Supplementary information to the manuscript:
A novel statistical model to estimate host genetic effects affecting disease transmission

Osvaldo Anacleto§*
Luis Alberto Garcia-Cortés†
Debby Lipschutz-Powell‡
John A. Woolliams§
Andrea B. Doeschl-Wilson§

§ The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh
Roslin, Midlothian EH25 9PS, UK
†Departamento de Mejora Genética, Instituto Nacional de Investigación Agraria
Ctra. de la Coruña, km 7.5, Madrid 28040, Spain
‡ Department of Veterinary Medicine, University of Cambridge
Madingley Road, Cambridge, CB3 0ES, UK

*Corresponding author. E-mail: osvaldo.anacleto@roslin.ed.ac.uk
Using the joint posterior distribution of the dnIGE model parameters, it can be found that
the conditional posterior distributions of the variances are

\[\sigma^2_{S,g} \mid \cdot \sim \text{IG}\left(\frac{S}{2} + \alpha_{S,g}, \frac{a_g^\top a_g}{2} + \nu_{S,g}\right), \]

(1)

\[\sigma^2_{S,f} \mid \cdot \sim \text{IG}\left(\frac{S}{2} + \alpha_{S,f}, \frac{a_f^\top a_f}{2} + \nu_{S,f}\right), \]

(2)

\[\sigma^2_{E,g} \mid \cdot \sim \text{IG}\left(\frac{(N - n_0)}{2} + \alpha_{E,g}, \frac{e_g^\top e_g}{2} + \nu_{E,g}\right), \]

(3)

and

\[\sigma^2_{E,f} \mid \cdot \sim \text{IG}\left(\frac{I_f}{2} + \alpha_{E,f}, \frac{e_f^\top e_f}{2} + \nu_{E,f}\right). \]

(4)

Therefore samples from the conditional posteriors of the variances can be obtained by
applying the Gibbs sampling algorithm. This algorithm can also be used to sample from
the conditional posterior distribution of \(\beta \), which is a gamma distribution such that

\[\beta \mid \cdot \sim \text{Gamma}\left(a + I - n_0, b + \sum_{j : h_j = 1} \sum_{k : p_{k_{h_j}} = p_j} (\tau_j - \tau_k) f_k l_k(\tau_j)\right). \]

(5)

In the conditional posterior of the susceptibility additive genetic effect of each sire \(i \),
the log-likelihood was evaluated only for the offspring of \(i \) which are not index cases. These
animals are represented by the set \(l_{g,i} = \{ j : h_j = 1 \cap s(j) = i \} \). Hence, the log-conditional
posterior of $a_{g,i}, i = 1, \ldots, S$, is,

\[
\log(p(a_{g,i} \mid \cdot)) \propto \log(L(\theta)p(a_g \mid \sigma^2_{A,g}))
\]

\[
\propto \sum_{j: j \in l_{g,i}} a_{g,s(j)} - \beta \sum_{j: j \in l_{g,i}} e^{a_{g,s(j)} + \epsilon_{g,j}} \sum_{k: p_k = p_j} (\tau_j - \tau_k)l_k(\tau_j)e^{a_{f,s(k)} + \epsilon_{f,k}}
\]

\[
- \beta \sum_{j: j \in l_{g,i}} e^{a_{g,s(j)} + \epsilon_{g,j}} \sum_{k: p_k = p_j} (T - \tau_k)l_k(\tau_j)e^{a_{f,s(k)} + \epsilon_{f,k}} - \frac{a^2_{g,i}}{2\sigma^2_{S,g}}.
\]

Additionally, in the conditional posterior of the infectivity additive genetic effect of each sire i, the log-likelihood is evaluated for each animal j that has a group mate who is an offspring of sire i and infected before j. These animals are represented by the set

\[
l_{f,i} = \{ j : \tau_j > \min \{ \tau_k : p_k = p_j \cap s(k) = i \} \}
\]

