Skip to main content
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org

Institution: Massachusetts Inst of Technol MIT Libs

  • Log in
Genetics

Main menu

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org

User menu

  • Log out

Search

  • Advanced search
Genetics

Advanced Search

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
Previous ArticleNext Article

Estimating Long-Term Mating Systems Using DNA Sequences

Brook G. Milligan
Genetics February 1, 1996 vol. 142 no. 2 619-627
Brook G. Milligan
Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bmilliga@nmsu.edu
  • Article
  • Info & Metrics
Loading

Abstract

Plant mating systems often involve a mixture of self fertilizations and outcross fertilizations. The degree of selfing has a large impact on the genetic composition of natural populations and on the evolution of the mating system itself in response to such factors as inbreeding depression. This paper describes a means of estimating the long-term rate of self-fertilization from samples of alleles taken from individuals in a population. Use is made of the genealogy of pairs of alleles at a locus within individuals and pairs between individuals. The degree of selfing is closely related to the extent to which the number of nucleotide sites differing within an individual is reduced relative to the number differing between individuals. Importantly, the estimate of long-term selfing is largely independent of population size and is not affected by historical fluctuations in population size; instead it responds directly to the mating system itself. The approach outlined here is most appropriate to evolutionary problems in which the long-term nature of the mating system is of interest, such as to determine the relationship between prior inbreeding and inbreeding depression.

  • Received March 4, 1993.
  • Accepted October 5, 1995.
  • Copyright © 1996 by the Genetics Society of America
Previous ArticleNext Article
Back to top

PUBLICATION INFORMATION

Volume 142 Issue 2, February 1996

ARTICLE CLASSIFICATION

INVESTIGATIONS
Email

Thank you for sharing this Genetics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Estimating Long-Term Mating Systems Using DNA Sequences
(Your Name) has forwarded a page to you from Genetics
(Your Name) thought you would be interested in this article in Genetics.
Alerts
Enter your email below to set up alert notifications for new article, or to manage your existing alerts.
SIGN UP OR SIGN IN WITH YOUR EMAIL
View PDF
Share

Estimating Long-Term Mating Systems Using DNA Sequences

Brook G. Milligan
Genetics February 1, 1996 vol. 142 no. 2 619-627
Brook G. Milligan
Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bmilliga@nmsu.edu
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation

Estimating Long-Term Mating Systems Using DNA Sequences

Brook G. Milligan
Genetics February 1, 1996 vol. 142 no. 2 619-627
Brook G. Milligan
Department of Biology, New Mexico State University, Las Cruces, New Mexico 88003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: bmilliga@nmsu.edu

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Related Articles

Cited By

More in this TOC Section

  • The Fate of Deleterious Variants in a Barley Genomic Prediction Population
  • Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes
  • Fine-Mapping Complex Inversion Breakpoints and Investigating Somatic Pairing in the Anopheles gambiae Species Complex Using Proximity-Ligation Sequencing
Show more Investigations
  • Top
  • Article
  • Info & Metrics

GSA

The Genetics Society of America (GSA), founded in 1931, is the professional membership organization for scientific researchers and educators in the field of genetics. Our members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level.

Online ISSN: 1943-2631

  • For Authors
  • For Reviewers
  • For Subscribers
  • Submit a Manuscript
  • Editorial Board
  • Press Releases

SPPA Logo

GET CONNECTED

RSS  Subscribe with RSS.

email  Subscribe via email. Sign up to receive alert notifications of new articles.

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus

Copyright © 2019 by the Genetics Society of America

  • About GENETICS
  • Terms of use
  • Advertising
  • Permissions
  • Contact us
  • International access