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ABSTRACT 
Statistical properties of the process  describing  the  genealogical  history of a random sample of genes 

are  obtained for a class of population  genetics  models  with  selection.  For  models with selection, in 
contrast to models without selection, the  distribution of this  process, the coalescent process,  depends 
on  the distribution of the  frequencies of alleles in the  ancestral  generations. I f  the ancestral frequency 
process can be approximated by a diffusion,  then  the mean  and the variance of the number of 
segregating sites due to selectively neutral mutations in random  samples can be  numerically  calculated. 
The calculations are greatly  simplified if the  frequencies of the alleles are tightly  regulated. If the 
mutation rates  between  alleles  maintained by balancing selection are low, then the number of 
selectively  neutral  segregating  sites  in a random  sample of genes is expected to substantially  exceed 
the number  predicted  under a neutral  model. 

R ESTRICTION mapping and DNA sequencing of 
genes  from  populations provides information 

about variation at  the nucleotide level. The selectively 
neutral infinite-sites model (KIMURA 1969) is often 
the basis for  the analysis  of this variation (e.g., SHAW 
and LANGLEY 1979; KREITMAN 1983; CHAKRAVARTI, 
ELBEIN and PERMUTT 1986; HUDSON 1987).  Recent 
analyses however, cast doubt  on  the adequacy of the 
selectively neutral model to account  for the  patterns 
of variation between and within species (e .g . ,  GILLES- 
PIE 1986; HUDSON,  KREITMAN and AGUADB 1987). It 
is therefore  important  to investigate competing  pop- 
ulation genetic models that  might explain the ob- 
served  genetic variation. The analysis of alternative 
models could also be useful in the development of 
hypothesis tests as well as more  robust estimation 
methods. 

An important  summary statistic for nucleotide var- 
iation in a sample of genes  from  a  population is S, the 
number of segregating sites in the sample. For  a 
variety of selectively neutral  infinite sites population 
genetics models with no recombination, the distribu- 
tion of S is known (WATTERSON 1975; KINGMAN 
1982a,  b; TAVAR~ 1984; HUDSON and KAPLAN 1986; 
KAPLAN and HUDSON 1987).  Little,  however, is known 
about  the  distribution of S for  infinite sites models in 
which some of the genetic variation is not selectively 
neutral.  In  these cases S can be  written as the sum S,,, 
+ &,I, where S,,, is the  number of segregating sites 
which have no selective effects, and Ss,I is the  number 
of segregating sites which have selective effects. The 
work presented  here shows that  for some models with 
selection and  no recombination, the distribution of 
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S,,, is tractable. If S,,I  is negligible compared to S,,,, 
then  the statistical properties of S can be  inferred 
from  those of S,,,. In  the  extreme,  for example, if 
selection acts at a single nucleotide site, then S,I is at 
most one.  For some selective models, however, S,I 
may not  be negligible compared to S,,,. The statistical 
properties of S,,I for  these cases will not  be  considered 
here. 

Two essential features of the selectively neutral 
infinite sites model proposed by KIMURA (1969)  are 
(1) each segregating site in a random sample genes is 
the result of a  unique  mutation and (2) all mutations 
are selectively neutral in the sense that they do not 
affect the sampling mechanisms which determine  the 
population  structure each generation ( i e . ,  S = S,,,). 
Under these  general assumptions it can be shown that 
for k 2 0 

where p = the  rate of neutral  mutation per  gene  per 
generation, 

F ( t )  = P(T I t ) ,  t 2 0,  

and T is the sum of the lengths  (measured in genera- 
tions) of all the  branches of the ancestral tree describ- 
ing the genealogical history of the sample. It follows 
from  (1)  that  the  moments of S are immediate  from 
those of T. For  example 

W )  = @(T), (2) 

Var(S) = ~ E ( T )  + p2Var(T). (3) 

For many  selectively neutral models the  moments 

and 
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of T are known for  large  populations, since the asymp- 
totic behavior of the stochastic process describing the 
genealogical history of the sample has been  character- 
ized (WATTERSON 1975; KINCMAN 1982a, b; TAVAR~ 
1984).  For  example,  for  a  random sample of n genes 
from  a  population of size N whose evolution is de- 
scribed by a  neutral  Wright-Fisher  reproductive 
scheme, the mean and variance of T, when measured 
in units of 2N generations, are approximately 

E ( T )  = X 7 and  Var(T) = 2 3. 
n-1 2 n-I 4 

i=l ;=I 2 

For  infinite sites population  genetic models that are 
not selectively neutral,  Equations 1-3 hold, in general, 
for S,,, but  not  for S .  However,  for models with 
selection, the process describing the genealogical his- 
tory of a sample has not  been  characterized and so 
nothing is known about  the distribution of T .  In this 
paper this problem is studied and  for many models 
with selection and  no recombination, e.g. overdomi- 
nant selection or mutation-selection balance, the 
asymptotic behavior of the genealogical process of a 
random sample of genes is characterized. These  re- 
sults are presented in the  Theory section. In  order  to 
fully describe the distribution of the genealogical 
process for models with selection, certain  expectations 
involving the ancestral  frequency process must be 
calculated. These calculations are in general difficult, 
but in some special cases explicit formulas can be 
obtained. These cases as well as some numerical results 
are discussed in the CALCULATIONS section. Finally, 
some of the implications of these  results are presented 
in the DISCUSSION. 

