Details on the algorithm to sample from the inference model

In order to provide a decision criterion for discriminating between neutral and selected markers, we calibrate the Kullback–Leibler divergence (KLD) using simulations from a predictive distribution based on the observed data set. To that end, we generate pseudo-observed data as follows.

We set the hyperparameters M_i, π_j and λ to their respective posterior means \bar{M}_i, $\bar{\pi}_j$ and $\bar{\lambda}$, as estimated from the MCMC. Then we draw δ_j from an exponential distribution $\sim \text{exp}(\bar{\lambda}^{-1})$ and we draw σ_{ij} from an exponential distribution $\sim \text{exp}(\bar{\delta}_j^{-1})$. Last, the parameter κ_{ij} is drawn from a Bernoulli distribution (with parameter the posterior mean $\bar{\kappa}_{ij}$).

We aim at sampling the allele frequency p_{ij} from the distribution with density $f(p_{ij})$ defined by equations 2 and 3 in the main text. Because the cumulative distribution function of the distribution with density $f(p_{ij})$ is not tractable, we use a rejection-sampling algorithm. To that end, we define an instrumental distribution $g(p_{ij}) \sim \text{Beta}(M_i \pi_j, M_i(1 - \pi_j))$, with density:

$$g(p_{ij}) = \frac{\Gamma(M_i)}{\Gamma(M_i \pi_j) \Gamma(M_i(1 - \pi_j))} p_{ij}^{M_i \pi_j - 1} (1 - p_{ij})^{M_i(1 - \pi_j) - 1}$$ (S2.1)

We further need to define a constant u, such that $f(p_{ij}) \leq ug(p_{ij})$ over the support $[0, 1]$. Noting that:

$$\frac{f(p_{ij})}{g(p_{ij})} = \frac{\exp(\sigma_{ij}\bar{p}_{ij})}{\text{1}_F_1(M_i \bar{\pi}_{ij}; M_i; \sigma_{ij})}$$ (S2.2)

then, if we define $u \equiv \exp(\sigma_{ij})/\text{1}_F_1(M_i \bar{\pi}_{ij}; M_i; \sigma_{ij})$ we get:

$$\frac{f(p_{ij})}{ug(p_{ij})} = \exp(\sigma_{ij}(\bar{p}_{ij} - 1))$$ (S2.3)

Since $0 \leq \bar{p}_{ij} \leq 1$ and $\sigma_{ij} \geq 0$, by definition, we have $\exp(\sigma_{ij}(\bar{p}_{ij} - 1)) \leq 1$ and therefore $f(p_{ij}) \leq [ug(p_{ij})]$. A straightforward algorithm to sample from the distribution with density $f(p_{ij})$ is then:
(1) Sample x from a beta distribution $\text{Beta}(M_i \tilde{\pi}, M_i (1 - \pi))$ and y from $\mathcal{U}(0, 1)$ (the uniform distribution over the unit interval).

(2) Check whether or not $y < f(x)/[ug(x)]$ or equivalently (see equation S2.3) if
\[
\log(y) < \sigma_{ij} (\tilde{p}_{ij} - 1);
\]
- If this holds, accept x and set $\tilde{p}_{ij} = x$;
- if not, reject the value of x and repeat the sampling step (1).

(3) Compute $p_{ij} = \tilde{p}_{ij} (1 - \kappa_{ij}) + (1 - \tilde{p}_{ij}) \kappa_{ij}$.

Finally, we draw the allele counts n_{ij} in the ith deme at the jth locus by a random draw from the binomial distribution $\sim \mathcal{B}(n_{ij}, p_{ij})$. We repeat this procedure for each locus j in each deme i.

This algorithm is computationally efficient, since it avoids computing $\text{1}_F_1(M_i \tilde{\pi}, M_i; \sigma_{ij})$ (see equations 2 and 3 in the main text). However, the efficiency of the algorithm may be very low for large values of σ_{ij}. This is so because the expected number of iterations required until an x is successfully generated is exactly the bounding constant $u \equiv \exp(\sigma_{ij})/\text{1}_F_1(M_i \tilde{\pi}, M_i; \sigma_{ij})$. Therefore, to avoid the algorithm getting stuck in very long loops, we adopt an alternative strategy whenever $u > 10^4$: in such case, we draw x from a beta distribution $\text{Beta}(\alpha, \beta)$ with the same first two moments as the target distribution (equations 2 and 3 in the main text). Little algebra shows that:

\[
\alpha = m_1 (m_2 - m_1)/(m_1^2 - m_2) \quad \text{and} \quad \beta = \alpha(1/m_1 - 1),
\]

where

\[
m_1 = \tilde{\pi}_{ij} \left(\frac{\text{1}_F_1(M_i \tilde{\pi}_{ij} + 1; M_i + 1; \sigma_{ij})}{\text{1}_F_1(M_i \tilde{\pi}_{ij}; M_i; \sigma_{ij})} \right) \tag{S2.4}
\]

and

\[
m_2 = \tilde{\pi}_{ij} \left(\frac{M_i \tilde{\pi}_{ij} + 1}{M_i + 1} \right) \left(\frac{\text{1}_F_1(M_i \tilde{\pi}_{ij} + 2; M_i + 2; \sigma_{ij})}{\text{1}_F_1(M_i \tilde{\pi}_{ij}; M_i; \sigma_{ij})} \right) \tag{S2.5}
\]