Figure S4: Fixation probability for a mutation with periodically changing selection strength $s(t) = s_0 + (s_{\text{max}} - s_0) \cos(\omega t + \varphi)$ in dependence of s_0 for various values of φ; $s_{\text{max}} = 0.02$, $\omega = 0.01$. Small values of s_0 correspond to relatively long and pronounced periods of selective disadvantage. As s_0 approaches s_{max} the fixation probability tends to $\approx 2s_{\text{max}}$ as expected. Comparison to simulated data shows that the theory provides an accurate prediction of the fixation probability also for scenarios in which the mutation temporarily gets disadvantageous. For $s_0 \leq 0$, however, it predicts a fixation probability of zero and therefore underestimates the true value. Simulations were performed for a population of 100,000 individuals, and each simulation point is the average over 10^6 runs.