THEORY 

The process which describes the genealogical his- 
tory of a  random sample of n genes is called the 
coalescent (KINCMAN 1982b). If there is no intragenic 
recombination, then a realization of this process, re- 
ferred  to as the ancestral tree, can be thought of as a 
binary tree having a  node at  the  top  and n tips at  the 
bottom. Each of the n tips is identified with one of the 
genes in the sample; thus  as  one moves up  the  tree 
tracing the ancestral  genes of members of the sample, 
time is measured  from the present  generation  into the 
past. There  are n - 1  nodes in the  tree  and they are 
labeled from 1 to n - 1 going  from the most recent 
node  to  the most ancient  one.  A  node is interpreted 
as an  ancestral  generation in the history of the sample 
when the most recent  common  ancestral  gene  of 
two or more  genes in the sample occurred. Let T(j)  
denote  the  number of generations between the 
( n  - j)th  and ( n  - j + 1)th  nodes, 2 5 j 5 n. For con- 
venience any of the tips is defined to be the  0th  node. 
An ancestral tree  for  a sample of  size 3 is given in 
Figure  1. 

gene 1 gene 2 gene 3 

FIGURE 1 .-A realization of the coalescent process for a sample 
of size 3. The first coalescent event occurred at the T(3)th ancestral 
generation and the most recent common ancestor of the sample 
occurred at the (T(3)  + T(2))th ancestral generation. 

The coalescent process is related to  the infinite sites 
model in the following way (KINGMAN 1982a). If all 
mutations are unique and  neutral in the sense that 
they do not affect the sampling process, then  the 
distribution of the  number of segregating sites when 
conditioned on  the coalescent process is approxi- 
mately Poisson  with mean p(Cjn_2 jT(j)). Equation 1 is 
an  immediate consequence of this result. 

The distribution of the coalescent process is com- 
pletely characterized  for many selectively neutral pop- 
ulation genetics models (TAVAR~ 1984). If, for ex- 
ample,  a diploid population of  size N evolves accord- 
ing  to  a  neutral  Wright-Fisher sampling scheme,  then 
the ( T ( j ) )  are independent  random variables and  for 
large N the distribution of each T(j)  (when measured 
in units of 2N generations) is approximately negative 
exponential with mean 2 / ( j ( j  - 1)). Furthermore, 
since the sampling is neutral, any two of the j  branches 
are equally likely to coalesce at  the (n - j  + 1)th  node. 

The goal of this section is to study the distribution 
of the coalescent process for  population genetic 
models in  which some genetic variation is not selec- 
tively neutral.  It is instructive for what follows to first 
present  an argument  for  the  neutral case  which  shows 
that T( j )  has an  exponential  distribution.  For  a diploid 
population of  size N that is evolving according  to  a 
neutral  Wright-Fisher sampling scheme, all parental 
genes are equally likely to be the  parent of a  randomly 
chosen daughter gene. The probability, 1 - Q,, that 
j randomly chosen genes have no common ancestors 
in the previous generation, can therefore be written 
as 

3- 1 
1 - 4 j = n  1" 

E= 1 ( '2N) 
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random 

N diploids ------- 
(generation t -1) 

mutation infinite mating infinite selection infinite sampling 
> """_ 

gametes diploids """- > > diDloids """"> N diploids 

Hence,  for  any t > 0, 

P ( T ( j )  > t )  = (1 - Qj)' 

The key to  the previous argument is that all parental 
genes are equally likely to be the  parent of a  randomly 
chosen daughter  gene.  It is this very property which 
does  not  hold  for  populations with genetic  variation 
which is not selectively neutral.  For  these  populations 
one must  keep  track  of the ancestral allelic frequen- 
cies. T o  simplify matters, it is assumed that  at  the 
selected locus A there  are two alleles, A1 and Az. For 
generation t ,  X(t) denotes  the fraction of A1 genes in 
a  diploid  population  of size N .  It is assumed that  the 
population has achieved  stationarity and so the  cur- 
rent  generation  from which the  random sample is 
taken is denoted as the  0th  generation. The time 
parameter t thus takes on both positive and negative 
values, where  negative  generation  times denote an- 
cestral  generations  and positive generation times fu- 
ture  generations. 

