Skip to main content
  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org
  • Log in
Genetics

Main menu

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
  • Other GSA Resources
    • Genetics Society of America
    • G3: Genes | Genomes | Genetics
    • Genes to Genomes: The GSA Blog
    • GSA Conferences
    • GeneticsCareers.org

User menu

  • Log out

Search

  • Advanced search
Genetics

Advanced Search

  • HOME
  • ISSUES
    • Current Issue
    • Early Online
    • Archive
  • ABOUT
    • About the journal
    • Why publish with us?
    • Editorial board
    • Early Career Reviewers
    • Contact us
  • SERIES
    • All Series
    • Genomic Prediction
    • Multiparental Populations
    • FlyBook
    • WormBook
    • YeastBook
  • ARTICLE TYPES
    • About Article Types
    • Commentaries
    • Editorials
    • GSA Honors and Awards
    • Methods, Technology & Resources
    • Perspectives
    • Primers
    • Reviews
    • Toolbox Reviews
  • PUBLISH & REVIEW
    • Scope & publication policies
    • Submission & review process
    • Article types
    • Prepare your manuscript
    • Submit your manuscript
    • After acceptance
    • Guidelines for reviewers
  • SUBSCRIBE
    • Why subscribe?
    • For institutions
    • For individuals
    • Email alerts
    • RSS feeds
Previous ArticleNext Article

Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast.

S Kunes, D Botstein and M S Fox
Genetics January 1, 1990 vol. 124 no. 1 67-80
S Kunes
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Botstein
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M S Fox
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
Loading

Abstract

When yeast (Saccharomyces cerevisiae) is transformed with linearized plasmid DNA and the ends of the plasmid do not share homology with the yeast genome, circular inverted (head-to-head) dimer plasmids are the principal product of repair. By measurements of the DNA concentration dependence of transformation with a linearized plasmid, and by transformation with mixtures of genetically marked plasmids, we show that two plasmid molecules are required to form an inverted dimer plasmid. Several observations suggest that homologous pairing accounts for the head-to-head joining of the two plasmid molecules. First, an enhanced frequency of homologous recombination is detected when genetically marked plasmids undergo end-to-end fusion. Second, when a plasmid is linearized within an inverted repeat, such that its ends could undergo head-to-tail homologous pairing, it is repaired by intramolecular head-to-tail joining. Last, in the joining of homologous linearized plasmids of different length, a shorter molecule can acquire a longer plasmid end by homologous recombination. The formation of inverted dimer plasmids may be related to some forms of chromosomal rearrangement. These might include the fusion of broken sister chromatids in the bridge-breakage-fusion cycle and the head-to-head duplication of genomic DNA at the sites of gene amplifications.

  • Copyright © 1990 by the Genetics Society of America
Previous ArticleNext Article
Back to top

PUBLICATION INFORMATION

Volume 124 Issue 1, January 1990

ARTICLE CLASSIFICATION

INVESTIGATIONS
Research Support, U.S. Gov't, P.H.S.
Email

Thank you for sharing this Genetics article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast.
(Your Name) has forwarded a page to you from Genetics
(Your Name) thought you would be interested in this article in Genetics.
Alerts
Enter your email below to set up alert notifications for new article, or to manage your existing alerts.
SIGN UP OR SIGN IN WITH YOUR EMAIL
View PDF
Share

Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast.

S Kunes, D Botstein and M S Fox
Genetics January 1, 1990 vol. 124 no. 1 67-80
S Kunes
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Botstein
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M S Fox
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation

Synapsis-mediated fusion of free DNA ends forms inverted dimer plasmids in yeast.

S Kunes, D Botstein and M S Fox
Genetics January 1, 1990 vol. 124 no. 1 67-80
S Kunes
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D Botstein
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M S Fox
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero

Related Articles

Cited By

More in this TOC Section

  • Comparative Genomics and Transcriptomics To Analyze Fruiting Body Development in Filamentous Ascomycetes
  • The Fate of Deleterious Variants in a Barley Genomic Prediction Population
  • The Enigmatic Canal-Associated Neurons Regulate Caenorhabditis elegans Larval Development Through a cAMP Signaling Pathway
Show more Investigations
  • Top
  • Article
  • Info & Metrics

GSA

The Genetics Society of America (GSA), founded in 1931, is the professional membership organization for scientific researchers and educators in the field of genetics. Our members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level.

Online ISSN: 1943-2631

  • For Authors
  • For Reviewers
  • For Subscribers
  • Submit a Manuscript
  • Editorial Board
  • Press Releases

SPPA Logo

GET CONNECTED

RSS  Subscribe with RSS.

email  Subscribe via email. Sign up to receive alert notifications of new articles.

  • Facebook
  • Twitter
  • YouTube
  • LinkedIn
  • Google Plus

Copyright © 2019 by the Genetics Society of America

  • About GENETICS
  • Terms of use
  • Advertising
  • Permissions
  • Contact us
  • International access