methods have been  combined in a single 
table. In  Table 3 entries  for A = 0.5,l.O  in  the h0 and 

LE, columns,  are  for  the PO method while entries 
for A = 2.0, 4.0, 8.0, 16.0 are  for  the  method of the 
median. 

DISCUSSION 

Tables 1 and 2 show that  the reliability  of the estimates 
of L improves not only  with increasing sample size, but 
also  with increasing A. Since absolute errors in L trans- 
late immediately into relative errors in the  mutation 
rate, p, regardless of the value  of A, experimenters 
should set things up to make the  expected  number of 
mutations large. Of course, the larger A the  more colo- 
nies there will be to  count. Equation 1 might provide 
some guidance in weighing the gain in  accuracy against 
the cost of increased counting. 

The  “other”  estimators: A glance at Tables 1 and 3 
will confirm  the  idea  that  Equation 8 of LURIA and 
DWRUCK  (1943) is not a good way to estimate A. It 
should certainly not be used nowadays, but the tables 
show that it does not deserve  all the abuse that it has 
received. 

LEA  and COULSON (1949) say explicitly that  the mean 
of a large sample will  give no better estimate than one 
from a single observation and KOCH (1982) appears to 
believe much  the same thing. Table 3 shows that this 
extreme mistrust of A,,, is  by no means justified. In- 
spection of  any  row  in the LURIA-DELBRUCK columns of 
Table 3 shows that increasing the sample size  will im- 
prove the accuracy  of the estimate. Doubling the sample 
size does not  cut  the  standard deviation by a factor of 
~, but when A 2 4 the  standard deviation is cut by a 
factor of 1.25 or more. 

It is true  that with  small sample sizes and small  values 
of A a few  of the estimates gave a mutation rate  an order 
of magnitude too high,  but even there  the  great majority 
give at least a rough idea of its size. In  the most favorable 
case considered here-sample size = 128 and A = l6-not 
one of the 400 estimates of the  mutation  rate was in error 
by as much as a factor of  1.6. 

Except for small sample sizes, Table 3 confirms state- 
ments in LEA and C o u t s o ~  (1949), ARMITACE (1952) and 
KOZIOL (1991), who agree that, for A < 1, A, is an en- 
tirely  satisfactory estimator, just  about as good as AML. It 
has the  great advantage that it does  not  depend on a s  
sumptions about  the mutation and growth process. 
However, it should  be kept in mind that, when A is small, 
good accuracy requires large sample sizes,  whatever 
method is used. 

Because it is so easy to calculate, A,,, is convenient 
for quick estimates when optimal behavior is not re- 
quired.  It  might also  serve  as a starting point in the  more 
computation intensive search for AM,. 

The constants in LEA and COULSON (1949) ’s formulas 
were derived using values A = 4,6,8,13, 15, so it is not 
surprising that ALscc is seriously  biased for smaller values 
of A. For A > 4 this empirical formula would continue 
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TABLE 2 

Percentage points of L, 

Sample size, C Sample size, C 

A 16 32 64 128 A 16 32  64 128 

2.5%  0.5  -2.368  -2.457  -2.113  -2.198 95.0% 0.5 1.519 1.405  1.567  1.636 
1.0 -2.035 -2.051 -1.988 -1.960 1.0 1.478 1.422 1.559 1.512 
2.0 -1.792 -1.809 -2.010 -2.269 2.0 1.535 1.536 1.578 1.550 
4.0 -1.817 -2.085 -1.904 -1.660 4.0 1.602 1.635 1.686 1.523 
8.0 -1.591 -1.815 -1.824 -2.014 8.0 1.753 1.594 1.640 1.620 

16.0 -1.859 -1.960 -2.224 -1.902 16.0 1.753 1.938 1.838 1.879 

5.0% 0.5 -2.136  -2.038  -1.732  -2.006 97.5% 0.5 1.746  1.832  1.847  1.970 
1.0 -1.680 -1.687 -1.598 -1.671 1.0 1.993 1.756 1.758 1.709 
2.0  -1.528 -1.532 -1.684 -1.597 2.0 1.756 1.700 1.982 1.951 
4.0 -1.606 -1.692 -1.592 -1.427 4.0 1.750 1.972 2.007 1.741 
8.0 -1.384 -1.546 -1.457 -1.581 8.0 1.948 1.897 1.936 2.022 