Each generation  the  daughter population is ob- 
tained by random sampling after  mutation  and selec- 
tion  have occurred. The life cycle of the process is 
shown in Figure 2 .  The fitnesses of the  three  geno- 
types A I A I ,  A1A2 and A2A2 are W I I ,  w12 and w22, respec- 
tively, and  the mean fitness in generation t is denoted 
by G(t) .  The rates of mutation are u(Al to A2) and v(A2 
to AI) .  Mutations from A I  to A2 or A2 to A I  will be 
referred  to as selective mutations. It is assumed that 

u = - PI + 0 ($), 
2N 

and 

v = - P 2  + o($ 
2N 

where PI > 0,  P Z  > 0.  
LetfAj(Ah, t )  denote  the probability that a  randomly 

chosen gene  from  generation t is of allelic type and 
its parental  gene  from  generation t - 1 is of allelic 
type A,. For the specified life cycle, it follows from 

( generation t ) 

FIGURE 2.-The life cycle. 

standard  population  genetic arguments  that 

+ X(t - 1)(1 - X ( t  - l ) )w12) + o(;) 

= X ( t  - 1)  + o($, 

+ X(t - 1)(1 - X(t - 1))W]2 + 0 - ) (22 

+X(t - 1)(1 -X@- 1))WlZ + 0 - 1 (it-) 
= l - X ( t - l > + O  - , ( J  

and 

+ X(t - 1)(1 - X(t - 1))w12 + 0 - ) ($2) 

Letf(Aj, t )  denote  the probability  of picking a  gene 
of allelic type A, regardless of the allelic type  of the 
parental  gene. It follows that 

f(A1, t )  =fA1(A1, t )  +ji2(A1,  t )  

= X @ -  l ) + O  - (it.) 

= 1 - X(t - 1) + o($ 

We are now in a position to study the  structure of 
the coalescent process for selective models. Since the 
ancestral  genes can be of allelic type A I  or A2, the 
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coalescent is a two dimensional process. Suppose that 
n genes are chosen at  random  from  the  0th  generation 
and let Q(0) = (i, j )  if the sample consists of i A 1  alleles 
and j A2 alleles, 0 5 i, j 5 n, i + j  = n. For t < 0, Q(t) 
denotes  the  number of A I  and AP ancestral  genes of 
the sample in generation t .  The total  number of 
ancestral  genes in generation t is denoted by I Q(t) 1. 

By its very definition Q is a jump process. We define 
T1, T2, . . . to be the  numbers of generations  between 
successive jumps  and Z1,22, . . . the successive random 
states to which the process moves. The Q process can 
therefore  be  represented  as 

where S k  = T,, k I 1.  An example of an ancestral 
tree  for a sample of size 4 is given in Figure 3. 

It is clear from  the  definition of the Q process that 
I Q(t)  I never increases. Hence, the process eventually 
reaches either of the two states (0, 1) or (1 ,  0). The 
ancestral generation in which this first  occurs is that 
generation which has the most recent  common ances- 
tor of the sample. 

We  now consider the  joint distribution of the (Ti) 
and  the {Z,). Toward this end we study the distribution 
of Q(t - 1)  conditional on Q(t) and X ( t  - 1). There 
are two cases to consider: 

Case 1: I Q(t - 1) I = I Q(t) l .  The only way that 
Q(t - 1) # Q(t) is if the allelic type of at least one of 
the sampled genes is different (as a  result of a selective 
mutation)  than the allelic type of its parental  gene. 
The probability that  a sampled AP allele from  gener- 
ation t has an A I  parental  gene equals 

Since j A2 genes are sampled from  generation t ,  

P(Q(t - 1) = (i + 1 ,  j - 1) I Q(t)  = ( i , j ) ,  X ( t  - 1)) 

Similarly, 

P(Q(t - 1) = (i - 1 , j  + 1) I Q(t) = (Z,j), X ( t  - 1)) 
(7) 

1 - X ( t  - 1) p 2  

\ I  

=i( X ( t - 1 )  ) Z + O ( $ ) .  

Furthermore, since all the  other possible  cases where 
Q(t - 1) # Q(t)  and 1Q(t - 1)1 = IQ(t)I involve at least 
two selective mutations, these events have probabili- 
ties of order 1/N2. 

Past 

.. . . . . . . . . . . . . .  

A ,  SllOIOS A alleles 

FIGURE 3.-A realization of the coalescent process for a sample 
of size 4. The Q process changes value at the S, = %I T, ancestral 
generations, 1 5 j 5 5. At the Slth ancestral generation, an ancestral 
A? allele mutated to an A I  allele, ie., the Q process moved from (2, 
2) to ( 1 ,  3) at the Snth and Ssth ancestral generations,  common 
ancestors of two ancestral AS alleles occurred and so the Q process 
moved to ( 1 ,  2) and  then to ( 1 ,  1 ) .  At the S4th ancestral generation, 
an ancestral A1 allele mutated to an A2 allele and so the Q process 
moved to (2, 0). Finally at the Ssth ancestral generation, the most 
recent  common ancestor of the sample occurred and the Q process 
moved to the state ( 1 ,  0). 

Case 2: I Q(t - 1) I # I Q(t) I. In this case some of the 
sampled genes have common  parental genes. The 
fraction of the genes of generation t contributed by a 
particular A I  parental  gene equals 

X ( t  - 1)Wll + (1 - X ( t  - 1))W12 
2 N q t  - 1) + o($) 

The probability that two sampled A I  genes  from  gen- 
eration t have the same A I  parental  gene  therefore 
equals 

1 - - 
2 N X ( t  - 1)  + 0 ($). 