Hence the log-conditional posterior of $a_{f,i}, i = 1, \ldots, S$ is,

\[
\log(p(a_{f,i} \mid \cdot)) \propto \log(L(\theta)p(a_f \mid \sigma^2_{A,f}))
\]

\[
\propto \sum_{j: j \in l_{f,i}} \log \left[\sum_{k: p_k = p_j} l_k(\tau_j)e^{a_{f,s(k)} + \epsilon_{f,k}} \right]
\]

\[
- \beta \sum_{j: j \in l_{f,i}} e^{a_{g,s(j)} + \epsilon_{g,j}} \sum_{k: p_k = p_j} (\tau_j - \tau_k)l_k(\tau_j)e^{a_{f,s(k)} + \epsilon_{f,k}}
\]

\[
- \beta \sum_{j: j \in l_{f,i}} e^{a_{g,s(j)} + \epsilon_{g,j}} \sum_{k: p_k = p_j} (T - \tau_k)l_k(\tau_j)e^{a_{f,s(k)} + \epsilon_{f,k}} - \frac{a^2_{f,i}}{2\sigma^2_{S,f}}.
\]

Since equations (6) and (7) do not have standard forms, samples from the conditional posterior distributions of infectivity and susceptibility sire effects were obtained through the MH algorithm. This MCMC method was also applied to sample from the conditional distributions of the environmental effects. As these effects are assumed independent, the log-conditional posterior of the susceptibility environmental effect of each animal j which
is not an index case is

$$\log(p(e_{g,j} | \cdot)) \propto \log(L(\theta)p(e_{g,j} | \sigma^2_{E,g}))$$

$$\propto \left[e_{g,j} - e^{a_{g,s(j)} + e_{g,j}} \beta \sum_{k:p_k = p_j} (\tau_j - \tau_k) l_k(\tau_j) e^{a_{f,s(k)} + e_{f,k}} \right] \delta_j$$

$$- \left[e^{a_{g,s(j)} + e_{g,j}} \beta \sum_{k:p_k = p_j} (T - \tau_k) l_k(\tau_j) e^{a_{f,s(k)} + e_{f,k}} \right] (1 - \delta_j)$$

$$- \frac{e^2_{g,j}}{2\sigma^2_{E,g}}.$$

where $\delta_j = 1$ if animal j was observed as infected during the observation period and $\delta_j = 0$ otherwise.

In the conditional posterior of the infectivity environmental effect of each infected animal j, the log-likelihood is evaluated for its group mates who were infected after j, as individuals can only express infectivity after getting infected and if there are remaining susceptibles in their groups after infection. Hence, the log-conditional posterior of the environmental effect of animal j, $j = 1, \ldots, I$ is

$$\log(p(e_{f,j} | \cdot)) \propto \log(L(\theta)p(e_{f,j} | \sigma^2_{E,f})) \propto$$

$$\sum_{i:p_i = p_j \quad \tau_i \geq \tau_j} \left\{ \log \left[\sum_{k:p_k = p_i} l_k(\tau_i) e^{a_{f,s(i)} + e_{f,k}} \right] - \beta e^{a_{g,s(i)} + e_{g,i}} \sum_{k:p_k = p_i} (\tau_i - \tau_k) l_k(\tau_i) e^{a_{f,s(k)} + e_{f,k}} \right\} \delta_i$$

$$- \beta \sum_{i:p_i = p_j \quad \tau_i > T} \left\{ e^{a_{g,s(i)} + e_{g,i}} \sum_{k:p_k = p_i} (T - \tau_k) l_k(\tau_i) e^{a_{f,s(k)} + e_{f,k}} \right\} (1 - \delta_i) - \frac{e^2_{f,j}}{2\sigma^2_{E,f}}.$$
S2 Additional plots from the Results Section

Figure S1: Bayesian credible intervals for heritabilities of susceptibility (A,D), infectivity (B,E) and also for effective contact rate β (C,F), obtained by fitting the dnIGE model to 20 replicates of generated datasets of sample size 500 using 10 individuals per group. Heritabilities used were 0.4 (plots A-C) and 0.8 (plots D-F). Gray lines indicate true heritabilities (A,B,D,E) and true effective contact rates (C,F). Dots represent posterior means.
Figure S2: Mean proportion of the 10% worst (plots A,B) and best sires (plots C,D) correctly identified by the dnIGE model for simulated datasets using group size 2, 10 and 20 and heritabilities 0.4 (A,C) and 0.8 (B,D) for both susceptibility and infectivity. Black lines represent mean proportion ± its standard error over 20 replicates.