16.0  -1.663  -1.693  -1.829  -1.583  16.0  2.085  2.149  2.194  2.228 

TABLE 3 

Biases and standard deviations 

Lpo and hED sample sizes L,,, sample sizes L,, sample sizes 

A 16 32 64 128 16 32 64 128 16 32 64 128 

0.5  -0.0441 -0.0480 -0.0172 -0.0048 0.4697 0.4343 0.3342 0.3441 0.4156 0.3988 0.4114 0.4157 
0.4431 0.2994 0.1889 0.1469 0.9000 0.8444 0.6604 0.6416 0.4965 0.4400 0.4320 0.4273 

1.0 0.0066 0.0074 -0.0002 0.0003 0.3880 0.3980 0.3181 0.3202 0.2006 0.2218 0.2159 0.2197 
0.4079 0.2390 0.1535 0.1182 0.7746 0.7312 0.6236 0.5332 0.3203 0.2806 0.2525 0.2369 

0.2732 0.2090 0.1576 0.1176 0.7036 0.6007 0.5519 0.4124 0.2397 0.1922 0.1600 0.1333 
4.0  0.0221 0.0023 0.0062 0.0096 0.3220 0.2826 0.2257 0.1645 0.0448 0.0454 0.0455 0.0460 

0.2452 0.1822 0.1232 0.0800 0.6179 0.4964 0.4047 0.3003 0.2040 0.1523 0.1048 0.0784 
8.0 0.0315 0.0164 0.0180 0.0149 0.3093 0.2043 0.1631 0.0810 0.0330 0.0140 0.0192 0.0178 

0.2051 0.1377 0.0997 0.0737 0.5356 0.3947 0,2909 0.1908 0.1673 0.1169 0.0815 0.0588 
16.0  0.0211 0.0264 0.0177 0.0179 0.2255 0.1656 0.0824 0.0155 0.0015 0.0109 0.0022 0.0056 

0.1793 0.1345 0.1002 0.0704 0.3949 0.2999 0,1991 0.1244 0.1396 0.1023 0.0782 0.0531 

2.0 -0.0001 0.0028  -0.0059  -0.0090  0.3850  0.3067  0.3066  0.2365  0.1071  0.1057  0.1024  0.1061 

to be the  method of choice were it  not for  the fact that 
calculating the maximum likelihood estimator is no 
longer an arduous  chore. 

Confidence intervals: To calculate a 95% confidence 
interval we need formulas for  the 2.5 and 97.5% percent 
points of the distribution. Table 2 shows the 2.5 and 
97.5% percent points of the simulated data after nor- 
malization as described in the RESULTS. For a  normal dis- 
tribution these values  would be  k1.960. 

There may be some asymmetry and a  directional 
trend  in  Table 2. I believe these effects are  real, but 
have been  unable  to  find any measure of departure 
from  normal  distributions with standard  deviations 
calculated by Equation 1 that is statistically significant. 
Until further analysis provides a  reliable way to  quan- 
ti@ what trends  there may be, I see no choice  but  to 
ignore  them.  It  turns out  that, over all, the  confidence 
levels calculated this way seem  to  be  surprisingly 
reliable. 

If one assumes that L,, is approximately normally dis- 
tributed with mean ln(h)  and standard deviation, s, 
given by Equation 1, one would expect that  about  95% 
of the estimates would  lie within a distance of  1.960s of 
ln(h) . In other words, since 1.960 X 1.225 = 2.401, 

about 95% of the estimates L,, = ln(A,,,~m,) will 
satisfy the inequalities 

2.401e-0.315L  2.401e-0.315L 
L -  

f l c  f l c  
<&,<L+ (2) 

where C is the sample size, and L = ln(A,,,) . 
To get a confidence interval you  must substitute into 

this formula, (2), the value of L,, obtained from the 
experiment and solve the resulting inequalities. In other 
words, the confidence interval is the set of those L that 
satisfy L- < L < L+ where L- and L+ are  defined as the 
solutions of the  equations 

2.401~-0.315L+ 
L+ - = L M L  d-" 

and 

L- + 
2.401~-0.315L- 

= LML' 

Figure 3 illustrates a simple way to obtain either 
(i) approximate values for L- and L+ or (ii) an approxi- 
mate confidence interval for /.L without considering L- 
and L+ themselves. 
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In  other words, the  upper  bound  for p is obtained 
by multiplying the estimated value of p by a confidence 
factor e ( L + - L M L ) .  