Since i A1 genes are sampled from  generation t ,  

=(a) 1 + 0 ($). 
2 2NX(t-  1) 

Similarly, 
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Also, since the chance of having more  than  one coa- 
lescent in any generation is of order  1/N2, 

P(IQ(t - 1>1 < IQ(t>I - 1 I lQ(t)Ij X(t - 1)) 

= 0 ($). 
It follows from (6)-( 10) that  the conditional  distribu- 
tion of Q(t - 1)  up to  order  1/N is 

P(Q(t - 1) = Q(t) I Q(t) = (i, j ) ,  X(t - 1)) 

where 

( 3  i:) 
h&) = - + - + - j P I X  + iP2(1 - x) 

x 1 - x  I - x  X 

(If i is  less than 2, then is interpreted as 0.) 

Furthermore, 

P(Q(t - 1) = (i - 1 , j )  I Q(t - 1) # Q(t) = ( i , j ) ,  X ( t  - 1)) 

= q i - l j ( X ( t -  1)) + O  

P(Q(t - 1) = ( i , j  - 1) I Q(t - 1) # Q(t) = ( i , j ) ,  X( t  - 1)) 

=q; , , - l (X( t -  1)) + 0 

P(Q(t- l ) = ( i +  1 , j -  1)l 

Q(t - 1) # Q(t) = ( i , j ) ,  X ( t  - 1)) 

- - qt+l,j-1(X(t - 1)) + 0 

and 
P(Q(t- l ) = ( i -  l , j +  1)l 

Q(t - 1) # Q(t) = ( i , j ) ,  X(t - 1)) 

-qi-l,J+l(X(t- - 1 ) ) + 0  

where 

and 

Thus,  for large  N it can  be assumed as a conse- 
quence of (12)  that when the Q process does jump, 
there  are only four possible states it can jump to: 
( i -  l , j ) , ( i , j -  l ) , ( i +  1 , j -   l ) a n d ( i -   l , j +  1). 
The first two states  represent coalescent events and 
the  latter two mutation events. 

The formula  for the  joint distribution of the (Ti) 
and (Zi) follows from (1 1) and (12). If one conditions 
on  the X process and uses (1  1)  and (1 2) repeatedly, 
then 

P(Ti = ti, Zi = ~ i ,  1 I i I k I Q(0) = ~ 0 )  

r k  

where each ti > 0, si = z;,=l t,, SO = 0, each z; can take 
on  one of four possible values which depend  on  the 
value of zi-1 and whenever s,-1 + 1 is greater  than 
s, - 1,  the  product in (1 3) is set equal to 1. It  should 
be noted  that Ti and Zi are  not  independent  and  that 
the  expectation in (1 3) is with respect to  the distribu- 
tion of the ancestral  frequency process ( X ( t ) ,  t I 0). 

We next  consider the asymptotic behavior of the 
expectation in (1 3). As is customarily done, time is 
rescaled so that it is measured in units of 2N genera- 
tions. It is a  straightforward exercise to show that  for - 

N  large 

Hence, it follows from  (13)  and  (14)  that 
/ -  

ti + -), 21 = zj, 1 I i I K I Q(0) = zo 
1 

2N 

If the stationary process ( X ( - ~ N T ) ,  T > 0) converges 
weakly to  a process (Y(T) ,  7 > 01, then it follows from 
the invariance principle (BILLINGSLEY 1968)  that  for 
large  N the expectation in (15) can be evaluated with 
respect to  the  distribution of the Y process. Thus, in 
the limit the Q process, when conditioned  on  the 
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ancestral frequency process, behaves like a two-dimen- 
sional time  inhomogeneous Markov jump process. 

In many cases  of interest the Y process is a diffusion. 
For example, if the  stationary  frequency process 
( X ( ~ N T ) ,  T > 01 converges to  a reversible diffusion, 
then { X ( - ~ N T ) ,  7 > 01 also converges to  a diffusion. 
Two examples of selective models that lead to limiting 
diffusions are: 

Example 1 (Deleterious selection) 
w11 = 1 + s w12 = 1 + sh w22 = 1, 

and 
Example 2 (Overdominant selection) 

w11 = 1 - SI w12 = 1 w 2 g  = 1 - sg, 

where s, s1 and sp are of order 1/2N and 0 5 h 5 1. 
If the limiting process is a diffusion, then it is 

possible to study properties of the Q process numeri- 
cally. In the  next section a  method is described for 
doing such calculations and some numerical calcula- 
tions are presented. A special  case where this difficult 
numerical analysis is not necessary is also discussed. 

