FIGURE S3. – Homologous transitions depend on the details of sex-antagonistic selection. The two panels show analytical invasion-fitness estimates for homologous transitions (solid curves) and numerical results based on the exact population genetic recursions [symbols] across a range of sex-antagonistic selection coefficients and for different combinations of dominance parameters. Overall, higher male-beneficial allele frequencies (right on the horizontal axes) favor homologous transitions to \(ZW \) sex-determination, since female heterogamety allows rare female-beneficial alleles to accumulate on the \(w \)-chromosome without being exposed to selection in males. (A) A feminizing mutation at the ancestral sex-determination locus is more likely to spread, if male-beneficial alleles at nearby loci are recessive and female-beneficial alleles are dominant, since this increases the expression of favorable effects in both the homogametic and heterogametic sex. (B) Sex-specific differences in the dominance coefficients influence the scope for the maintenance of variation at sex-antagonistic loci. Stronger support of sex-antagonistic variation by sex-specific dominance (\(h_m > h_f \)) allows for heterogamety transitions over a wider range of selection coefficients, but is also associated with a smaller changes in sex-antagonistic allele frequencies during a heterogamety transition, reducing the maximal strength of indirect selection on the \(W \) allele. Other parameters: \(r = r' = 0.01 \), \(\bar{\mu} = \bar{\bar{\mu}} = 1.0 \times 10^{-7} \).