A similar argument will  show that 
p- = e - ( L ~ ~ - I . - )  PESTIMATED (5) 

is the lower bound of the confidence interval for p. 
The solid lines in Figure 3A are plots of (L’ - LML) 

as a function of AESTIMATED, using the  linear scales that 
appear on the left-hand sides of the vertical lines. On 
the right-hand sides are logarithmic scales that give the 
corresponding values  of eL+-LM1.. The  upper  bound  for 
p is obtained by multiplying the  experimental value, 
pESTIMATED, by the factor read from right-hand scale. 
Figure 3B is like Figure 3A except that it gives  values for 
calculating the lower bounds. 

For example, suppose a fluctuation experiment with 32 
cultures,  each  growing up to a population of approxi- 
mately  6.3 X lo8 cells,  has  yielded a maximum  likelihood 
estimate of A = 5.6 so hsTIMATED = 5.6/6.3 X lo8 = 8.9 X 
lo-’. In Figure 3A a vertical line has been drawn at 
A E s T I ~ T E D  = 5.6.  This  meets the 95% confidence line at an 
upper confidence factor of 1.259.  (Beware  of  optical  illu- 
sions  when  drawing  such  lines by hand.) Thus the 95% 
upper bound for p is  1.259 X 8.9 X lo-’ - 1.12 X lo-’. 

Similarly from Figure 3B one gets a lower confidence 
factor of 0.764.  Since  0.764 X 8.9 X lo-’ - 6.8 X lo-’, 
one might say,  with approximately 95%  confidence,  that 

6.8 X lo-’ < p < 1.12 X (6) 

The  dotted lines in Figure 3 give the  90% confidence 
factors in  the same way that  the solid lines give the 95% 
factors. 

In spite of the uncertainty suggested by Table 2, Equa- 
tions 4 and 5 appear to fit the simulations remarkably 
well.  Of 9,600 90% confidence intervals calculated 
from them 8,654, i. e . ,  90.1 %, include  the  true value. 
The corresponding figure for  the 95% intervals is 9,112, 
i. e . ,  94.9%. 

Caveat: All of the simulated samples were drawn from 
a LEX and COULSON distribution. If the actual mutation 
process is not close to their  model  there is no reason to 
expect that  numbers  that  appear in the formulas will be 
correct. Much more simulation will be necessary before 
the conclusions of this study can be  applied to such pro- 
cesses. Moreover, a more theoretical and rigorous study 
of the estimation procedures is much to be desired. 

SUMMARY 

This report studies maximum likelihood estimation of 
mutation rates from data  obtained in fluctuation experi- 

ments. Extensive simulations show that  the behavior of 
the maximum likelihood estimator is sufficiently regular 
that it is possible to give approximate confidence inter- 
vals for the  mutation rate. Graphs are provided by which 
90 and 95% confidence intervals can be calculated for 
a wide range of experimental parameters. Since the 
maximum  likelihood  estimate is  now  easy to calculate and 
is better than any of the other estimates  suggested, it 
should probably be used for all serious work. The highest 
accuracy will be obtained when the expected number of 
mutations is as large as experimental conditions permit. 

The simulations show that  the original averaging 
method used by LURIA and DELBRUCK is somewhat better 
than has often  been suggested. When the  expected  num- 
ber of mutations is small, estimation by the  number of 
cultures without mutants is almost as reliable as the 
maximum likelihood method, but low expected  num- 
bers should be avoided when possible.  For  small  values 
of the  expected  number LEX and COULSON’S method is 
seriously biased, but for larger values it is almost as  ac- 
curate as maximum likelihood. 

I am most  grateful to two reviewers for careful and very helpful 
reviews of earlier versions of this paper. I also want to thank ANDY 

BROWDER, PHYLLIS HUDECK, MIKE  ROSEN and JOE SILVERMAN, who used 
their  computers  to  get  the  data  on which this study is based. 
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