CALCULATIONS 
In this section we study the distribution of T(i, j ) ,  

the sum of the lengths  (measured in units of 2N 
generations) of  all the branches of the ancestral tree, 
assuming that  the sample consisted of i A I  alleles and 
j A2 alleles (i + j 2 2). We first consider selective 
models where  mutation and selection act in such a 
way that  at  equilibrium the frequencies of the two 
alleles remain essentially constant  for long periods of 
time. In  these cases it can be assumed that  there is a 
constant xO(0 < x0 < 1) such that X ( t )  = x0 for all t. 
These tightly regulated models are of interest because 
the moments of T(i, j )  are easier to compute and they 
may be  good  approximations to  the moments of 
T(i, j )  for selective models where the frequencies of 
the two alleles are not tightly regulated. 

If it is assumed that X ( t )  = x. for all t ,  then it follows 
from  (1 5)  that  the limiting Q process is a  time  homo- 
geneous Markov process with the following parame- 
ters.  For any state ( i , j ) ,  the holding time in that  state, 
TV, has a negative exponential  distribution with pa- 
rameter hV(x0) and  the probability that  the process 
moves from (i, j )  to (i‘, j ’ )  equals q;,j,(xo) where (i’, j ’ )  
can equal (i - 1, j ) ,  (i, j - 1) ,  (i - 1, j + 1 )  or (i + 1, 
j - 1). It is important  to  note  that in the tightly 
regulated case, the  form of selection affects the limit- 
ing Q process only to  the  extent  that it affects the 
value of XO. Hence,  the  distribution of the limiting Q 
process will be the same for any tightly regulated 
selection model having the same value of x0 and  the 
same mutation  parameters. 

For some selection models, e.g., Example 1, x0 de- 
pends on and & For Example l ,  x0 satisfies the 
equation 

~ - r ~ o ( l  - XO)(XO + h(l  - 2x0)) 
(16) 

- P I X 0  + P2(1 - xo) = 0, 

where a = 2Ns (EWENS  1979). If x0 is close to  one, 
then it is  well known (EWENS 1979)  that 

x()= 1 -___ 
~ ( l  - h)’ 

U 

while if s > 0 and h = 1.  then 

r 

For other selection models x0 may not  depend on the 
mutation  parameters. This is true  for Example 2 if u 
and v are small when compared to s1 and s2, since in 
this case 

x0 = -. SP 

SI + SP 

The conditions under which the approximating dif- 
fusions in Examples 1 and 2 behave as if they converge 
to a  deterministic  equilibrium  point have been dis- 
cussed by many authors (NORMAN 1975; KURTZ 198 1) 
and  the interested  reader should consult their  papers 
for details. Loosely speaking, the diffusion will behave 
in this way if the infinitesimal mean is large  compared 
to  the infinitesimal variance. 

The following representation  for T(i, j )  is a  direct 
consequence of the Markov property of the limiting 
Q process. If we consider what happens when the 
process first changes value, then 

T(i, j )  = (i + j)Tq + T(Z,.), 

where Tq is the holding time in state (2, j ) ,  Z, is the 
random  state  to which the process moves and if 2,  = 
(i’, j ’ ) ,  then T(Zy)  is an  independent  random variable 
having the same distribution as T(i’, j ’ ) .  

Recursions for  the mean and variance of T(i, j )  are 
easy to  obtain  from  (1 7). Let Mq denote  the mean of 
T(i ,  j )  and Vq its variance. Then 

and 

(19) 
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Equations 18 and 19 are not useful for  studying the 
behavior of  MI^. and V ,  if n is large.  It is easier to study 
the evolution of the (2 process directly. It is not  hard 
to show that  the  behavior of the mean and variance 
of T( i , j )  for large samples is the same as in the  neutral 
case. That is, the  mean of T(i, j )  grows like log(i + j )  
and its variance remains  bounded. 

For small samples, it is necessary to solve the  recur- 
sions in (1  8) and (1  9) for  particular  parameter values. 
Since it may commonly be the case that  one  cannot 
distinguish between  the two alleles, we assume that 
the  number of A1 alleles in the sample is random with 
a binomial distribution. The quantities  tabulated in 
Table 1 are  therefore 

Mn(xo) = i (1) xh(1 - xo)n-iMin-i, 
i=o iC/ 

and 

The results in Table 1 show that  the values of M,(xo) 
and Vn(xo) only differ significantly from  their values 
in the  neutral case when both /31 and /32 are small. 
Furthermore,  the closer x0 is to 0 or 1, the smaller PI 
and /32 have to be in order  for M,(xo) and Vn(x0) to 
differ  from  their  neutral values. 

It is easy to explain why small values of /31 and /32 

lead to ancestral  trees which do  not look neutral. If 
selective mutations are  rare,  then most of the state 
changes in the Q process result  from  common  ancestor 
events. Hence, with high probability all the A I  alleles 
and all the AQ alleles will coalesce, resulting in just two 
ancestral genes; one of each allelic type. In  order  for 
these two ancestral genes to have a common ancestor, 
it is necessary for  a selective mutation to occur first. 
If /31 and /32 are small, then this event takes a  long 
time  to  occur and so the  ancestral tree will not look 
neutral. 

