PT - JOURNAL ARTICLE
AU - Satagopan, Jaya M.
AU - Yandell, Brian S.
AU - Newton, Michael A.
AU - Osborn, Thomas C.
TI - A Bayesian Approach to Detect Quantitative Trait Loci Using Markov Chain Monte Carlo
DP - 1996 Oct 01
TA - Genetics
PG - 805--816
VI - 144
IP - 2
4099 - http://www.genetics.org/content/144/2/805.short
4100 - http://www.genetics.org/content/144/2/805.full
SO - Genetics1996 Oct 01; 144
AB - Markov chain Monte Carlo (MCMC) techniques are applied to simultaneously identify multiple quantitative trait loci (QTL) and the magnitude of their effects. Using a Bayesian approach a multi-locus model is fit to quantitative trait and molecular marker data, instead of fitting one locus at a time. The phenotypic trait is modeled as a linear function of the additive and dominance effects of the unknown QTL genotypes. Inference summaries for the locations of the QTL and their effects are derived from the corresponding marginal posterior densities obtained by integrating the likelihood, rather than by optimizing the joint likelihood surface. This is done using MCMC by treating the unknown QTL genotypes, and any missing marker genotypes, as augmented data and then by including these unknowns in the Markov chain cycle along with the unknown parameters. Parameter estimates are obtained as means of the corresponding marginal posterior densities. High posterior density regions of the marginal densities are obtained as confidence regions. We examine flowering time data from double haploid progeny of Brassica napus to illustrate the proposed method.