No. of wild-type alleles in genotype | Read code | Probability |
---|---|---|

2 or 0 | 0 | e_{0} + e_{2}/(3d) |

1 | 0 | |

3 or 6 | e_{1} + 2e_{2}/(3d) | |

4 or 5 | (d − 1)e_{2}/(3d) | |

7 | 2(d − 1)e_{2}/(3d) | |

1 | 0 | 2b_{0}e_{0} + 2b_{1}e_{1}/(3d) |

1 | 2b_{2}(d − 2)e_{1}/(3d) + 2b_{3}e_{0} + 2b_{3}(d − 3)e_{1}/(3d) + (1 – 2(b_{0} + b_{1} + b_{2} + b_{3}))(e_{0} + e_{1}/3) | |

3 or 6 | 2b_{0}e_{1} + 2b_{1}e_{0} + 4b_{1}e_{1}/(3d) + 4b_{2}e_{1}/(3d) | |

4 or 5 | 2b_{1}(d − 1)e_{1}/(3d) + 2b_{2}e_{0} + 2b_{3}e_{1}/d | |

7 | 4b_{1}(d − 1)e_{1}/(3d) + 4b_{2}e_{1}/d + 4b_{3}e_{1}/3 + (1 – 2(b_{0} + b_{1} + b_{2} + b_{3}))(2e_{1}/3) |

The term

*e*= Poisson(_{x}*x*,*d*ε) is the Poisson probability of*x*errors, given an expected number of errors*d*ε. The term*b*= bin(_{y}*y*,*d*, 0.5) is the binomial probability of observing*y*major type bases in a sample of*d*reads at a site, given that the site is heterozygous.