In  those cases where x0 depends  on P I  and ,f32 the 
above  behavior may not  hold. T o  see what can happen 
we consider Example 1 of the previous section. For a 
sample of size 2 the equations  for MZ0, Mll  and MO2 
are easy to solve. Indeed, 

M20 = 
2x0 2P41 - X 0 ) M I  1 

1 + 2P2( 1 - xo) 1 + 2p2( 1 - xo)’ 
+ 

and 

P2( 1 - x0)3 
1 + 2PlXO 1 + 2/34 1 - xo) 

+ 

TABLE 1 

Mean (M,,(xo)) and  variance (V. (~O))  of the  total  time  in  the 
genealogy of a random sample of n genes,  assuming  tight 

regulation 

n = 2  n = 20 

- 81 81 x0 M z ( X 0 )  V * ( X O )  Mno(x0) Vzo(x0) 

100.0 100.0 0.5 2.0 4.0 7.1 6.4 
0.1 1.8 3.4 6.5 5.4 
0.05 1.9 3.6 6.5 5.4 

10.0 10.0 0.5 2.1 4.2 7.3 6.7 
0.1 1.8 3.4 6.6 5.4 
0.05 1.9 3.6 6.8 5.8 

1.0 1.0 0.5 2.5 6.8 8.4 9.9 
0.1 1.9 3.4 6.8 5.5 
0.05 1.9 3.7 6.8 5.8 

0.1 0.1 0.5 7.0 99.0 17.5 127.0 
0.1 2.2 5.2 8.5 10.5 
0.05 2.0 3.9 7.5 6.8 

0.01  0.01 0.5 52.0 7704.0 108.0 10208.0 
0.1 5.8 163.0 26.0 483.0 
0.05 2.9 24.0 13.5 102.0 

1.0 100.0  0.5 1.0 1 .o 3.8 1.7 
0.1 1.8 3.2 6.4 5.2 
0.05 1.9 3.6 6.7 5.8 

100.0 1.0 0.1 0.85 0.60 3.6 1.2 
0.05 1.6 2.4 5.8 4.0 

80.0 5.0 0.5 1.1 1.3 4.2 2.0 
0.1 2.0 3.8 6.9 6.1 

For comparison the  mean  and variance of the time in the  ge- 
nealogical history of sample from a selectively neutral model is 2.0 
and 4.0, for a sample of size 2, and 7.1 and 6.4, for a  sample of size 
20. 

Suppose that / 3 1  and 0 2  are both small and  that x0 
satisfies (16a). In this case, a must be  large in order 
for  the  frequency of the A I  to  be tightly regulated.  It 
is not difficult to show under these conditions  that 

XI3420  = 2, xo(1 - X0)MIl  = 0 
and (1 - ~ o ) ~ M ~ ~  = 0. 

Thus, MZ(x0) = 2 regardless of how  small p1 and p2 
are. 

Knowing the allelic composition of the sample also 
affects the conclusions about  the sample’s genealogy. 
For  example, suppose that  both  members in a sample 
of size 2 are  the same allelic type. Suppose also that 
PI = PZ = /3 = 0, and x0 = 1. Then it is not difficult to 
show that 

M2o = 2 
and 

lMo2 = 2(1 - ~ 0 )  + 4(1 - XO + p). 
Thus, if one picked two genes of the common allelic 
type,  then  the  ancestral tree looks neutral.  If, on the 
other  hand,  one picked two genes of the  rare allelic 
type,  then  the  ancestral tree looks much smaller than 
a  neutral  tree. 

Before we consider selection models which are not 
tightly regulated, we briefly examine  a  relationship 
between the coalescent process for tightly regulated 
selective models and  the  infinite alleles model. Sup- 
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pose at locus A there  are two classes of alleles which 
are denoted A1 and Az. Class A I  consists of alleles A l l ,  
AI,, . . . and class A2 consists  of alleles A21, A22, . . . . 
Suppose that every selective mutation of an A I  allele 
gives  rise to a new allele of the A2 class and vice versa. 
In  addition each neutral  mutation gives rise to  a new 
allele within the same class. HARTL and CAMPBELL 
(1  982) showed under these assumptions that  the dis- 
tribution of the  number  and  frequencies of AI alleles 
in a  random sample from the AI class  follows an 
infinite alleles distribution (EWENS 1972)  where 

A similar result holds for  a sample from  the A2 class 
with 

HARTL and CAMPBELL proved this result without 
using the coalescent process. Their  arguments how- 
ever,  provide no information  about the distribution 
of the  number of segregating  neutral sites in the 
sample. For the model considered by HARTL and 
CAMPBELL, our analysis  shows that  the  expected  num- 
ber of neutral  segregating sites in a sample of n genes 
from  the AI class equals 2NpE(T(n, 0)). 

We  now examine selective models where the limit- 
ing Y process is a diffusion which is not tightly regu- 
lated.  In these cases one can show that  for any n 2 2, 
the functions, (Fq( t ,  x) = P(T(i, j )  > t l  Y(0)  = x), 2 I i 
+ j 5 n)  are  the solution of the following system  of 
partial  differential  equations 

F,(t ,  x) + - 2 F,(t, x) 
b@) a2 
2 ax 

where t > 0,O < x < 1 and 2 5 i + j  5 n. 
The derivation of (20) relies on  the same kinds of 

Taylor series arguments  that  are used to study the 
distribution of a  hitting  time  for  a diffusion process 
(KARLIN and TAYLOR 1981). 

