Equations for calculating the expected gametic and allelic frequencies under Model 1

The expected frequencies F_c of the different 1n-2c configurations can be derived from the recombination frequencies between the three S_1 genes and between the S_1 complex locus and the centromere (see schematic representation 1 below), and are given in Table S3-1.

The expected frequencies of each gamete that belong to a specific 1n-2c configuration are equal to $F_c/4$, where F_c is the expected frequency of the specific 1n-2c configuration.

Let D be the sum of the frequencies of the viable gametes. Under model 1, D simplifies to:

$$D = \left(1 - 2r_1\right)\left(\frac{r_3}{2} + 1\right) + 2r_1\left[\frac{1}{2}r_2 + \frac{r_1}{2} - r_1r_2\right]$$

The expected frequencies of viable gametes are obtained by dividing their corresponding expected frequency by D.

Thus, the final frequency of gametes bearing the S_1^+ allele, $f\left(S_1^+\right)$, is obtained by summing the individual frequencies of viable gamete that bear this allele. Under Model 1, this simplifies to:

$$f\left(S_1^+\right) = \left[\frac{r_3}{2} + r_1\left(r_1 - r_2 - 2r_1r_2\right)\right]/D$$

Similar equations can be derived for Models 2 to 4, with numerical examples based on observed data given in File “S1 - Genetic models.xlsx”.

Under all models, the estimated for recombination fractions r_1 and r_2 are naturally given by dividing the observed recombination fractions, $r_{1\text{max}}$ and $r_{2\text{max}}$, by $2D$.

$$\hat{r}_1 = \frac{r_{1\text{max}}}{2D}; \quad \hat{r}_2 = \frac{r_{2\text{max}}}{2D}.$$

In the case of the presence of the additional factor S_1C (see schematic representation 2 below), the effect of S_1C is applied after the initial selection due to the S_1A - S_1^- - S_1B locus action.

As S_1C only affects the S_1^- gametes when a recombination event occurs between S_1B and S_1C, the expected frequencies of these gametes are obtained by multiplying them by $(1 - r_3)$, where r_3 is the recombination fraction between S_1B and S_1C, and dividing them by the relative sum of all gamete frequencies, $1 - r_3f\left(S_1^+\right)$. The frequencies of other viable gametes are obtained by dividing them by the relative sum of all gamete frequencies, $1 - r_3f\left(S_1^+\right)$.
TABLE S3-1

Expected frequencies F_c of the different 1n-2c configuration expressed in function of the recombination frequencies between the three S_i genes, and associated gametic frequencies under no selection and Model 1 selection

<table>
<thead>
<tr>
<th>1n-2c configuration</th>
<th>Expected configuration frequency without selection (F_c)</th>
<th>Expected gamete frequency without selection (F_g)</th>
<th>Survival under Model 1</th>
<th>Expected gamete frequency under selection (Model 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{iA} S_i S_{iB}</td>
<td>$F_c^1 = \frac{1}{4}$</td>
<td>Viable F_g/D</td>
<td>Aborted</td>
<td>F_g/D</td>
</tr>
<tr>
<td>S_{iB} S_{iA} S_i</td>
<td>$F_c^2 = \frac{1}{4}$</td>
<td>Viable F_g/D</td>
<td>Aborted</td>
<td>F_g/D</td>
</tr>
<tr>
<td>S_{iB} S_{iA} S_i</td>
<td>$F_c^3 = \frac{1}{4}$</td>
<td>Viable F_g/D</td>
<td>Aborted</td>
<td>F_g/D</td>
</tr>
<tr>
<td>S_{iB} S_{iA} S_i</td>
<td>$F_c^4 = \frac{1}{4}$</td>
<td>Aborted 0</td>
<td>Viable F_g/D</td>
<td>F_g/D</td>
</tr>
<tr>
<td>S_{iB} S_{iA} S_i</td>
<td>$F_c^5 = \frac{1}{4}$</td>
<td>Viable F_g/D</td>
<td>Aborted 0</td>
<td>F_g/D</td>
</tr>
</tbody>
</table>

$F_c^1 = \left(1 - 2r_3\right)\left[1 - 2(r_1 + r_2 - 2r_1r_2)\right]$

$F_c^2 = 2r_3\left(1 - 2r_1\right)(1 - 2r_3)$

$F_c^3 = 2r_3\left(1 - 2r_2\right)(1 - 2r_3)$

$F_c^4 = 2r_3\left(1 - 2r_2\right)(1 - 2r_3)$

$F_c^5 = 4r_1r_2(1 - 2r_3)$
The sum of the frequencies of the viable gametes thus simplifies to:

\[D' = D' \left(1 - f(S_1)\right) \delta_s \]

while the final frequency of gametes bearing the \(S_1 \) allele converts to:

\[f(S_1) = \left(1 - \hat{r}_1\right) f(S_1) \delta_s / \left(1 - f(S_1) r_1\right) \]

and the estimates for \(r_1 \) and \(r_2 \) convert to:

\[\hat{r}_1 = \frac{r_1 \max}{2D'}; \hat{r}_2 = \frac{r_2 \max}{2D'} \]
Schematic representation 1: positions of the three S_1 genes on rice chromosome 6, expressed as recombination fractions between each other and between the S_1 locus and the centromere.

![Schematic representation 1](image)

Schematic representation 2: positions of the three S_1 genes and the S_1C gene on rice chromosome 6, expressed as recombination fractions between each other and between the S_1 locus and the centromere.

![Schematic representation 2](image)