Skip to main content
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org
  • Log in
Genetics

Main menu

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org

User menu

Search

  • Advanced search
Genetics

Advanced Search

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
Previous ArticleNext Article

Selection intensity for codon bias.

D L Hartl, E N Moriyama and S A Sawyer
Genetics September 1, 1994 vol. 138 no. 1 227-234
D L Hartl
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E N Moriyama
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S A Sawyer
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
Loading

Abstract

The patterns of nonrandom usage of synonymous codons (codon bias) in enteric bacteria were analyzed. Poisson random field (PRF) theory was used to derive the expected distribution of frequencies of nucleotides differing from the ancestral state at aligned sites in a set of DNA sequences. This distribution was applied to synonymous nucleotide polymorphisms and amino acid polymorphisms in the gnd and putP genes of Escherichia coli. For the gnd gene, the average intensity of selection against disfavored synonymous codons was estimated as approximately 7.3 x 10(-9); this value is significantly smaller than the estimated selection intensity against selectively disfavored amino acids in observed polymorphisms (2.0 x 10(-8)), but it is approximately of the same order of magnitude. The selection coefficients for optimal synonymous codons estimated from PRF theory were consistent with independent estimates based on codon usage for threonine and glycine. Across 118 genes in E. coli and Salmonella typhimurium, the distribution of estimated selection coefficients, expressed as multiples of the effective population size, has a mean and standard deviation of 0.5 +/- 0.4. No significant differences were found in the degree of codon bias between conserved positions and replacement positions, suggesting that translational misincorporation is not an important selective constraint among synonymous polymorphic codons in enteric bacteria. However, across the first 100 codons of the genes, conserved amino acids with identical codons have significantly greater codon bias than that of either synonymous or nonidentical codons, suggesting that there are unique selective constraints, perhaps including mRNA secondary structures, in this part of the coding region.

  • Copyright © 1994 by the Genetics Society of America
Previous ArticleNext Article
Back to top

PUBLICATION INFORMATION

Volume 138 Issue 1, September 1994

ARTICLE CLASSIFICATION

INVESTIGATIONS
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Email

Thank you for sharing this Genetics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Selection intensity for codon bias.
(Your Name) has forwarded a page to you from Genetics
(Your Name) thought you would be interested in this article in Genetics.
Alerts
Enter your email below to set up alert notifications for new article, or to manage your existing alerts.
SIGN UP OR SIGN IN WITH YOUR EMAIL
View PDF
Share

Selection intensity for codon bias.

D L Hartl, E N Moriyama and S A Sawyer
Genetics September 1, 1994 vol. 138 no. 1 227-234
D L Hartl
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E N Moriyama
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S A Sawyer
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation

Selection intensity for codon bias.

D L Hartl, E N Moriyama and S A Sawyer
Genetics September 1, 1994 vol. 138 no. 1 227-234
D L Hartl
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
E N Moriyama
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S A Sawyer
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Related Articles

Cited By

More in this TOC Section

  • The Fate of Deleterious Variants in a Barley Genomic Prediction Population
  • Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes
  • Polygenic Adaptation to an Environmental Shift: Temporal Dynamics of Variation Under Gaussian Stabilizing Selection and Additive Effects on a Single Trait
Show more Investigations
  • Top
  • Article
  • Info & Metrics

GSA

The Genetics Society of America (GSA), founded in 1931, is the professional membership organization for scientific researchers and educators in the field of genetics. Our members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level.

Online ISSN: 1943-2631

  • For Authors
  • For Reviewers
  • For Subscribers
  • Submit a Manuscript
  • Editorial Board
  • Press Releases

SPPA Logo

GET CONNECTED

RSS  Subscribe with RSS.

email  Subscribe via email. Sign up to receive alert notifications of new articles.

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus

Copyright © 2019 by the Genetics Society of America

  • About GENETICS
  • Terms of use
  • Advertising
  • Permissions
  • Contact us
  • International access