There  are several difficulties in solving (20)  numer- 

ically. First, the coefficient of the second order  term 
equals zero at  the boundaries, i e . ,  b(0) = b(1) = 0. 
Second,  the  boundary  conditions, (F, ( t ,  0) and FG(t, l) ,  
t > 01 are unknown. Finally, the  right-hand side of 
(20) explodes as x approaches 0 and 1. For these 
reasons standard software packages for solving partial 
differential  equations  cannot  be used and so alterna- 
tive methods  need to be developed. 

Since none of the coefficients in (20)  are time de- 
pendent, it is not difficult to obtain  from  (20)  a system 
of equations  for each moment of T( i , j ) .  For example, 
if M , ( x )  = E(T(i ,  j )  I Y(0)  = x), then  integrating  both 
sides  of (20) with respect to t leads to 

where 0 < x < 1 and 2 5 i + j 5 n. To obtain  equations 
for  the  higher  moments of T(i, j) one multiplies both 
sides of (20) by an  appropriate power of t before 
integrating. 

For  the same reasons given above,  standard soft- 
ware packages for solving systems  of equations such 
as those in (21)  cannot  be used. In  a  forthcoming 
paper (DARDEN, KAPLAN and HUDSON 1988),  a  nu- 
merical method  for solving (21) is described.  This 
method is patterned  after  the LU decomposition for 
tridiagonal matrices (PRESS et al. 1988). 

To illustrate the numerical results the following 
examples are considered.  In Table 2  the analogs of 
M2(xO) and VZ(x0) are calculated for  a sample of size 2, 
assuming the selection model of example 2. These 
quantities are 

M z  = (;) i' M i 2 - z ( ~ ) ~ i ( l  - x) '"p(x)dx 
;=0 

and 

v, = ; (;) J1 L;2-i(x)x1(1 - x)Z-y(x)dx - (M,)*,  
i=O 

where Lq(x) = E(T(i,  j)'I Y(0) = x )  and p ( x )  is the 
stationary density of the diffusion. 

Two cases were considered. In  the first case P I  = P 2  

= 0.1 and s1 = sg, while  in the second case P I  = P2 = 
0.01  and s1 = 9sz. The equilibrium allelic frequency, 
for  the tightly regulated process in the first case equals 
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TABLE 2 10 1 

Mean (MI) and  variance (Vr) of the  total  time  in  the  genealogy 
of a random  sample of two genes,  assuming  that  the  selected 

locus is not tightly  regulated 

2 N ~ 2  MP V2 

Case 1 (PI = B2 = 0.1, sI = s~): 
0.0 2.00 4.0 
2.5 2.22 5.8 

10.0 4.34  36.0 
50.0 6.65 90.0 

250.0 6.93 97.0 
m 7.00 99.0 

Case 2 (Dl = p2 = 0.1, S, = 9 ~ ~ ) :  
0 2.00 4.0 
5 2.00 4.2 

50 2.45 8.8 
100 4.92 107.0 
200 5.47 143.0 

m 5.8 163.0 

For both of these cases the limiting diffusion is associated with 
the overdominant selection model of Example 2. 

0.5, whereas for  the second case it equals 0.1. The 
results in Table 2 show that  the values of M ~ ( X O )  and 
V2(x0) are good approximations to M2 and V2 so long 
as 2Ns2 > 50 in case 1 and 2Ns2 > 200 in case 2. T o  
provide  a visual impression of the tightness  of the 
regulation  of  the  frequency process, the density  of the 
stationary  distribution of the limiting diffusion for 
case 1 is plotted in Figure 4 for  four values of 2Ns2. 
It is evident  that  there is some variability when 2Ns2 
equals 50,  and yet the tight-regulation  approximation 
is quite  accurate. 

Up until now we have  considered selection models 
where the infinitesimal variance of  the  approximating 
diffusion is not large. For some models however, this 
may not  be  true.  For example, the  random  environ- 
ment models studied by GILLESPIE (1978) lead to 
diffusions whose infinitesimal means and variances are 
of the  form 

a ( x ) = x ( l  - x ) C  A + B  -"X c G )I 
and 

b ( x )  = CX2(1 - x)2, 

where A ,  B and C are constants. 
Diffusions of this  type can be  thought of running 

on a different  time scale and so it is appropriate  to 
rescale time. Thus, suppose that  the ancestral  fre- 
quency process {X(-2N7), 7 > O ]  converges weakly to 
a  process {Y(C7), 7 > 01, where Y is a diffusion and C 
is a  constant.  If C is sufficiently large, i.e., the diffusion 
is running  on a faster  time scale, then it follows from 
(1 4) and (1 5) that  the coalescent process can again  be 
approximated by a  time  homogeneous Markov proc- 
ess. The  joint density  of the holding  time in any  state 

0.0 0.2 0.4 0.6 0.8 I .o 
Frequency 

FIGURE 4.-The stationary density of the limiting diffusion as- 
sociated with the overdominant selection model of Example 2. 

and  the  random  state  to which the process jumps is 

= e  --t 1' hz(u)P(u)du (s' h z ( U ) q z l ( U ) p ( U ) d U  

where p(u)  is the stationary density of the  approxi- 
mating  diffusion, Y. 

DISCUSSION 

Restriction  mapping and DNA sequencing  of sam- 
ples of  genes  from  populations give information that 
is more detailed and less ambiguous  than the infor- 
mation  from allozyme studies. These new molecular 
techniques also provide  information  about  the  age 
and genealogical relationships  of alleles (e .g . ,  SHAW 
and  LANGLEY  1979; STEPHENS and NEI 1985; 
AQUADRO et al. 1986). Effective use of this new type 
of  information  requires an understanding of the ge- 
nealogical relationships  expected under  competing 
population  genetic hypotheses that might explain the 
observed  molecular  genetic  variation. Under some 
simple genetic models without selection, many statis- 
tical properties  of  the process describing the genea- 
logical history of samples are known (WATTERSON 
1975; KINCMAN 1982a, b; TAVARI? 1984). The pur- 
pose of this investigation is to study  properties of this 
process for population  genetic models which are not 
selectively neutral. 

The distribution  of the coalescent process for 
models with selection depends  on  the distribution  of 
the frequencies  of alleles in the ancestral  generations. 
For many two-allele selective models, e.g., examples 1 
and 2 ,  the ancestral  frequency process can be  approx- 
imated by a diffusion process. In these cases the mean 
and  the variance  of T can be computed,  but it requires 
solving a  non-standard system of second order differ- 
ential  equations. A computer  program was written to 
solve these  equations  numerically and some typical 
results are presented in Table 2 .  
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Some simplification is possible if it can be assumed 
that  the allelic frequencies do not vary from  genera- 
tion to  generation, ie., they are tightly regulated. For 
selection models of this type, the coalescent process is 
a  time  homogeneous Markov jump process whose 
distribution only depends  on  the  mutation  rates  and 
the equilibrium  frequency,  regardless of the  form of 
selection. In this case the mean and variance of T each 
satisfy a system  of linear  equations which is much 
easier to solve. Furthermore,  the results in Tables 1 
and 2 suggest that  the values obtained assuming tight 
regulation are good  approximations even when the 
allelic frequencies are  not  that tightly regulated. 

The arguments  for  the tightly regulated case can 
be easily generalized to k-allele models, k > 2 .  If the 
allelic frequencies are not tightly regulated  then the 
results do not  generalize since the limiting ancestral 
frequency process, (Y ( t ) ,  t > 0), is not generally known 
to be a diffusion for k > 2 .  

I f ,  for  the tightly regulated case, the allelic frequen- 
cies do not  depend on the  mutation  parameters, 
01(=2Nu) and &4=2Nv), for  example under models of 
strong balancing selection, then  the mean and vari- 
ance of T differ substantially from  their values in the 
neutral case  only when the  mutation  parameters, p1 
and &, are small. If,  on  the  other  hand,  the allelic 
frequencies  depend on the  mutation  parameters,  then 
the mean and  the variance of T may not  differ signif- 
icantly from  their  neutral values regardless of how 
small 01 and 0 2  are.  The mutation-selection balance 
model illustrates this behavior. 

For neutral models, an unbiased estimate of 2 N p  is 
S/(2C';-' I/j),  where S is the  number of segregating 
sites in a  random sample of n genes and 2 I/' is 
the  expected value  of T for  a  neutral model for a 
random sample of n genes. If  in fact some of the 
genetic variation is not selectively neutral,  then  an 
unbiased estimate of 2Np is S,,,/E(T), where S,,, is 
the  number of segregating selectively neutral sites and 
E(T)  is the  expected value of T for  the selective model. 
Thus,  under  the selective model, the  neutral estimate 
is biased  in the following two ways. First, the observed 
value of S is too  large since it is the sum of the  numbers 
of segregating  neutral sites (S,,,,) and segregating se- 
lective sites (&,I), If the  number of segregating selec- 
tive sites is small compared to  the  number of segre- 
gating  neutral sites, e.g. if P1 and 0 2  are small com- 
pared  to 2Np,  then using the observed value of S 
instead of S,,,, will not  introduce  much  error. Sec- 
ondly,  under  a selective model, the expected value of 
T may, in fact,  be  much  larger  than 2 l/j, and 
so the  neutral estimate of 2 N p  may be  too  large. If 01 
and Pz, are very small, then this bias could be substan- 
tial (Table 1). 

The models studied in this paper assume that all 
sites are completely linked. Clearly, it is important  to 

introduce  recombination  into  the analysis and in par- 
ticular to  determine  the behavior of the coalescent 
process for  neutral sites not completely linked to a site 
at which selection is operating. In a companion study 
in this journal this problem is addressed (HUDSON and 
KAPLAN 1988). 
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